Finite group presentations, van Kampen diagrams, and a combinatorial problem

M.Chiş & C.Chiş

AAA94 & NSAC 2017 17 June 2017

M.Chiş & C.Chiş

Finite group presentations, van Kampen diagrams, and a combinatorial problem

Notations

G - a finite group $G = \langle S|R \rangle$ - a presentation of the group G, with generating set S, and relators set R \mathbb{N} - the set of nonnegative integers $\mathcal{D}(G)$ - the set of distribution functions on the group G $[a]_{\sim}$ - the equivalence class of the element a with respect to the equivalence relation \sim

Group presentations

Remark

A presentation $G = \langle S | R \rangle =$

 $\langle s_1, s_2, \ldots, s_k, \ldots | r_1(s_1, s_2, \ldots, s_k, \ldots), \ldots, r_1(s_1, s_2, \ldots, s_k, \ldots), \ldots \rangle$ of a group *G* describes the fact that $G \cong F/N$, where *F* is a free group over a set *X* of cardinal |S|, and *N* is the normal closure of the set of words $R(X) = \{r_1(x_1, \ldots, x_l, \ldots), \ldots, r_l(x_1, \ldots, x_l, \ldots), \ldots\}$. If both *S* and *R* are finite, this is called a finite presentation of *G*. Any finite group is finitely presented.

Group presentations

Remark

A presentation $G = \langle S | R \rangle =$

 $\langle s_1, s_2, \ldots, s_k, \ldots | r_1(s_1, s_2, \ldots, s_k, \ldots), \ldots, r_1(s_1, s_2, \ldots, s_k, \ldots), \ldots \rangle$ of a group *G* describes the fact that $G \cong F/N$, where *F* is a free group over a set *X* of cardinal |S|, and *N* is the normal closure of the set of words $R(X) = \{r_1(x_1, \ldots, x_l, \ldots), \ldots, r_l(x_1, \ldots, x_l, \ldots), \ldots\}$. If both *S* and *R* are finite, this is called a finite presentation of *G*. Any finite group is finitely presented.

M.Chiş & C.Chiş

van Kampen diagram associated with a presentation of a group

Definition

Let

 $G = \langle s_1, s_2, \dots, s_k | r_1(s_1, \dots, s_k), r_2(s_1, \dots, s_k), \dots, r_l(s_1, \dots, s_k) \rangle$ be a finite presentation of a group. The van Kampen diagram of G associated with this presentation is a directed graph with vertex set V = G and edge set $E = \{(x, xs_i) | x \in G, i = \overline{1, k}\}.$

Distribution functions

Definition

Let G be a finite group. Any function $f : G \longrightarrow \mathbb{N}$ will be a called a distribution function on G. We shall denote $\mathcal{D}(G)$ the set of distribution functions on G. If $f \in \mathcal{D}(G)$ and $X \subseteq G$, the weight of X with respect to f is

$$w_f(X) = \sum_{x \in X} f(x).$$

M.Chiş & C.Chiş

Definition

Let G be a finite group. Any function $f : G \longrightarrow \mathbb{N}$ will be a called a distribution function on G. We shall denote $\mathcal{D}(G)$ the set of distribution functions on G. If $f \in \mathcal{D}(G)$ and $X \subseteq G$, the weight of X with respect to f is

$$w_f(X) = \sum_{x \in X} f(x).$$

The weight of f is $w(f) = w_f(G)$.

M.Chiş & C.Chiş

Definition

Let G be a finite group. Any function $f : G \longrightarrow \mathbb{N}$ will be a called a distribution function on G. We shall denote $\mathcal{D}(G)$ the set of distribution functions on G. If $f \in \mathcal{D}(G)$ and $X \subseteq G$, the weight of X with respect to f is

$$w_f(X) = \sum_{x \in X} f(x).$$

The weight of f is $w(f) = w_f(G)$.

M.Chiş & C.Chiş

Redistributions

Definition

Let *G* be a finite group, with a finite presentation $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$, and $f, g \in \mathcal{D}(G)$. We say that *f* can be redistributed into *g* if there is a function $\rho : \bigcup_{i=1}^k \{(x, xs_i), (x, xs_i^{-1}) | x \in G\} \longrightarrow \mathbb{N}$, called redistribution function, such that for each $x \in G$ the following equalities hold:

$$f(x) = \sum_{i=1}^{k} \rho(x, xs_i) + \sum_{i=1}^{k} \rho(x, xs_i^{-1}),$$
$$g(x) = \sum_{i=1}^{k} \rho(xs_i^{-1}, x) + \sum_{i=1}^{k} \rho(xs_i, x).$$

M.Chiş & C.Chiş

Notation

We denote this by $g = f \cdot \rho$.

Remark

This may be viewed as a redistribution in the nondirected graph underlying the van Kampen diagram associated with the presentation of the group.

Notation

We denote this by $g = f \cdot \rho$.

Remark

This may be viewed as a redistribution in the nondirected graph underlying the van Kampen diagram associated with the presentation of the group.

Remark

If $f, g \in \mathcal{D}(G)$, and $g = f \cdot \rho$, for some redistribution function ρ , then w(f) = w(g).

M.Chiş & C.Chiş

Notation

We denote this by $g = f \cdot \rho$.

Remark

This may be viewed as a redistribution in the nondirected graph underlying the van Kampen diagram associated with the presentation of the group.

Remark

If $f, g \in \mathcal{D}(G)$, and $g = f \cdot \rho$, for some redistribution function ρ , then w(f) = w(g).

M.Chiş & C.Chiş

Associated distributions

Definition

Let $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$ be a presentation of a finite group G, and $f, g \in \mathcal{D}(G)$. We say that f and g are associated with respect to the given presentation if f = g or there is a finite sequence h_0, h_1, \ldots, h_n of distribution functions and a finite sequence ρ_1, \ldots, ρ_n of redistribution functions, such that $h_0 = f$, $h_n = g$, and $h_i = h_{i-1} \cdot \rho_i$, $\forall i = \overline{1, n}$. We write $f \sim g$ in such a case.

Associated distributions

Definition

Let $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$ be a presentation of a finite group G, and $f, g \in \mathcal{D}(G)$. We say that f and g are associated with respect to the given presentation if f = g or there is a finite sequence h_0, h_1, \ldots, h_n of distribution functions and a finite sequence ρ_1, \ldots, ρ_n of redistribution functions, such that $h_0 = f$, $h_n = g$, and $h_i = h_{i-1} \cdot \rho_i$, $\forall i = \overline{1, n}$. We write $f \sim g$ in such a case.

Remark

The relation \sim is an equivalence relation on $\mathcal{D}(G)$.

M.Chiş & C.Chiş

Definition

Let $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$ be a presentation of a finite group G, and $f, g \in \mathcal{D}(G)$. We say that f and g are associated with respect to the given presentation if f = g or there is a finite sequence h_0, h_1, \ldots, h_n of distribution functions and a finite sequence ρ_1, \ldots, ρ_n of redistribution functions, such that $h_0 = f$, $h_n = g$, and $h_i = h_{i-1} \cdot \rho_i$, $\forall i = \overline{1, n}$. We write $f \sim g$ in such a case.

Remark

The relation \sim is an equivalence relation on $\mathcal{D}(G)$.

M.Chiş & C.Chiş

Problem

Problem

Given a finite group G, presented as $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$, and a distribution function $f \in \mathcal{D}(G)$, determine the equivalence class $[f]_{\sim}$ and its cardinal $|[f]_{\sim}|$.

Remark

If $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$ is a finitely presented group, and $f, g \in \mathcal{D}(G)$, such that $f \sim g$, then w(f) = w(g).

A lemma

Proposition

Let $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$ be a finitely presented group, $f, g \in \mathcal{D}(G)$, and $x, y \in G$, such that there is a path of length 2 between x and y in the nondirected graph underlying the van Kampen diagram of the presentation. If w(f) = w(g), f and g coincide on $G \setminus \{x, y\}$, and f(x) - g(x) = 1, then $f \sim g$.

Results from nondirected graphs

Proposition

Let $G = (V = A \cup B, E)$ be a finite connected, nondirected, bipartite graph, and $f, g \in D(G)$. Then $f \sim g$ if and only if $w_f(A) = w_g(A)$ and $w_f(B) = w_g(B)$, or $w_f(A) = w_g(B)$ and $w_f(B) = w_g(A)$.

Proposition

Let G = (V, E) be a finite connected nondirected graph, which is not bipartite, and $f, g \in D(G)$. Then $f \sim g$ if and only if w(f) = w(g).

M.Chiş & C.Chiş

Results from nondirected graphs

Proposition

Let $G = (V = A \cup B, E)$ be a finite connected, nondirected, bipartite graph, and $f, g \in D(G)$. Then $f \sim g$ if and only if $w_f(A) = w_g(A)$ and $w_f(B) = w_g(B)$, or $w_f(A) = w_g(B)$ and $w_f(B) = w_g(A)$.

Proposition

Let G = (V, E) be a finite connected nondirected graph, which is not bipartite, and $f, g \in D(G)$. Then $f \sim g$ if and only if w(f) = w(g).

M.Chiş & C.Chiş

Proposition

Let G be a finite group, which is not a 2-group. Then the nondirected graph underlying its van Kampen diagram, associated to an arbitrary presentation, cannot be a bipartite graph.

Corollary

Let G be a finite group, which is not a 2-group, and $f, g \in D(G)$. Then $f \sim g$ if and only if w(f) = w(g).

Proposition

Let G be a finite group, which is not a 2-group. Then the nondirected graph underlying its van Kampen diagram, associated to an arbitrary presentation, cannot be a bipartite graph.

Corollary

Let G be a finite group, which is not a 2-group, and $f, g \in D(G)$. Then $f \sim g$ if and only if w(f) = w(g).

Corollary

If G is a finite group, which is not a 2-group, and $f \in \mathcal{D}(G)$, then

$$|[f]_{\sim}| = \begin{pmatrix} w(f) + |G| - 1 \\ w(f) \end{pmatrix}$$

M.Chiş & C.Chiş

Proposition

Let G be a finite group, which is not a 2-group. Then the nondirected graph underlying its van Kampen diagram, associated to an arbitrary presentation, cannot be a bipartite graph.

Corollary

Let G be a finite group, which is not a 2-group, and $f, g \in D(G)$. Then $f \sim g$ if and only if w(f) = w(g).

Corollary

If G is a finite group, which is not a 2-group, and $f \in \mathcal{D}(G)$, then

$$|[f]_{\sim}| = \left(egin{array}{c} w(f) + |\mathcal{G}| - 1 \ w(f) \end{array}
ight)$$

M.Chiş & C.Chiş

Proposition

Let $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$ be a finitely presented 2-group. If the presentation of G is minimal on the number of generators, then there are no cycles of odd length in the van Kampen diagram associated with the presentation.

Corollary

Let $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$ be a finitely presented 2-group, such that the presentation is minimal on the number of generators. Then the van Kampen diagram associated with the presentation is a bipartite graph. The partition of G is given by $A = \{x \in G | x \text{ is a product of an even number of generators}\}$, and $B = G \setminus A$.

M.Chiş & C.Chiş

Proposition

Let $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$ be a finitely presented 2-group. If the presentation of G is minimal on the number of generators, then there are no cycles of odd length in the van Kampen diagram associated with the presentation.

Corollary

Let $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$ be a finitely presented 2-group, such that the presentation is minimal on the number of generators. Then the van Kampen diagram associated with the presentation is a bipartite graph. The partition of G is given by $A = \{x \in G | x \text{ is a product of an even number of generators}\}$, and $B = G \setminus A$.

M.Chiş & C.Chiş

Proposition

Let $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$ be a finitely presented 2-group, such that the presentation is minimal on the number of generators, and $f, g \in \mathcal{D}(G)$. Then $f \sim g$ if and only if $w_f(A) = w_g(A)$ and $w_f(B) = w_g(B)$ or $w_f(A) = w_g(B)$ and $w_f(B) = w_g(A)$.

Corollary

In the above conditions, if $a = w_f(A)$ and $b = w_f(B)$, then

$$\begin{split} |[f]_{\sim}| &= \left(\begin{array}{c} a+|A|-1\\ a \end{array}\right) \cdot \left(\begin{array}{c} b+|B|-1\\ b \end{array}\right) + \\ &+ \left(\begin{array}{c} a+|B|-1\\ a \end{array}\right) \cdot \left(\begin{array}{c} b+|A|-1\\ b \end{array}\right). \end{split}$$

M.Chiş & C.Chiş

Proposition

Let $G = \langle s_1, \ldots, s_k | r_1, \ldots, r_l \rangle$ be a finitely presented 2-group, such that the presentation is minimal on the number of generators, and $f, g \in \mathcal{D}(G)$. Then $f \sim g$ if and only if $w_f(A) = w_g(A)$ and $w_f(B) = w_g(B)$ or $w_f(A) = w_g(B)$ and $w_f(B) = w_g(A)$.

Corollary

In the above conditions, if $a = w_f(A)$ and $b = w_f(B)$, then

$$\begin{split} |[f]_{\sim}| &= \left(egin{array}{c} a+|A|-1\\ a\end{array}
ight) \cdot \left(egin{array}{c} b+|B|-1\\ b\end{array}
ight) + & + \left(egin{array}{c} a+|B|-1\\ a\end{array}
ight) \cdot \left(egin{array}{c} b+|A|-1\\ b\end{array}
ight). \end{split}$$

M.Chiş & C.Chiş

Thank you!