On partial matroids, geometric posets and semimodular posets

Anna Slivková

Joint work with Branimir Šešelja and Andreja Tepavčević

University of Novi Sad

AAA94+NSAC 2017

Novi Sad, June 15, 2017

A. Slivková

On partial matroids, geometric posets and semimodular posets

AAA94+NSAC 2017

A lattice (L, \leqslant) is:

A lattice (L, \leqslant) is:

- atomistic if it contains the bottom and each element is a join of atoms;
- semimodular if for all $x, y \in L$;

$$x \wedge y \prec x$$
 implies $y \prec x \lor y$.

• **geometric** if it is atomistic, semimodular and such that all chains in *L* are finite.

A matroid is defined as a set A together with a closure operator $\overline{\cdot} : \mathcal{P}(A) \to \mathcal{P}(A)$ on A such that for all $X \subseteq A$ and for all $x, y \in A$ we have

- $M_1: x \notin \overline{X} \text{ and } x \in \overline{X \cup \{y\}} \text{ imply } y \in \overline{X \cup \{x\}};$
- M_2 : there exists a finite Y such that $Y \subseteq X$ and $\overline{Y} = \overline{X}$.

A matroid is defined as a set A together with a closure operator $\overline{\cdot} : \mathcal{P}(A) \to \mathcal{P}(A)$ on A such that for all $X \subseteq A$ and for all $x, y \in A$ we have

$$M_1: x \notin \overline{X} \text{ and } x \in \overline{X \cup \{y\}} \text{ imply } y \in \overline{X \cup \{x\}};$$

 M_2 : there exists a finite Y such that $Y \subseteq X$ and $\overline{Y} = \overline{X}$.

A matroid is simple if:

$$M_3 \ \overline{\emptyset} = \emptyset$$
 and $\overline{\{x\}} = \{x\}$, for every $x \in A$.

A matroid is defined as a set A together with a closure operator $\overline{\cdot}: \mathcal{P}(A) \to \mathcal{P}(A)$ on A such that for all $X \subseteq A$ and for all $x, y \in A$ we have

$$M_1: x \notin \overline{X} \text{ and } x \in \overline{X \cup \{y\}} \text{ imply } y \in \overline{X \cup \{x\}};$$

 M_2 : there exists a finite Y such that $Y \subseteq X$ and $\overline{Y} = \overline{X}$.

A matroid is simple if:

$$M_3 \ \overline{\emptyset} = \emptyset$$
 and $\overline{\{x\}} = \{x\}$, for every $x \in A$.

Theorem

The set of all closed set of a simple matroid ordered by set incusion is a geometric lattice under inclusion. Conversely, every geometric lattice L is isomorphic to a set of all closed sets of a particular matroid constructed on the set of atoms of L.

A matroid is defined as a set A together with a closure operator $\overline{\cdot}: \mathcal{P}(A) \to \mathcal{P}(A)$ on A such that for all $X \subseteq A$ and for all $x, y \in A$ we have

$$M_1: x \notin \overline{X} \text{ and } x \in \overline{X \cup \{y\}} \text{ imply } y \in \overline{X \cup \{x\}};$$

 M_2 : there exists a finite Y such that $Y \subseteq X$ and $\overline{Y} = \overline{X}$.

A matroid is simple if:

$$M_3 \ \overline{\emptyset} = \emptyset$$
 and $\overline{\{x\}} = \{x\}$, for every $x \in A$.

Theorem

The set of all closed set of a simple matroid ordered by set incusion is a geometric lattice under inclusion. Conversely, every geometric lattice L is isomorphic to a set of all closed sets of a particular matroid constructed on the set of atoms of L.

Theorem

For every finite matroid there exists a simple matroid such that their lattices of flats (closed subsets) are isomorphic.

A. Slivková

AAA94+NSAC 2017

 $\bigcap \{X \in \mathcal{F} \mid x \in X\} \in \mathcal{F}.$

$$\bigcap \{X \in \mathcal{F} \mid x \in X\} \in \mathcal{F}.$$

A partial closure operator C (Šešelja, Tepavčević; 2000) on a set S is a partial mapping $C : \mathcal{P}(S) \to \mathcal{P}(S)$ that satisfies:

$$\bigcap \{X \in \mathcal{F} \mid x \in X\} \in \mathcal{F}.$$

A partial closure operator C (Šešelja, Tepavčević; 2000) on a set S is a partial mapping $C : \mathcal{P}(S) \to \mathcal{P}(S)$ that satisfies:

*Pc*₁: if *C*(*X*) is defined, then *X* ⊆ *C*(*X*);

$$\bigcap \{X \in \mathcal{F} \mid x \in X\} \in \mathcal{F}.$$

A partial closure operator C (Šešelja, Tepavčević; 2000) on a set S is a partial mapping $C : \mathcal{P}(S) \to \mathcal{P}(S)$ that satisfies:

*Pc*₁: if *C*(*X*) is defined, then *X* ⊆ *C*(*X*); *Pc*₂: if *C*(*X*) and *C*(*Y*) are defined, then *X* ⊆ *Y* implies *C*(*X*) ⊆ *C*(*Y*);

$$\bigcap \{X \in \mathcal{F} \mid x \in X\} \in \mathcal{F}.$$

A partial closure operator C (Šešelja, Tepavčević; 2000) on a set S is a partial mapping $C : \mathcal{P}(S) \to \mathcal{P}(S)$ that satisfies:

 P_{C_1} : if C(X) is defined, then $X \subseteq C(X)$;

*Pc*₂: if *C*(*X*) and *C*(*Y*) are defined, then *X* ⊆ *Y* implies *C*(*X*) ⊆ *C*(*Y*);

*Pc*₃: if C(X) is defined, then C(C(X)) is also defined and C(C(X)) = C(X);

$$\bigcap \{X \in \mathcal{F} \mid x \in X\} \in \mathcal{F}.$$

A partial closure operator C (Šešelja, Tepavčević; 2000) on a set S is a partial mapping $C : \mathcal{P}(S) \to \mathcal{P}(S)$ that satisfies:

*Pc*₁: if *C*(*X*) is defined, then *X* ⊆ *C*(*X*); *Pc*₂: if *C*(*X*) and *C*(*Y*) are defined, then *X* ⊆ *Y* implies *C*(*X*) ⊆ *C*(*Y*); *Pc*₃: if *C*(*X*) is defined, then *C*(*C*(*X*)) is also defined and *C*(*C*(*X*)) = *C*(*X*); *Pc*₄: *C*({*x*}) is defined for every *x* ∈ *S*.

$$\bigcap \{X \in \mathcal{F} \mid x \in X\} \in \mathcal{F}.$$

A partial closure operator C (Šešelja, Tepavčević; 2000) on a set S is a partial mapping $C : \mathcal{P}(S) \to \mathcal{P}(S)$ that satisfies:

*Pc*₁: if *C*(*X*) is defined, then *X* ⊆ *C*(*X*); *Pc*₂: if *C*(*X*) and *C*(*Y*) are defined, then *X* ⊆ *Y* implies *C*(*X*) ⊆ *C*(*Y*); *Pc*₃: if *C*(*X*) is defined, then *C*(*C*(*X*)) is also defined and *C*(*C*(*X*)) = *C*(*X*); *Pc*₄: *C*({*x*}) is defined for every *x* ∈ *S*.

As usual, if $X \subseteq S$ and C(X) = X, then X is a **closed** set. The family of closed sets \mathcal{F}_C is the **range** of a partial closure operator C.

$$\bigcap \{X \in \mathcal{F} \mid x \in X\} \in \mathcal{F}.$$

A partial closure operator C (Šešelja, Tepavčević; 2000) on a set S is a partial mapping $C : \mathcal{P}(S) \to \mathcal{P}(S)$ that satisfies:

*Pc*₁: if *C*(*X*) is defined, then *X* ⊆ *C*(*X*); *Pc*₂: if *C*(*X*) and *C*(*Y*) are defined, then *X* ⊆ *Y* implies *C*(*X*) ⊆ *C*(*Y*); *Pc*₃: if *C*(*X*) is defined, then *C*(*C*(*X*)) is also defined and *C*(*C*(*X*)) = *C*(*X*); *Pc*₄: *C*({*x*}) is defined for every *x* ∈ *S*.

As usual, if $X \subseteq S$ and C(X) = X, then X is a **closed** set. The family of closed sets \mathcal{F}_C is the **range** of a partial closure operator C.

Theorem (Šešelja, Tepavčević; 2000)

The range of a partial closure operator on a set S is a centralized system. Conversely, for every centralized system \mathcal{F} on S, there is a partial closure operator on S such that its range is \mathcal{F} .

A partial closure operator C on S is said to be **sharp** (SPCO), if it satisfies condition:

*Pc*₅: Let *B* ⊆ *S*. If \bigcap {*X* ∈ *F*_{*C*} | *B* ⊆ *X*} ∈ *F*_{*C*}, then *C*(*B*) is defined and

$$C(B) = \bigcap \{ X \in \mathcal{F}_C \mid B \subseteq X \} \quad \text{(sharpness)}.$$

A partial closure operator C on S is said to be **sharp** (SPCO), if it satisfies condition:

*Pc*₅: Let *B* ⊆ *S*. If \bigcap {*X* ∈ *F*_{*C*} | *B* ⊆ *X*} ∈ *F*_{*C*}, then *C*(*B*) is defined and

 $C(B) = \bigcap \{ X \in \mathcal{F}_C \mid B \subseteq X \} \quad \text{(sharpness)}.$

Theorem (Šešelja, S., Tepavčević; 2017)

The range of a partial closure operator on a set S is a centralized system. Conversely, for every centralized system \mathcal{F} on S, there is a **unique** sharp partial closure operator on S such that its range is \mathcal{F} .

Geometric posets

A lattice of finite length is geometric if and only if it is atomistic and, for every two atoms a and b and any element x, if $a < x \lor b$ and $a \notin x$, then $b < x \lor a$.

A lattice of finite length is geometric if and only if it is atomistic and, for every two atoms a and b and any element x, if $a < x \lor b$ and $a \notin x$, then $b < x \lor a$.

From now on, all sets are finite.

A lattice of finite length is geometric if and only if it is atomistic and, for every two atoms a and b and any element x, if $a < x \lor b$ and $a \notin x$, then $b < x \lor a$.

From now on, all sets are finite.

If (P,≤) does not have the least element, then we extend the notion of **atoms** of P to all minimal elements of P.

A lattice of finite length is geometric if and only if it is atomistic and, for every two atoms a and b and any element x, if $a < x \lor b$ and $a \notin x$, then $b < x \lor a$.

From now on, all sets are finite.

- If (P,≤) does not have the least element, then we extend the notion of **atoms** of P to all minimal elements of P.
- A_P = the set of all atoms

A lattice of finite length is geometric if and only if it is atomistic and, for every two atoms a and b and any element x, if $a < x \lor b$ and $a \notin x$, then $b < x \lor a$.

From now on, all sets are finite.

- If (P,≤) does not have the least element, then we extend the notion of **atoms** of P to all minimal elements of P.
- A_P = the set of all atoms
- A poset is **atomistic** if every element different from the least is supremum of a set of atoms.

Geometric posets

We say that a poset (P, \leq) is **geometric** if it is atomistic and for every $x \in P$ and atoms a and b we have:

if $x \lor b$ exists, $a < x \lor b$ and $a \notin x$, then $x \lor a$ exists and $b < x \lor a$.

We say that a poset (P, \leq) is **geometric** if it is atomistic and for every $x \in P$ and atoms a and b we have:

if $x \lor b$ exists, $a < x \lor b$ and $a \notin x$, then $x \lor a$ exists and $b < x \lor a$.

Theorem (Šešelja, S., Tepavčević; 2017)

A poset (P, \leq) is geometric if and only if P is atomistic and

for
$$x, y \in P$$
, if $x \notin y$ and there is $a \in A_P$
such that $y \lor a$ exists and $x \leqslant y \lor a$,
then $x \lor y$ exists and $y \prec x \lor y$.

We define a **partial matroid** (*p*-matroid) as a pair (E, C), where E is a nonempty set and C a sharp partial closure operator (SPCO) on E, satisfying the following conditions: for every $X \subseteq E$, (M) if C(X) and C(X \cup {x}) are defined, then the relations $y \notin C(X)$ and $y \in C(X \cup \{x\})$ imply that $C(X \cup \{y\})$ is defined and $x \in C(X \cup \{y\})$;

(*P*)
$$C({x}) = {x}$$
 for every $x \in X$.

We define a **partial matroid** (*p*-matroid) as a pair (E, C), where E is a nonempty set and C a sharp partial closure operator (SPCO) on E, satisfying the following conditions: for every $X \subseteq E$, (M) if C(X) and C(X \cup {x}) are defined, then the relations $y \notin C(X)$ and $y \in C(X \cup \{x\})$ imply that $C(X \cup \{y\})$ is defined and $x \in C(X \cup \{y\})$;

(*P*)
$$C(\{x\}) = \{x\}$$
 for every $x \in X$.

Theorem (Šešelja, S., Tepavčević; 2017)

The range of a *p*-matroid with respect to set inclusion is a geometric poset.

Partial matroids

For every geometric poset (P, \leq) there exists a *p*-matroid whose range is isomorphic with (P, \leq) .

Partial matroids

Theorem (Šešelja, S., Tepavčević; 2017)

For every geometric poset (P, \leq) there exists a *p*-matroid whose range is isomorphic with (P, \leq) .

Proof (sketch). (P, \leq) - a geometric poset, A its set of atoms. A partial mapping $C : \mathcal{P}(A) \to \mathcal{P}(A)$:

$$C(X) := \begin{cases} \{a \in A \mid a \leq \bigvee X\} &, \text{ if } \bigvee X \text{ exists;} \\ \text{not defined} &, \text{ otherwise.} \end{cases}$$

Partial matroids

Theorem (Šešelja, S., Tepavčević; 2017)

For every geometric poset (P, \leq) there exists a *p*-matroid whose range is isomorphic with (P, \leq) .

Proof (sketch). (P, \leq) - a geometric poset, A its set of atoms. A partial mapping $C : \mathcal{P}(A) \to \mathcal{P}(A)$:

$$C(X) := \begin{cases} \{a \in A \mid a \leqslant \bigvee X\} &, \text{ if } \bigvee X \text{ exists;} \\ \text{not defined} &, \text{ otherwise.} \end{cases}$$

• C is a sharp partial closure operator

For every geometric poset (P, \leq) there exists a *p*-matroid whose range is isomorphic with (P, \leq) .

Proof (sketch). (P, \leq) - a geometric poset, A its set of atoms. A partial mapping $C : \mathcal{P}(A) \to \mathcal{P}(A)$:

$$C(X) := \begin{cases} \{a \in A \mid a \leq \bigvee X\} &, \text{ if } \bigvee X \text{ exists;} \\ \text{not defined} &, \text{ otherwise.} \end{cases}$$

- C is a sharp partial closure operator
- (A, C) is a *p*-matroid

For every geometric poset (P, \leq) there exists a *p*-matroid whose range is isomorphic with (P, \leq) .

Proof (sketch). (P, \leq) - a geometric poset, A its set of atoms. A partial mapping $C : \mathcal{P}(A) \to \mathcal{P}(A)$:

$$C(X) := \left\{ \begin{array}{ll} \{a \in A \mid a \leqslant \bigvee X\} &, \quad \text{if } \bigvee X \text{ exists;} \\ \text{not defined} &, \quad \text{otherwise.} \end{array} \right.$$

- C is a sharp partial closure operator
- (A, C) is a *p*-matroid
- (P,\leqslant) and $(\mathcal{F}_C,\subseteq)$ are isomorphic:

$$f: P \to \mathcal{F}_C$$
 defined by $f(x) = \{a \in A \mid a \leqslant x\}$

Examples.

Examples.

• Geometric poset $(G_{4,3}, \leq)$ and the corresponding *p*-matroid (E, C), where $E = \{a, b, c, d\}$ and

Examples.

Examples.

(G_{n,k}, ≤) defined in the following way: we start with n minimal elements (atoms) and add suprema of all subsets of atoms of cardinality k. For k = 1, 2 we get a lattice with its smallest and largest elements removed, for k = n we get the lattice M_n without the smallest element, while for k ∈ {3,4,...,n-1} we get some less trivial examples.

Examples.

- (G_{n,k}, ≤) defined in the following way: we start with n minimal elements (atoms) and add suprema of all subsets of atoms of cardinality k. For k = 1, 2 we get a lattice with its smallest and largest elements removed, for k = n we get the lattice M_n without the smallest element, while for k ∈ {3,4,...,n-1} we get some less trivial examples.
- Two more examples

Definition

 A poset (P, ≤) which has the least element is semimodular if for every x, y ∈ P the following holds:

> if x ∧ y ≺ x, then (x ∨ y exists and y ≺ x ∨ y) or (P is not an join semilattice and there is no atom a such that y ∨ a exists and x ≤ y ∨ a).

Definition

 A poset (P, ≤) which has the least element is semimodular if for every x, y ∈ P the following holds:

> if x ∧ y ≺ x, then (x ∨ y exists and y ≺ x ∨ y) or (P is not an join semilattice and there is no atom a such that y ∨ a exists and x ≤ y ∨ a).

A poset (P, ≤) which does not have the least element is semimodular if the poset (P₀, ≤) is semimodular, where (P₀, ≤) is the poset obtained by adding the least element to the poset (P, ≤).

Definition

 A poset (P, ≤) which has the least element is semimodular if for every x, y ∈ P the following holds:

> if x ∧ y ≺ x, then (x ∨ y exists and y ≺ x ∨ y) or (P is not an join semilattice and there is no atom a such that y ∨ a exists and x ≤ y ∨ a).

A poset (P, ≤) which does not have the least element is semimodular if the poset (P₀, ≤) is semimodular, where (P₀, ≤) is the poset obtained by adding the least element to the poset (P, ≤).

Proposition

Let (L, \leq) be a lattice. Then L is semimodular as a lattice if and only if it is semimodular as a poset.

A. Slivková

On partial matroids, geometric posets and semimodular posets

Every atomistic and semimodular poset is geometric.

Every atomistic and semimodular poset is geometric.

Theorem (Šešelja, S., Tepavčević; 2017)

Every geometric poset is semimodular.

Every atomistic and semimodular poset is geometric.

Theorem (Šešelja, S., Tepavčević; 2017)

Every geometric poset is semimodular.

Corollary (Šešelja, S., Tepavčević; 2017)

A poset is geometric if and only if it is atomistic and semimodular.

Conclusion

AAA94+NSAC 2017

[1] B. Šešelja, A. Tepavčević, *Posets via partial closure operators*, Contributions to General Algebra **12**, (2000), 371–375.

[2] B. Šešelja, A. Slivková, A. Tepavčević, *On geometric posets and partial matroids*, submitted.

[3] B. Šešelja, A. Slivková, A. Tepavčević, *Sharp partial closure operator*, Miskolc Mathematical Notes (to appear).

Thank you for your attention!