Cross-connections and variants of T_X

Azeef Muhammed P. A.¹

¹Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia.

My sincere thanks to A. R. Rajan, University of Kerala, India, and M. V. Volkov, Ural Federal University, Russia, for their support and guidance.
The talk will be on the variants of the full transformation semigroup in the context of Nambooripad’s cross-connections.
The talk will be on the **variants of the full transformation semigroup** in the context of Nambooripad’s cross-connections.

The **full transformation semigroup** \mathcal{T}_X is the semigroup of all mappings on a non-empty set X.
The talk will be on the variants of the full transformation semigroup in the context of Nambooripad’s cross-connections.

The full transformation semigroup \mathcal{T}_X is the semigroup of all mappings on a non-empty set X.

A variant \mathcal{T}^θ_X of the full transformation semigroup (\mathcal{T}_X, \cdot) for an arbitrary $\theta \in \mathcal{T}_X$ is the semigroup $\mathcal{T}^\theta_X = (\mathcal{T}_X, *)$ with the binary operation

$$\alpha * \beta = \alpha \cdot \theta \cdot \beta$$

where $\alpha, \beta \in \mathcal{T}_X$.
The talk will be on the variants of the full transformation semigroup in the context of Nambooripad’s cross-connections.

The full transformation semigroup \mathcal{T}_X is the semigroup of all mappings on a non-empty set X.

A variant \mathcal{T}_X^θ of the full transformation semigroup (\mathcal{T}_X, \cdot) for an arbitrary $\theta \in \mathcal{T}_X$ is the semigroup $\mathcal{T}_X^\theta = (\mathcal{T}_X, \ast)$ with the binary operation

$$\alpha \ast \beta = \alpha \cdot \theta \cdot \beta$$

where $\alpha, \beta \in \mathcal{T}_X$.

In 2015, Dolinka and East explored the structure of \mathcal{T}_X^θ, its idempotent generated subsemigroup, its regular part, its ideals etc.
The talk will be on the variants of the full transformation semigroup in the context of Nambooripad’s cross-connections.

The full transformation semigroup T_X is the semigroup of all mappings on a non-empty set X.

A variant T^θ_X of the full transformation semigroup (T_X, \cdot) for an arbitrary $\theta \in T_X$ is the semigroup $T^\theta_X = (T_X, \ast)$ with the binary operation

$$\alpha \ast \beta = \alpha \cdot \theta \cdot \beta \text{ where } \alpha, \beta \in T_X.$$

In 2015, Dolinka and East explored the structure of T^θ_X, its idempotent generated subsemigroup, its regular part, its ideals etc.

The following subsets of T_X was crucial in their discussion,

$$P_1 = \{ a \in T_X : a\theta R \theta \} \quad P_2 = \{ a \in T_X : \theta a L \theta \}.$$
They gave the following diagram to show how a typical \mathcal{D}-class of \mathcal{T}_X (in the left), breaks up to the corresponding \mathcal{D}-classes of \mathcal{T}^θ_X.
They gave the following diagram to show how a typical \mathcal{D}-class of \mathcal{I}_X (in the left), breaks up to the corresponding \mathcal{D}-classes of \mathcal{I}^θ_X.

In this talk, we discuss the ideal structure of $\text{Reg}(\mathcal{I}^\theta_X)$—the regular part of \mathcal{I}^θ_X (i.e., $P_1 \cap P_2$).
Even if a semigroup is regular, its variant need not be regular.
Even if a semigroup is regular, its variant need not be regular.

But, Khan and Lawson (2001) had shown that if a semigroup is regular, the regular part of its variant forms a semigroup.
Even if a semigroup is regular, its variant need not be regular.

But, Khan and Lawson (2001) had shown that if a semigroup is regular, the regular part of its variant forms a semigroup.

Hence, $\text{Reg}(\mathcal{T}_X^\theta)$ is a regular subsemigroup of \mathcal{T}_X^θ.
Even if a semigroup is regular, its variant need not be regular.

But, Khan and Lawson (2001) had shown that if a semigroup is regular, the regular part of its variant forms a semigroup.

Hence, $\text{Reg}(\mathcal{T}_X^\theta)$ is a regular subsemigroup of \mathcal{T}_X^θ.

So, in the discussion regarding the structure of $\text{Reg}(\mathcal{T}_X^\theta)$, it is natural to look at known structure theories of regular semigroups.
Even if a semigroup is regular, its variant need not be regular.

But, Khan and Lawson (2001) had shown that if a semigroup is regular, the regular part of its variant forms a semigroup.

Hence, $\text{Reg}(\mathcal{T}_X^\theta)$ is a regular subsemigroup of \mathcal{T}_X^θ.

So, in the discussion regarding the structure of $\text{Reg}(\mathcal{T}_X^\theta)$, it is natural to look at known structure theories of regular semigroups.

In the area of structure theory of regular semigroups, there are two constructions using categories: both due to Nambooripad.
Even if a semigroup is regular, its variant need not be regular.

But, Khan and Lawson (2001) had shown that if a semigroup is regular, the regular part of its variant forms a semigroup.

Hence, \(\text{Reg}(\mathcal{T}_X^\theta) \) is a regular subsemigroup of \(\mathcal{T}_X^\theta \).

So, in the discussion regarding the structure of \(\text{Reg}(\mathcal{T}_X^\theta) \), it is natural to look at known structure theories of regular semigroups.

In the area of structure theory of regular semigroups, there are two constructions using categories: both due to Nambooripad.

The first one uses the idempotent structure of the semigroup (AMS Memoirs No. 224, 1979) and it belongs to the realm of the celebrated Ehresmann-Schein-Nambooripad theorem.
Even if a semigroup is regular, its variant need not be regular.

But, Khan and Lawson (2001) had shown that if a semigroup is regular, the regular part of its variant forms a semigroup.

Hence, $\text{Reg}(\mathcal{T}_X^\theta)$ is a regular subsemigroup of \mathcal{T}_X^θ.

So, in the discussion regarding the structure of $\text{Reg}(\mathcal{T}_X^\theta)$, it is natural to look at known structure theories of regular semigroups.

In the area of structure theory of regular semigroups, there are two constructions using categories : both due to Nambooripad.

The first one uses the idempotent structure of the semigroup (AMS Memoirs No. 224, 1979) and it belongs to the realm of the celebrated Ehresmann-Schein-Nambooripad theorem.

The second approach using the ideal structure of the semigroup was initiated by Hall (1973) and Grillet (1974).
Even if a semigroup is regular, its variant need not be regular.

But, Khan and Lawson (2001) had shown that if a semigroup is regular, the regular part of its variant forms a semigroup.

Hence, $\text{Reg}(\mathcal{T}_X^\theta)$ is a regular subsemigroup of \mathcal{T}_X^θ.

So, in the discussion regarding the structure of $\text{Reg}(\mathcal{T}_X^\theta)$, it is natural to look at known structure theories of regular semigroups.

In the area of structure theory of regular semigroups, there are two constructions using categories: both due to Nambooripad.

The first one uses the idempotent structure of the semigroup (AMS Memoirs No. 224, 1979) and it belongs to the realm of the celebrated Ehresmann-Schein-Nambooripad theorem.

The second approach using the ideal structure of the semigroup was initiated by Hall (1973) and Grillet (1974).

In 1994, Nambooripad (1994) extended the latter approach to arbitrary regular semigroups using cross-connected categories.
For this, he introduced rather sophisticated notions like normal cones, factorisations, normal duals, local isomorphisms, cross-connection bifunctors, transpose of morphisms etc.
For this, he introduced rather sophisticated notions like normal cones, factorisations, normal duals, local isomorphisms, cross-connection bifunctors, transpose of morphisms etc.

In this situation, classifications and descriptions of cross-connections in special classes are of sufficient interest.
For this, he introduced rather sophisticated notions like normal cones, factorisations, normal duals, local isomorphisms, cross-connection bifunctors, transpose of morphisms etc.

In this situation, classifications and descriptions of cross-connections in special classes are of sufficient interest.

Various classes like transformation semigroups, linear transformation semigroups, their singular parts, inverse semigroups, completely 0-simple semigroups, etc have been studied earlier by Rajendran(2000), Rajan and Azeef(2016).
For this, he introduced rather sophisticated notions like normal cones, factorisations, normal duals, local isomorphisms, cross-connection bifunctors, transpose of morphisms etc.

In this situation, classifications and descriptions of cross-connections in special classes are of sufficient interest.

Various classes like transformation semigroups, linear transformation semigroups, their singular parts, inverse semigroups, completely 0-simple semigroups, etc have been studied earlier by Rajendran(2000), Rajan and Azeef(2016).

In this talk, we discuss the cross-connection structure of \(\text{Reg}(\mathcal{T}_X^\theta) \)—the regular subsemigroup of the variant \(\mathcal{T}_X^\theta \).
For this, he introduced rather sophisticated notions like normal cones, factorisations, normal duals, local isomorphisms, cross-connection bifunctors, transpose of morphisms etc. In this situation, classifications and descriptions of cross-connections in special classes are of sufficient interest.

Various classes like transformation semigroups, linear transformation semigroups, their singular parts, inverse semigroups, completely 0-simple semigroups, etc have been studied earlier by Rajendran(2000), Rajan and Azeef(2016).

In this talk, we discuss the cross-connection structure of $\text{Reg}(\mathcal{T}_X^\theta)$—the regular subsemigroup of the variant \mathcal{T}_X^θ.

The purpose is two fold.
For this, he introduced rather sophisticated notions like normal cones, factorisations, normal duals, local isomorphisms, cross-connection bifunctors, transpose of morphisms etc.

In this situation, classifications and descriptions of cross-connections in special classes are of sufficient interest.

Various classes like transformation semigroups, linear transformation semigroups, their singular parts, inverse semigroups, completely 0-simple semigroups, etc have been studied earlier by Rajendran(2000), Rajan and Azeef(2016).

In this talk, we discuss the cross-connection structure of $\text{Reg}(\mathcal{T}_X^\theta)$—the regular subsemigroup of the variant \mathcal{T}_X^θ.

The purpose is two fold.

First, this semigroup provides a concrete setting where all the abstract notions of cross-connection theory has transparent, yet non-trivial meanings.
Second, we give an alternate path to the structural description of $\text{Reg}(\mathcal{T}_X^\theta)$ given by Dolinka and East, using subsets and partitions of X. This, in turn, suggests that their results obtained in the specific case of this variant semigroup, is much more universal in nature. This discussion also yields a description of the biorder structure of $\text{Reg}(\mathcal{T}_X^\theta)$. It can be seen that the principal ideals (or equivalently Green's relations) in \mathcal{T}_X and its variants are determined by the subsets and partitions of X. So, naturally, the description of the ideal structure of these semigroups involves subsets and partitions. For that, we borrow the terminology of Dolinka and East. Let A be a subset of X and α an equivalence relation (or a partition) on X.
Second, we give an alternate path to the structural description of $\text{Reg}(\mathcal{F}_X^\theta)$ given by Dolinka and East, using subsets and partitions of X.

This, in turn suggests, that their results obtained in the specific case of this variant semigroup, is much more universal in nature.
Second, we give an alternate path to the structural description of $Reg(T^\theta_X)$ given by Dolinka and East, using subsets and partitions of X.

This, in turn suggests, that their results obtained in the specific case of this variant semigroup, is much more universal in nature.

This discussion also yields a description of the biorder structure of $Reg(T^\theta_X)$.
Second, we give an alternate path to the structural description of \(\text{Reg}(\mathcal{T}_X^\theta) \) given by Dolinka and East, using subsets and partitions of \(X \).

This, in turn suggests, that their results obtained in the specific case of this variant semigroup, is much more universal in nature.

This discussion also yields a description of the biorder structure of \(\text{Reg}(\mathcal{T}_X^\theta) \).

It can be seen that the principal ideals (or equivalently Green’s relations) in \(\mathcal{T}_X \) and its variants are determined by the subsets and partitions of \(X \).
Second, we give an alternate path to the structural description of $\text{Reg}(\mathcal{T}_X^\theta)$ given by Dolinka and East, using subsets and partitions of X.

This, in turn suggests, that their results obtained in the specific case of this variant semigroup, is much more universal in nature.

This discussion also yields a description of the biorder structure of $\text{Reg}(\mathcal{T}_X^\theta)$.

It can be seen that the principal ideals (or equivalently Green’s relations) in \mathcal{T}_X and its variants are determined by the subsets and partitions of X.

So, naturally, the description of the ideal structure of these semigroups involves subsets and partitions.
Second, we give an alternate path to the structural description of $\text{Reg}(\mathcal{T}_X^\theta)$ given by Dolinka and East, using subsets and partitions of X.

This, in turn suggests, that their results obtained in the specific case of this variant semigroup, is much more universal in nature.

This discussion also yields a description of the biorder structure of $\text{Reg}(\mathcal{T}_X^\theta)$.

It can be seen that the principal ideals (or equivalently Green’s relations) in \mathcal{T}_X and its variants are determined by the subsets and partitions of X.

So, naturally, the description of the ideal structure of these semigroups involves subsets and partitions.

For that, we borrow the terminology of Dolinka and East.
Second, we give an alternate path to the structural description of \(\text{Reg}(\mathcal{T}_X^\theta) \) given by Dolinka and East, using subsets and partitions of \(X \).

This, in turn suggests, that their results obtained in the specific case of this variant semigroup, is much more universal in nature.

This discussion also yields a description of the biorder structure of \(\text{Reg}(\mathcal{T}_X^\theta) \).

It can be seen that the principal ideals (or equivalently Green’s relations) in \(\mathcal{T}_X \) and its variants are determined by the subsets and partitions of \(X \).

So, naturally, the description of the ideal structure of these semigroups involves subsets and partitions.

For that, we borrow the terminology of Dolinka and East.

Let \(A \) be a subset of \(X \) and \(\alpha \) an equivalence relation (or a partition) on \(X \).
• We say the subset A saturates the partition α if each α-class contains at least one element of A.
• We say the subset A saturates the partition α if each α-class contains at least one element of A.

• The partition α separates A if each α-class contains at most one element of A.
- We say the subset A saturates the partition α if each α-class contains at least one element of A.

- The partition α separates A if each α-class contains at most one element of A.

- So, the subset A is a cross-section of the partition α, if A saturates α and α separates A.
Now, this leads us to define a category \mathcal{P}_θ with the set of objects as:

$$v\mathcal{P}_\theta = \{ A \subseteq X : \pi_\theta \text{ separates } A \}.$$
Now, this leads us to define a category \mathcal{P}_θ with the set of objects as:

$$v\mathcal{P}_\theta = \{A \subseteq X : \pi_\theta \text{ separates } A\}.$$

A morphism between two subsets A and B in \mathcal{P}_θ is any function f from A to B.
Now, this leads us to define a category \mathcal{P}_θ with the set of objects as:

$$\nu \mathcal{P}_\theta = \{A \subseteq X : \pi_\theta \text{ separates } A\}.$$

A morphism between two subsets A and B in \mathcal{P}_θ is any function f from A to B.

This category may be shown to be a normal category.
Now, this leads us to define a category \mathcal{P}_θ with the set of objects as:

$$v\mathcal{P}_\theta = \{ A \subseteq X : \pi_\theta \text{ separates } A \}.$$

A morphism between two subsets A and B in \mathcal{P}_θ is any function f from A to B.

This category may be shown to be a **normal category**.

A normal category essentially characterises the principal ideals of a regular semigroup.
Now, this leads us to define a category \mathcal{P}_θ with the set of objects as:

$$v\mathcal{P}_\theta = \{ A \subseteq X : \pi_\theta \text{ separates } A \}.$$

A morphism between two subsets A and B in \mathcal{P}_θ is any function f from A to B.

This category may be shown to be a normal category.

A normal category essentially characterises the principal ideals of a regular semigroup.

In other words, any regular semigroup naturally determines two normal categories.
Now, this leads us to define a category \mathcal{P}_θ with the set of objects as:

$$v\mathcal{P}_\theta = \{ A \subseteq X : \pi_\theta \text{ separates } A \}.$$

A morphism between two subsets A and B in \mathcal{P}_θ is any function f from A to B.

This category may be shown to be a normal category.

A normal category essentially characterises the principal ideals of a regular semigroup.

In other words, any regular semigroup naturally determines two normal categories.

So, in the case of $\text{Reg}(\mathcal{I}_X^\theta)$, the second category is determined by the partitions of X saturated by $\text{Im} \theta$, say Π_θ.
Now, this leads us to define a category P_{θ} with the set of objects as:

$$vP_{\theta} = \{A \subseteq X : \pi_{\theta} \text{ separates } A\}.$$

A morphism between two subsets A and B in P_{θ} is any function f from A to B.

This category may be shown to be a normal category.

A normal category essentially characterises the principal ideals of a regular semigroup.

In other words, any regular semigroup naturally determines two normal categories.

So, in the case of $\text{Reg}(\mathcal{T}_{X}^{\theta})$, the second category is determined by the partitions of X saturated by $\text{Im} \theta$, say Π_{θ}.

The cross-connection construction also involves certain intermediary regular semigroups arising from these categories.
In $\text{Reg}(\mathcal{T}_X^\theta)$, they are isomorphic to the sets P_1 and P_2 discussed earlier, seen as subsemigroups of \mathcal{T}_X.
- In $\text{Reg}(\mathcal{T}_X^\theta)$, they are isomorphic to the sets P_1 and P_2 discussed earlier, seen as subsemigroups of \mathcal{T}_X.
- Via cross-connections, Nambooripad also gave the explicit relationship between the principal ideals of a regular semigroup.
In $\text{Reg}(\mathcal{T}_X^\theta)$, they are isomorphic to the sets P_1 and P_2 discussed earlier, seen as subsemigroups of \mathcal{T}_X.

Via cross-connections, Nambooripad also gave the explicit relationship between the principal ideals of a regular semigroup.

For that, he used the notion of a normal dual of a normal category and a cross-connection functor.
In $Reg(\mathcal{T}_X^\theta)$, they are isomorphic to the sets P_1 and P_2 discussed earlier, seen as subsemigroups of \mathcal{T}_X.

Via cross-connections, Nambooripad also gave the explicit relationship between the principal ideals of a regular semigroup.

For that, he used the notion of a normal dual of a normal category and a cross-connection functor.

In $Reg(\mathcal{T}_X^\theta)$, this functor, say Γ_θ, is completely characterised by the sandwich element, θ.
In $Reg(\mathcal{T}_X^\theta)$, they are isomorphic to the sets P_1 and P_2 discussed earlier, seen as subsemigroups of \mathcal{I}_X.

Via cross-connections, Nambooripad also gave the explicit relationship between the principal ideals of a regular semigroup.

For that, he used the notion of a normal dual of a normal category and a cross-connection functor.

In $Reg(\mathcal{T}_X^\theta)$, this functor, say Γ_θ, is completely characterised by the sandwich element, θ.

Thus, we can realise $Reg(\mathcal{T}_X^\theta)$ as a cross-connection semigroup

$$(\Pi_\theta, \mathcal{P}_\theta; \Gamma_\theta) = \{(\theta a, a\theta) : a \in Reg(\mathcal{T}_X^\theta)\}.$$
In $\text{Reg}(\mathcal{T}_X^\theta)$, they are isomorphic to the sets P_1 and P_2 discussed earlier, seen as subsemigroups of \mathcal{T}_X.

Via cross-connections, Nambooripad also gave the explicit relationship between the principal ideals of a regular semigroup.

For that, he used the notion of a normal dual of a normal category and a cross-connection functor.

In $\text{Reg}(\mathcal{T}_X^\theta)$, this functor, say Γ_θ, is completely characterised by the sandwich element, θ.

Thus, we can realise $\text{Reg}(\mathcal{T}_X^\theta)$ as a cross-connection semigroup

$$(\Pi_\theta, \mathcal{P}_\theta; \Gamma_\theta) = \{(\theta a, a\theta) : a \in \text{Reg}(\mathcal{T}_X^\theta)\}.$$

This representation gives the following description of the biordered set and sandwich sets of $\text{Reg}(\mathcal{T}_X^\theta)$.

In $Reg(\mathcal{T}_X)$, the idempotents are given by:

$$E_{\Gamma_{\theta}} = \{(A, \pi) : \pi_{\theta} \text{ separates } A \text{ and } \theta(A) \text{ is a cross-section of } \pi\}$$
In $\text{Reg}(\mathcal{T}_X^\theta)$, the idempotents are given by:

$$E_{\Gamma_\theta} = \{(A, \pi) : \pi_\theta \text{ separates } A \text{ and } \theta(A) \text{ is a cross-section of } \pi\}$$

They form a regular biordered set with suitably defined quasi-orders and basic products.
In $\text{Reg}(\mathcal{T}_X^\theta)$, the idempotents are given by:

$$E_{\Gamma^\theta} = \{ (A, \pi) : \pi_\theta \text{ separates } A \text{ and } \theta(A) \text{ is a cross-section of } \pi \}$$

- They form a regular biordered set with suitably defined quasi-orders and basic products.
- Thus, we can describe the biordered set, completely in terms of subsets and partitions.
In $\text{Reg}(\mathcal{T}_X^\theta)$, the idempotents are given by:

$$E_{\Gamma_\theta} = \{(A, \pi) : \pi_\theta \text{ separates } A \text{ and } \theta(A) \text{ is a cross-section of } \pi \}$$

They form a regular biordered set with suitably defined quasi-orders and basic products.

Thus, we can describe the biordered set, completely in terms of subsets and partitions.

Then the Sandwich set $S(A, \pi) = S((A, \pi'), (A', \pi))$ is given by

$$S(A, \pi) = \{(X, \sigma) : X \text{ is a cross-section of } \pi \text{ and } A \text{ is a cross-section of } \sigma \}$$

where $A, A', X \in \mathcal{P}_\theta$ and $\pi, \pi', \sigma \in \Pi_\theta$.
Further, we observe that the structural results of Dolinka and East has a cross-connection interpretation.
Further, we observe that the structural results of Dolinka and East have a cross-connection interpretation. For instance, the map

$$\psi : \text{Reg}(\mathcal{F}_X^\theta) \to \text{Reg}(\mathcal{F}(X, A)) \times \text{Reg}(\mathcal{F}(X, \alpha)) : a \mapsto (a\theta, \theta a)$$

being injective translates to the cross-connection functor being a local isomorphism.
Further, we observe that the structural results of Dolinka and East has a cross-connection interpretation.

For instance, the map

$$\psi : \text{Reg}(\mathcal{T}_X^\theta) \to \text{Reg}(\mathcal{T}(X, A)) \times \text{Reg}(\mathcal{T}(X, \alpha)) : a \mapsto (a\theta, \theta a)$$

being injective translates to the cross-connection functor being a local isomorphism.

So, this dual approach may help in extending the results to a more general class of semigroups.
Further, we observe that the structural results of Dolinka and East has a cross-connection interpretation.

For instance, the map

$$
\psi : \text{Reg}(\mathcal{T}_X^\theta) \to \text{Reg}(\mathcal{T}(X, A)) \times \text{Reg}(\mathcal{T}(X, \alpha)) : a \mapsto (a\theta, \theta a)
$$

being injective translates to the cross-connection functor being a local isomorphism.

So, this dual approach may help in extending the results to a more general class of semigroups.

How we may extend this approach to the entire variant semigroup is another question.
Further, we observe that the structural results of Dolinka and East have a cross-connection interpretation.

For instance, the map

$$\psi : \text{Reg}(\mathcal{T}_X^\theta) \to \text{Reg}(\mathcal{T}(X, A)) \times \text{Reg}(\mathcal{T}(X, \alpha)) : a \mapsto (a\theta, \theta a)$$

being injective translates to the cross-connection functor being a local isomorphism.

So, this dual approach may help in extending the results to a more general class of semigroups.

How we may extend this approach to the entire variant semigroup is another question.

We believe that, a solution to this problem may shed some light into the much more general problem of the cross-connection construction of arbitrary semigroups.