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Motivation

A lattice (L,6) is:

atomistic if it contains the bottom and each element is a join
of atoms;

semimodular if for all x , y ∈ L;

x ∧ y ≺ x implies y ≺ x ∨ y .

geometric if it is atomistic, semimodular and such that all
chains in L are finite.
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Motivation

A matroid is defined as a set A together with a closure operator
· : P(A)→ P(A) on A such that for all X ⊆ A and for all x , y ∈ A we have

M1 : x /∈ X and x ∈ X ∪ {y} imply y ∈ X ∪ {x};
M2 : there exists a finite Y such that Y ⊆ X and Y = X .

A matroid is simple if:

M3 ∅ = ∅ and {x} = {x}, for every x ∈ A.

Theorem

The set of all closed set of a simple matroid ordered by set incusion is a
geometric lattice under inclusion. Conversely, every geometric lattice L is
isomorphic to a set of all closed sets of a particular matroid constructed on the
set of atoms of L.

Theorem

For every finite matroid there exists a simple matroid such that their lattices of
flats (closed subsets) are isomorphic.
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Motivation

A centralized system (Erné; 1984) on a set S is F ⊆ P(S) with the property
that for every x ∈ S ⋂

{X ∈ F | x ∈ X} ∈ F .

A partial closure operator C (Šešelja, Tepavčević; 2000) on a set S is a
partial mapping C : P(S)→ P(S) that satisfies:

Pc1: if C(X ) is defined, then X ⊆ C(X );

Pc2: if C(X ) and C(Y ) are defined, then X ⊆ Y implies C(X ) ⊆ C(Y );

Pc3: if C(X ) is defined, then C(C(X )) is also defined and C(C(X )) = C(X );

Pc4: C({x}) is defined for every x ∈ S .

As usual, if X ⊆ S and C(X ) = X , then X is a closed set. The family of
closed sets FC is the range of a partial closure operator C .

Theorem (Šešelja, Tepavčević; 2000)

The range of a partial closure operator on a set S is a centralized system.
Conversely, for every centralized system F on S , there is a partial closure
operator on S such that its range is F .
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A centralized system (Erné; 1984) on a set S is F ⊆ P(S) with the property
that for every x ∈ S ⋂

{X ∈ F | x ∈ X} ∈ F .
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Sharpness

A partial closure operator C on S is said to be sharp (SPCO), if it
satisfies condition:

Pc5: Let B ⊆ S . If
⋂{X ∈ FC | B ⊆ X} ∈ FC , then C (B) is

defined and

C (B) =
⋂
{X ∈ FC | B ⊆ X} (sharpness).

Theorem (Šešelja, S., Tepavčević; 2017)

The range of a partial closure operator on a set S is a centralized
system. Conversely, for every centralized system F on S , there is a
unique sharp partial closure operator on S such that its range is F .
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Geometric posets

Theorem

A lattice of finite length is geometric if and only if it is atomistic
and, for every two atoms a and b and any element x , if a < x ∨ b
and a 
 x , then b < x ∨ a.

From now on, all sets are finite.

If (P,6) does not have the least element, then we extend the
notion of atoms of P to all minimal elements of P.

AP = the set of all atoms

A poset is atomistic if every element different from the least
is supremum of a set of atoms.
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Geometric posets

Definition

We say that a poset (P,6) is geometric if it is atomistic and for
every x ∈ P and atoms a and b we have:

if x ∨ b exists, a < x ∨ b and a 
 x ,
then x ∨ a exists and b < x ∨ a.

Theorem (Šešelja, S., Tepavčević; 2017)

A poset (P,6) is geometric if and only if P is atomistic and

for x , y ∈ P, if x 
 y and there is a ∈ AP

such that y ∨ a exists and x 6 y ∨ a,
then x ∨ y exists and y ≺ x ∨ y .
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Partial matroids

Definition

We define a partial matroid (p-matroid) as a pair (E ,C ), where
E is a nonempty set and C a sharp partial closure operator (SPCO)
on E , satisfying the following conditions: for every X ⊆ E ,

(M) if C (X ) and C (X ∪ {x}) are defined, then the relations
y /∈ C (X ) and y ∈ C (X ∪ {x}) imply that C (X ∪ {y}) is
defined and x ∈ C (X ∪ {y});

(P) C ({x}) = {x} for every x ∈ X .

Theorem (Šešelja, S., Tepavčević; 2017)

The range of a p-matroid with respect to set inclusion is a
geometric poset.
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Partial matroids

Theorem (Šešelja, S., Tepavčević; 2017)

For every geometric poset (P,6) there exists a p-matroid whose
range is isomorphic with (P,6).

Proof (sketch). (P,6) - a geometric poset, A its set of atoms.

A partial mapping C : P(A)→ P(A):

C (X ) :=

¨
{a ∈ A | a 6 ∨

X} , if
∨
X exists;

not defined , otherwise.

C is a sharp partial closure operator

(A,C ) is a p-matroid

(P,6) and (FC ,⊆) are isomorphic:

f : P → FC defined by f (x) = {a ∈ A | a 6 x} �
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A. Slivková On partial matroids, geometric posets and semimodular posets AAA94+NSAC 2017



Geometric posets and p-matroids

Examples.

Geometric poset (G4,3,6) and the corresponding p-matroid
(E ,C ), where E = {a, b, c , d} and

C :

�
{a} {b} {c} {d} {a, b, c} {a, b, d} {a, c , d} {b, c , d}
{a} {b} {c} {d} {a, b, c} {a, b, d} {a, c , d} {b, c , d}

�
.
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Geometric posets and p-matroids

Examples.

(Gn,k ,6) defined in the following way: we start with n
minimal elements (atoms) and add suprema of all subsets of
atoms of cardinality k. For k = 1, 2 we get a lattice with its
smallest and largest elements removed, for k = n we get the
lattice Mn without the smallest element, while for
k ∈ {3, 4, . . . , n − 1} we get some less trivial examples.
Two more examples

A. Slivková On partial matroids, geometric posets and semimodular posets AAA94+NSAC 2017



Geometric posets and p-matroids

Examples.

(Gn,k ,6) defined in the following way: we start with n
minimal elements (atoms) and add suprema of all subsets of
atoms of cardinality k. For k = 1, 2 we get a lattice with its
smallest and largest elements removed, for k = n we get the
lattice Mn without the smallest element, while for
k ∈ {3, 4, . . . , n − 1} we get some less trivial examples.

Two more examples
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A. Slivková On partial matroids, geometric posets and semimodular posets AAA94+NSAC 2017



Semimodular posets

Definition

A poset (P,6) which has the least element is semimodular if
for every x , y ∈ P the following holds:

if x ∧ y ≺ x , then
(x ∨ y exists and y ≺ x ∨ y) or

(P is not an join semilattice and there is no atom a
such that y ∨ a exists and x 6 y ∨ a).

A poset (P,6) which does not have the least element is
semimodular if the poset (P0,6) is semimodular, where
(P0,6) is the poset obtained by adding the least element to
the poset (P,6).

Proposition

Let (L,6) be a lattice. Then L is semimodular as a lattice if and
only if it is semimodular as a poset.
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Semimodular posets

(O. Ore, 1943). A poset P is (upper) semimodular if it satisfies:
if a 6= b both cover c , then there is d ∈ P which covers both a and
b.
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A. Slivková On partial matroids, geometric posets and semimodular posets AAA94+NSAC 2017



Semimodular posets

Theorem (Šešelja, S., Tepavčević; 2017)

Every atomistic and semimodular poset is geometric.

Theorem (Šešelja, S., Tepavčević; 2017)

Every geometric poset is semimodular.

Corollary (Šešelja, S., Tepavčević; 2017)

A poset is geometric if and only if it is atomistic and semimodular.
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Every geometric poset is semimodular.
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A. Slivková On partial matroids, geometric posets and semimodular posets AAA94+NSAC 2017



Conclusion

 

 

 

   

 

 

 

 

  

matroid 

set  +  closure operator + M1,M2,M3 

p-matroid 

set  +  sharp partial closure operator  

+ M, P 

geometric lattice 

atomistic  +  semimodular lattice 

geometric poset 

atomistic  +  semimodular poset 
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