Generalized Attributes in Concept Lattices

Léonard Kwuida

Bern University of Applied Sciences, Switzerland

June 15, 2017

with R. Kuitché and E. R. Temgoua UYI and ENS, Yaoundé - Cameroon

Kwuida (BUAS)

Generalized attributes

Novi Sad 2017 1 / 17

Elementary Information system and Formal Contexts

\mathbb{K}	a	b	С	d	е	f	g	h
1	×				×		×	
2	×				×	×		\times
3	×	×			\times	×	×	
4		×			×	\times	×	×
5	×		×	×				
6	×	×	×	×				
7		×	×				×	
8		×	×	×			×	

- A context is a triple K := (G, M, I) with sets G (of objects), M (of attributes) and I ⊆ G × M a binary relation.
- A concept is a pair (A, B) with B the set of all properties common to objects in A and A the set of all objects having all the properties in B.

Lattice of concepts

3

Lattice of concepts (FCA)

- Context: $\mathbb{K} := (G, M, I)$ with $I \subseteq G \times M$.
- $g I m : \iff (g, m) \in I.$ g has attribute m.

 $A' := \{ m \in M \mid \forall g \in A g \operatorname{I} m \} \text{ and } B' := \{ g \in G \mid \forall m \in B g \operatorname{I} m \}.$

- A formal concept of \mathbb{K} is a pair (A, B) with A' = B and B' = A.
- A is the extent and B the intent of the concept (A, B).
- c: X → X" is a closure operator on P(G) and on P(M).
 Ext(K) := c(P(G)) ≅^d c(P(M)) =: Int(K).
- $\mathfrak{B}(\mathbb{K}) :=$ set of all formal concepts of \mathbb{K} .
- Concept hierarchy: $(A, B) \leq (C, D)$ iff $A \subseteq C$ (iff $D \subseteq B$).
- $(\mathfrak{B}(\mathbb{K}); \leq)$ is a complete lattice, called **concept lattice** of \mathbb{K} .

(日) (同) (日) (日) (日)

Lattice of concepts (FCA)

- Context: $\mathbb{K} := (G, M, I)$ with $I \subseteq G \times M$.
- $g I m : \iff (g, m) \in I.$ g has attribute m.

 $A' := \{ m \in M \mid \forall g \in A g \operatorname{I} m \} \text{ and } B' := \{ g \in G \mid \forall m \in B g \operatorname{I} m \}.$

- A formal concept of \mathbb{K} is a pair (A, B) with A' = B and B' = A.
- A is the extent and B the intent of the concept (A, B).
- $c: X \mapsto X''$ is a closure operator on $\mathcal{P}(G)$ and on $\mathcal{P}(M)$.
- $\operatorname{Ext}(\mathbb{K}) := c(\mathcal{P}(G)) \cong^{d} c(\mathcal{P}(M)) =: \operatorname{Int}(\mathbb{K}).$
- $\mathfrak{B}(\mathbb{K}) :=$ set of all formal concepts of \mathbb{K} .
- Concept hierarchy: $(A, B) \leq (C, D)$ iff $A \subseteq C$ (iff $D \subseteq B$).
- $(\mathfrak{B}(\mathbb{K}); \leq)$ is a complete lattice, called **concept lattice** of \mathbb{K} .

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Generalized patterns

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
- In basket market analysis, items or products can be grouped into product lines or product categories. Customers may be grouped according to some specific features (e.g., income, education).
- By grouping the attributes of K, we actually replace (G, M, I) with a new context (G, S, J) with S covering M and J to be precised.
- There are mainly three ways to express the relation *J*:
 - gJs :iff g has at least one attribute from the group s
 - gJs :iff g has all attributes from the group s
 - gJs :iff g satisfies at least a certain proportion of the attributes in s

イロト 不得下 イヨト イヨト 二日

Generalized patterns

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
- In basket market analysis, items or products can be grouped into product lines or product categories. Customers may be grouped according to some specific features (e.g., income, education).
- By grouping the attributes of K, we actually replace (G, M, I) with a new context (G, S, J) with S covering M and J to be precised.
- There are mainly three ways to express the relation *J*:
 - gJs :iff g has at least one attribute from the group s
 - gJs :iff g has all attributes from the group s
 - gJs :iff g satisfies at least a certain proportion of the attributes in s

イロト 不得下 イヨト イヨト 二日

Generalized patterns

- In data mining, generalized patterns are pieces of knowledge extracted from data when an ontology is used. For example the attributes of K can be grouped together to form set S of new attributes.
- In basket market analysis, items or products can be grouped into product lines or product categories. Customers may be grouped according to some specific features (e.g., income, education).
- By grouping the attributes of K, we actually replace (G, M, I) with a new context (G, S, J) with S covering M and J to be precised.
- There are mainly three ways to express the relation J:
 - gJs :iff g has at least one attribute from the group s
 - *gJs* :iff *g* has all attributes from the group *s*
 - gJs :iff g satisfies at least a certain proportion of the attributes in s

Lattice of concepts

æ

Generalizing attributes

Initial context								3-g	genera	alizat	ion	∀-g	genera	alizat	ion	α -generalization			
	a	b	с	d	е	f	g	h	Α	В	С	D	S	Т	U	V	E	F	Н
1	×				×		×		×		×		×						
2	×				×	×		×	×		×	×				×		×	
3	×	×			×	×	×		×	×	×	×	×				×	×	
4		×			×	×	×	×	×	×		×	×			×		×	×
5	×		×	×						×	×				×		×		
6	×	×	×	×						×	\times			×	×		×		
7		×	×					×		×	\times			×			×		
8		×	×	×			×		×	×	×			×			×		

The generalized attributes are

(
$$\exists$$
) $A := \{e, g\}, B := \{b, c\}, C := \{a, d\}, D := \{f, h\}.$
(\forall) $S := \{e, g\}, T := \{b, c\}, U := \{a, d\}, V := \{f, h\}.$
(α) $E := \{a, b, c\}, F := \{d, e, f\}, H := \{g, h\}$ with threshold $\alpha = 60\%$

Expected Gain: We reduce the size of the context and expect also the size of the concept lattice to reduce. BUT this is not always the case.

Image: A matrix

Generalizing attributes

Initial context								3-g	genera	alizat	ion	∀-g	genera	alizat	ion	α -generalization			
	a	b	с	d	е	f	g	h	Α	В	С	D	S	Т	U	V	E	F	Н
1	×				×		×		×		×		×						
2	×				×	×		×	×		×	×				×		×	
3	×	×			×	×	×		×	×	×	×	×				×	×	
4		×			×	×	×	×	×	×		×	×			×		×	×
5	×		×	×						×	×				×		×		
6	×	×	×	×						×	\times			×	×		×		
7		×	×					×		×	\times			×			×		
8		×	×	×			×		×	×	×			×			×		

The generalized attributes are

(
$$\exists$$
) $A := \{e, g\}, B := \{b, c\}, C := \{a, d\}, D := \{f, h\}.$
(\forall) $S := \{e, g\}, T := \{b, c\}, U := \{a, d\}, V := \{f, h\}.$
(α) $E := \{a, b, c\}, F := \{d, e, f\}, H := \{g, h\}$ with threshold $\alpha = 60\%$

Expected Gain: We reduce the size of the context and expect also the size of the concept lattice to reduce. BUT this is not always the case.

Kwuida (BUAS)

Image: A matrix

Lattice of concepts

3

Lattice of concepts with generalized attributes

For this example the lattice size decreases in all three cases.

 \exists -Generalizing two attributes can increase the lattice size!

m4

d m3

с

Kwuida (BUAS)

Generalized attributes

 \exists -Generalizing two attributes can increase the lattice size!

m4

d m3

с

Kwuida (BUAS)

Generalized attributes

- The ∀-generalizations on attributes do not increase the size of the concept lattice.
- If the concept lattice is distributive, then any ∃-generalization reduces the size of the initial lattice.
- The lattice B₄ is the smallest lattice on which there is an
 ∃-generalization that increases the size of the initial concept lattice.

- **()** Can the size increase by more than one after a \exists -generalisation?
- ② Can the size remains unchanged after a ∃-generalisation?
- ③ Can we characterize contexts for which the size does not decrease after a ∃-generalization? e.g in terms of forbidden configurations?
- Is there a similarity measure (on attributes) compatible with the changing of size after a generalization?

- The ∀-generalizations on attributes do not increase the size of the concept lattice.
- If the concept lattice is distributive, then any ∃-generalization reduces the size of the initial lattice.
- The lattice B₄ is the smallest lattice on which there is an
 ∃-generalization that increases the size of the initial concept lattice.

- **()** Can the size increase by more than one after a \exists -generalisation?
- 2 Can the size remains unchanged after a \exists -generalisation?
- ③ Can we characterize contexts for which the size does not decrease after a ∃-generalization? e.g in terms of forbidden configurations?
- Is there a similarity measure (on attributes) compatible with the changing of size after a generalization?

- The ∀-generalizations on attributes do not increase the size of the concept lattice.
- If the concept lattice is distributive, then any ∃-generalization reduces the size of the initial lattice.
- The lattice B₄ is the smallest lattice on which there is an
 ∃-generalization that increases the size of the initial concept lattice.

- **()** Can the size increase by more than one after a \exists -generalisation?
- 2 Can the size remains unchanged after a \exists -generalisation?
- So Can we characterize contexts for which the size does not decrease after a ∃-generalization? e.g in terms of forbidden configurations?
- Is there a similarity measure (on attributes) compatible with the changing of size after a generalization?

- The ∀-generalizations on attributes do not increase the size of the concept lattice.
- If the concept lattice is distributive, then any ∃-generalization reduces the size of the initial lattice.
- The lattice B₄ is the smallest lattice on which there is an
 ∃-generalization that increases the size of the initial concept lattice.

- **①** Can the size increase by more than one after a ∃-generalisation?
- 2 Can the size remains unchanged after a \exists -generalisation?
- So Can we characterize contexts for which the size does not decrease after a ∃-generalization? e.g in terms of forbidden configurations?
- Is there a similarity measure (on attributes) compatible with the changing of size after a generalization?

Adding one attribute to a context

- Generalizing two attributes a, b ∈ M in (G, M, I) is done by adding an attribute ab ∉ M to M and removing a, b from M.
- Let $\mathbb{K}_m = (G, M \cup \{s\}, I_s)$ be an extension of $\mathbb{K} = (G, M, I), s \notin M$.
- Let $(A, B) \in \mathfrak{B}(\mathbb{K})$;
 - If $A \subseteq m'$ then $(A, B \cup \{m\}) \in \mathfrak{B}(\mathbb{K}_m)$.
 - ▶ Else, (A, B) and $(A \cap m', A' \cup \{m\})$ are two different concepts of \mathbb{K}_m .

The map

$$\Phi_m: (A,B) \mapsto \begin{cases} (A,B \cup \{m\}): & \text{if } A \subseteq m' \\ (A,B) & \text{else} \end{cases}$$

is injective and order preserving from $\mathfrak{B}(\mathbb{K})$ to $\mathfrak{B}(\mathbb{K}_m)$.

• $\Delta_m = |\mathfrak{B}(\mathbb{K}_m)| - |\mathfrak{B}(\mathbb{K})| \le |\mathfrak{B}(\mathbb{K})|.$ The equality can be reached.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The context resulting from a \exists -generalization of m_1 and m_2 is isomorphic to (S_{n+1}, S_{n+1}, \neq) and therefore has 2^{n+1} concepts.

The context \mathbb{K}_n^k has $2^n + 2^k + 2^{n-k} - 1$ concepts.

Putting m_1 and m_2 together increases the size by $2^n - 2^k - 2^{n-k} + 1$

The maximal increase arise with $k = \frac{n}{2}$ if *n* is even, or with $k \in \{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil\}$ if *n* is odd.

- K = (S, S, ≠) has 2^{|S|} concepts, that form a Boolean algebra.
 Let S_n = {1,..., n}, n ∈ N_{*} and g₁, m₁, m₂ ∉ S_n.
 Set K^k_n := (S_n ∪{g₁}, S_n ∪{m₁, m₂}, I) with k ∈ S_n and
 I ∩ (S_n × S_n) =≠
 g'₁ = S_n, m'₁ = {1,...,k} and m'₂ = S_n \ m'₁.
- The context resulting from a \exists -generalization of m_1 and m_2 is isomorphic to (S_{n+1}, S_{n+1}, \neq) and therefore has 2^{n+1} concepts.
 - The context \mathbb{K}_n^k has $2^n + 2^k + 2^{n-k} 1$ concepts.
 - Putting m_1 and m_2 together increases the size by $2^n 2^k 2^{n-k} + 1$

The maximal increase arise with $k = \frac{n}{2}$ if *n* is even, or with $k \in \{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil\}$ if *n* is odd.

イロト イポト イヨト イヨト 二日

- The context resulting from a \exists -generalization of m_1 and m_2 is isomorphic to (S_{n+1}, S_{n+1}, \neq) and therefore has 2^{n+1} concepts.
- The context \mathbb{K}_n^k has $2^n + 2^k + 2^{n-k} 1$ concepts.
 - Putting m_1 and m_2 together increases the size by $2^n 2^k 2^{n-k} + 1$

The maximal increase arise with $k = \frac{n}{2}$ if *n* is even, or with $k \in \{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil\}$ if *n* is odd.

- ► The context resulting from a \exists -generalization of m_1 and m_2 is isomorphic to (S_{n+1}, S_{n+1}, \neq) and therefore has 2^{n+1} concepts.
- The context \mathbb{K}_n^k has $2^n + 2^k + 2^{n-k} 1$ concepts.
- Putting m_1 and m_2 together increases the size by $2^n 2^k 2^{n-k} + 1$.

The maximal increase arise with $k = \frac{n}{2}$ if *n* is even, or with $k \in \{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil\}$ if *n* is odd.

- ► The context resulting from a \exists -generalization of m_1 and m_2 is isomorphic to (S_{n+1}, S_{n+1}, \neq) and therefore has 2^{n+1} concepts.
- The context \mathbb{K}_n^k has $2^n + 2^k + 2^{n-k} 1$ concepts.
- Putting m_1 and m_2 together increases the size by $2^n 2^k 2^{n-k} + 1$.
- The maximal increase arise with $k = \frac{n}{2}$ if *n* is even, or with $k \in \{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil\}$ if *n* is odd.

$$g(k) = 2^{n} - 2^{k} - 2^{n-k} + 1$$

$$0 = g'(k) = -\ln(2)2^{k} + \ln(2)2^{n-k} \iff n = 2k.$$

$$g''(k) = -\ln^{2}(2)2^{k} - \ln^{2}(2)2^{n-k} < 0.$$

• For any context (G, M, I), the number of concept is $\leq 2^{\min(|M|, |G|)}$.

Let (G, M ∪ {a, b}, I) be a context and (G, M ∪ {ab}, I) the context obtained by ∃-generalizing a and b.

•
$$\begin{cases} |\mathfrak{B}(G, M, I)| \leq |\mathfrak{B}(G, M \cup \{a, b\}, I)| \\ |\mathfrak{B}(G, M, I)| \leq |\mathfrak{B}(G, M \cup \{ab\}, I)| \\ \end{cases}$$
• Set
$$\begin{cases} n_a := |\mathfrak{B}(G, M \cup \{a\}, I)| - |\mathfrak{B}(G, M, I)| \\ n_{a+b} := |\mathfrak{B}(G, M \cup \{a, b\}, I)| - |\mathfrak{B}(G, M, I)| \\ n_{ab} := |\mathfrak{B}(G, M \cup \{ab\}, I)| - |\mathfrak{B}(G, M, I)| \end{cases}$$

Kwuida (BUAS)

3

$$g(k) = 2^{n} - 2^{k} - 2^{n-k} + 1$$

$$0 = g'(k) = -\ln(2)2^{k} + \ln(2)2^{n-k} \iff n = 2k.$$

$$g''(k) = -\ln^{2}(2)2^{k} - \ln^{2}(2)2^{n-k} < 0.$$

• For any context (G, M, I), the number of concept is $\leq 2^{\min(|M|, |G|)}$.

Let (G, M ∪ {a, b}, I) be a context and (G, M ∪ {ab}, I) the context obtained by ∃-generalizing a and b.

•
$$\begin{cases} |\mathfrak{B}(G, M, I)| \leq |\mathfrak{B}(G, M \cup \{a, b\}, I)| \\ |\mathfrak{B}(G, M, I)| \leq |\mathfrak{B}(G, M \cup \{ab\}, I)| \end{cases}$$

• Set
$$\begin{cases} n_a := |\mathfrak{B}(G, M \cup \{a\}, I)| - |\mathfrak{B}(G, M, I)| \\ n_{a+b} := |\mathfrak{B}(G, M \cup \{a, b\}, I)| - |\mathfrak{B}(G, M, I)| \\ n_{ab} := |\mathfrak{B}(G, M \cup \{ab\}, I)| - |\mathfrak{B}(G, M, I)| \end{cases}$$

э

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$g(k) = 2^{n} - 2^{k} - 2^{n-k} + 1$$

$$0 = g'(k) = -\ln(2)2^{k} + \ln(2)2^{n-k} \iff n = 2k.$$

$$g''(k) = -\ln^{2}(2)2^{k} - \ln^{2}(2)2^{n-k} < 0.$$

• For any context (G, M, I), the number of concept is $\leq 2^{\min(|M|, |G|)}$.

Let (G, M ∪ {a, b}, I) be a context and (G, M ∪ {ab}, I) the context obtained by ∃-generalizing a and b.

•
$$\begin{cases} |\mathfrak{B}(G,M,I)| \leq |\mathfrak{B}(G,M \cup \{a,b\},I)| \\ |\mathfrak{B}(G,M,I)| \leq |\mathfrak{B}(G,M \cup \{ab\},I)| \end{cases}$$

• Set $\begin{cases} n_a := |\mathfrak{B}(G, M \cup \{a\}, I)| - |\mathfrak{B}(G, M, I)| \\ n_{a+b} := |\mathfrak{B}(G, M \cup \{a, b\}, I)| - |\mathfrak{B}(G, M, I)| \\ n_{ab} := |\mathfrak{B}(G, M \cup \{ab\}, I)| - |\mathfrak{B}(G, M, I)| \end{cases}$

$$g(k) = 2^{n} - 2^{k} - 2^{n-k} + 1$$

$$0 = g'(k) = -\ln(2)2^{k} + \ln(2)2^{n-k} \iff n = 2k.$$

$$g''(k) = -\ln^{2}(2)2^{k} - \ln^{2}(2)2^{n-k} < 0.$$

• For any context (G, M, I), the number of concept is $\leq 2^{\min(|M|, |G|)}$.

Let (G, M ∪ {a, b}, I) be a context and (G, M ∪ {ab}, I) the context obtained by ∃-generalizing a and b.

•
$$\begin{cases} |\mathfrak{B}(G, M, I)| \leq |\mathfrak{B}(G, M \cup \{a, b\}, I)| \\ |\mathfrak{B}(G, M, I)| \leq |\mathfrak{B}(G, M \cup \{ab\}, I)| \end{cases}$$

• Set
$$\begin{cases} n_a := |\mathfrak{B}(G, M \cup \{a\}, I)| - |\mathfrak{B}(G, M, I)| \\ n_{a+b} := |\mathfrak{B}(G, M \cup \{a, b\}, I)| - |\mathfrak{B}(G, M, I)| \\ n_{ab} := |\mathfrak{B}(G, M \cup \{ab\}, I)| - |\mathfrak{B}(G, M, I)| \end{cases}$$

Kwuida (BUAS)

 Let (G, M ∪ {a, b}, I) be a context. ∃-Generalizing a and b increases the concept lattice size iff n_{ab} > n_{a+b}.

• The map

$$\begin{aligned} \phi_a : & \mathfrak{B}(G, M, I) & \longrightarrow & \mathfrak{B}(G, M \cup \{a\}, I) \\ & (A, B) & \longmapsto & \begin{cases} (A, B \cup \{a\}) & \text{if } A \subseteq a' \\ & (A, B) & \text{else} \end{cases} \end{aligned}$$

is an injective map.

- If a' = G then Φ_a is a bijection.
- If a is reducible (i.e. ∃Y ⊆ M such that a' = Y') then Φ_a is a bijection.

э

< □ > < □ > < □ > < □ > < □ > < □ >

- Let (G, M ∪ {a, b}, I) be a context. ∃-Generalizing a and b increases the concept lattice size iff n_{ab} > n_{a+b}.
- The map

$$\begin{aligned} \phi_{a} : & \mathfrak{B}(G, M, I) & \longrightarrow & \mathfrak{B}(G, M \cup \{a\}, I) \\ & (A, B) & \longmapsto & \begin{cases} (A, B \cup \{a\}) & \text{if } A \subseteq a' \\ (A, B) & \text{else} \end{cases} \end{aligned}$$

is an injective map.

- If a' = G then Φ_a is a bijection.
- If a is reducible (i.e. ∃Y ⊆ M such that a' = Y') then Φ_a is a bijection.

A (10) > A (10) > A

- Let (G, M ∪ {a, b}, I) be a context. ∃-Generalizing a and b increases the concept lattice size iff n_{ab} > n_{a+b}.
- The map

$$\begin{array}{rccc} \phi_{a}: & \mathfrak{B}(G,M,I) & \longrightarrow & \mathfrak{B}(G,M\cup\{a\},I) \\ & (A,B) & \longmapsto & \begin{cases} (A,B\cup\{a\}) & \text{if } A\subseteq a' \\ (A,B) & \text{else} \end{cases} \end{array}$$

is an injective map.

- If a' = G then Φ_a is a bijection.
- If a is reducible (i.e. ∃Y ⊆ M such that a' = Y') then Φ_a is a bijection.

(人間) トイヨト イヨト

- Let (G, M ∪ {a, b}, I) be a context. ∃-Generalizing a and b increases the concept lattice size iff n_{ab} > n_{a+b}.
- The map

$$\begin{array}{rccc} \phi_{a}: & \mathfrak{B}(G,M,I) & \longrightarrow & \mathfrak{B}(G,M\cup\{a\},I) \\ & (A,B) & \longmapsto & \begin{cases} (A,B\cup\{a\}) & \text{if } A\subseteq a' \\ (A,B) & \text{else} \end{cases} \end{array}$$

is an injective map.

- If a' = G then Φ_a is a bijection.
- If a is reducible (i.e. ∃Y ⊆ M such that a' = Y') then Φ_a is a bijection.

・ 得 ト ・ ヨ ト ・ ヨ ト

- The maximum for n_a is $2^{|a'|}$ if all $A \cap a'$ are distinct extents of \mathbb{K} .
- So n_{ab} is maximal if all $A \cap (a' \cup b')$ are distinct extents of (G, M, I).
- The order ideal generated by $\{\mu a, \mu b\}$ is then isomorphic to $\mathcal{P}(a' \cup b') \setminus \{a' \cup b'\}.$
- For a reduced context (G, M, I) the choice for n_{ab} to reach the max is with |M| − 1 = |ab'| = |a' ∪ b'|.
- The increase n_{a+b} after adding both a and b is minimal when $a'\cap b'=\emptyset$ holds. That is $n_{a+b}=n_a+n_b-1$
- Thus $n_{ab} n_{a+b} \le 2^{|a'| + |b'|} 2^{|a'|} 2^{|b'|} + 1$

- 本間 医 (本語) (本語) (二語)

The maximal increase after \exists -generalizing is reached when n_{ab} is maximal and n_{a+b} minimal and is $n_{ab} - n_{a+b} \leq 2^{|a'|+|b'|} - 2^{|a'|} - 2^{|b'|} + 1$