Cut-continuous pomonoids

Thomas Vetterlein

Department of Knowledge-Based Mathematical Systems, Johannes Kepler University (Linz)

This is joint work with D. Kruml and J. Paseka (Masaryk University, Brno).
A **residuated lattice** is an algebra \((L; \wedge, \lor, \cdot, /, \backslash, 1)\) such that

1. \((L; \wedge, \lor)\) is a lattice;
2. \((L; \cdot, 1)\) is a monoid;
3. left, right multiplication is residuated:
 for any \(x, y\), \(\{c : y \cdot c \leq x\}\) and \(\{c : c \cdot y \leq x\}\) are principal ideals,
 generated by \(y \backslash x\) and \(x / y\), respectively.
Definition

A residuated lattice is an algebra \((L; \wedge, \vee, \cdot, /, \setminus, 1)\) such that

1. \((L; \wedge, \vee)\) is a lattice;
2. \((L; \cdot, 1)\) is a monoid;
3. left, right multiplication is residuated:
 for any \(x, y\), \(\{c : y \cdot c \leq x\}\) and \(\{c : c \cdot y \leq x\}\) are principal ideals,
 generated by \(y \setminus x\) and \(x / y\), respectively.

A residuated lattice is called

- commutative if so is \(\cdot\),
- integral if 1 is the top element.

In what follows, commutativity and integrality will be understood.
Definition

A **filter** of a residuated lattice is an upwards closed subalgebra.
Definition
A filter of a residuated lattice is an upwards closed subalgebra.

Proposition (McCarthy; Blount, Tsinakis)
Let F be a filter of a residuated lattice L. Define, for $a, b \in L$,
\[
 a \theta_F b \quad \text{if } a f \leq b \text{ and } b f \leq a \text{ for some } f \in F.
\]
Then θ_F is a congruence and $F = 1/\theta_F$.
All congruences on L arise in this way.
Definition

Let L be a residuated lattice and let P be the quotient of L by a filter F. Then we call L a coextension of P by F.
Definition
Let L be a residuated lattice and let P be the quotient of L by a filter F. Then we call L a coextension of P by F.

Challenge
Given residuated lattices P and F, determine the coextensions of P by F.
Let L be a residuated lattice and F a filter of L.

The product on L splits into the following mappings:

1. $\cdot : F \times F \rightarrow F$.
2. $\cdot : F \times R \rightarrow R$, where R is a congruence class $\neq F$.
3. $\cdot : R \times S \rightarrow R \cdot S$, where R, S are congruence classes $\neq F$.
Let L be a residuated lattice and F a filter of L.

The product on L splits into the following mappings:

1. $\cdot : F \times F \to F$.
2. $\cdot : F \times R \to R$, where R is a congruence class $\neq F$.
3. $\cdot : R \times S \to R \cdot S$, where R, S are congruence classes $\neq F$.

Ad (1) $\cdot : F \times F \to F$

This is the product of F.
Definition

Let F be a residuated lattice. An F-module is a \vee-semilattice R together with a mapping $\star : F \times R \to R$ such that

- \star is residuated in each argument,
- $f \star (g \star r) = f \cdot g \star r$ for any $r \in R$ and $f, g \in F$ and $1 \star r = r$ for any $r \in R$.

Notes.
- This is the "residuated" version of an S-poset (Fakhruddin).
- Replacing F by a quantale Q and "residuated" by "join-preserving", this is a Q-module (Abramsky, Vickers).

Ad (2)· $F \times R \to R$, where R is a congruence class $\neq F$. This makes R into an F-module: $f \star r = f \cdot r$, $f \in F$, $r \in R$.

Definition

Let \(F \) be a residuated lattice.

An \(F \)-module is a \(\lor \)-semilattice \(R \) together with a mapping \(\star : F \times R \to R \) such that

- \(\star \) is residuated in each argument,
- \(f \star (g \star r) = fg \star r \) for any \(r \in R \) and \(f, g \in F \)
 and \(1 \star r = r \) for any \(r \in R \).

Notes.

- This is the “residuated” version of an \(S \)-poset (Fakhruddin).
- Replacing \(F \) by a quantale \(Q \) and “residuated” by “join-preserving”, this is a \(Q \)-module (Abramsky, Vickers).
Definition

Let F be a residuated lattice. An F-module is a \lor-semilattice R together with a mapping $\star : F \times R \to R$ such that

- \star is residuated in each argument,
- $f \star (g \star r) = fg \star r$ for any $r \in R$ and $f, g \in F$ and $1 \star r = r$ for any $r \in R$.

Notes.

- This is the “residuated” version of an S-poset (Fakhruddin).
- Replacing F by a quantale Q and “residuated” by “join-preserving”, this is a Q-module (Abramsky, Vickers).

Ad (2) $\cdot : F \times R \to R$, where R is a congruence class $\not= F$. This makes R into an F-module: $f \star r = f \cdot r$, $f \in F$, $r \in R$.
Homomorphisms of F-modules

Definition

Let R and S be F-modules. Then $\varphi : R \to S$ is a **homomorphism** if φ is residuated and

$$\varphi(f \triangleright r) = f \triangleright \varphi(r)$$

for any $f \in F$ and $r \in R$.
Bihomorphisms of F-modules

Definition

Let R, S, and T be F-modules. Then $\psi: R \times S \to T$ is a bihomomorphism if ψ is a homomorphism in each argument.
Bihomorphisms of F-modules

Definition

Let R, S, and T be F-modules. Then $\psi: R \times S \to T$ is a bihomomorphism if ψ is a homomorphism in each argument.

Still, let L be a residuated lattice and F a filter of L.

Ad (3): $\cdot : R \times S \to R \cdot S$, where R, S are congruence classes $\neq F$. If $S < R\setminus(R \cdot S)$ or $R < (R \cdot S)/S$, this mapping is trivial. Otherwise, R and S being viewed as F-modules, this mapping is a bihomomorphism from $R \times S$ to $R \cdot S$.
Assume we are given residuated lattices P and F.

In order to determine a coextension of P by F, we need:

- for each element of $r \in P$, an F-module M_r;
- for each (relevant) $r, s, t \in P$ such that $r \cdot s = t$, a bihomomorphism $M_r \times M_s \to M_t$.
We consider the particular case of $F = \mathbb{R}^\times$.
We consider the particular case of $F = \mathbb{R}^-$.

Proposition (M. Broušek, Th. V.)

Let M be a totally ordered, non-trivial \mathbb{R}^--module. Then M is order-isomorphic to one of \mathbb{R}^-, \mathbb{R}, \mathbb{R}^+, or $[u,0]$, where $u < 0$, and under this isomorphism, the action is the (truncated) addition of reals.
Definition

A tensor product of F-modules R and S is an F-module $R \otimes_F S$ together with a bihomomorphism $\pi: R \times S \rightarrow R \otimes_F S$ such that:

$$R \times S \xrightarrow{\pi} R \otimes_F S$$

$$f \downarrow \quad \tilde{f}$$

For any bihomomorphism $f : R \times S \rightarrow T$, there is a unique homomorphism $\tilde{f} : R \otimes_F S \rightarrow T$ such that $f = \tilde{f} \circ \pi$.
Negative results

The tensor product of modules over residuated lattices does in general not exist.

Proposition (E. Nelson)
In the category of bounded posets and residuated mappings, a tensor product does not exist.
A generalised setting

Let P be a poset.

For $A \subseteq P$, let $A^{\uparrow\downarrow}$ be the cut generated by A, that is, the set of lower bounds of its upper bounds.
A generalised setting

Let P be a poset.

For $A \subseteq P$, let $A^{\uparrow \downarrow}$ be the cut generated by A, that is, the set of lower bounds of its upper bounds.

The mapping

$$\mathcal{P}(P) \rightarrow \mathcal{P}(P), \ A \mapsto A^{\uparrow \downarrow}$$

is a closure operator on P, making P into a closure space.
Let P be a poset.

For $A \subseteq P$, let $A^{↑↓}$ be the cut generated by A, that is, the set of lower bounds of its upper bounds.

The mapping

$$\mathcal{P}(P) \to \mathcal{P}(P), \ A \mapsto A^{↑↓}$$

is a closure operator on P, making P into a closure space.

Definition (A.A. Bishop, M. Erné)

A map $f: P \to Q$ between posets P and Q is called **cut-continuous** if f is a continuous map between the closure spaces P and Q:

$$f(A^{↑↓}) \subseteq f(A)^{↑↓} \quad \text{for any } A \subseteq P.$$
Lemma

Let $f : P \to Q$ be a map between posets.

f is residuated iff
the inverse image of any principal ideal is a principal ideal.
Lemma

Let $f : P \to Q$ be a map between posets.

f is residuated iff
the inverse image of any principal ideal is a principal ideal.

f is cut-continuous iff
the inverse image of any principal ideal is a cut.
Definition

A **cut-continuous pomonoid** is an algebra \((L; \land, \lor, \cdot, 1)\) such that:

1. \((L; \land, \lor)\) is a lattice;
2. \((L; \cdot, 1)\) is a monoid;
3. left, right multiplication is **cut-continuous**: for any \(x, y\), the sets \(\{c: y \cdot c \leq x\}\) and \(\{c: c \cdot y \leq x\}\) are cuts.

A cut-continuous pomonoid is called

- **commutative** if so is \(\cdot\),
- **integral** if 1 is the top element.

In what follows, commutativity and integrality will be understood.
Definition

A **filter** of a cut-continuous pomonoid is an upwards closed subalgebra.

Proposition (D. Kruml, J. Paseka, Th.V.)

Let θ be a congruence on a cut-continuous pomonoid. Then $F = 1/\theta$ is a filter and

$$a \theta_F b \quad \text{if} \quad af \leq b \text{ and } bf \leq a \text{ for some } f \in F.$$
Coextensions

Definition
Let L be a cut-continuous pomonoid and let P be the quotient of L by a filter F. Then we call L the coextension of P by F.

Challenge
Given cut-continuous pomonoids P and F, determine the coextensions of P by F.
Theorem (M. Erné, J. Picado)

Closure spaces A and B possess a **tensor product** – a map from $A \times B$ to a closure space $A \otimes B$ such that:

$$A \times B \xrightarrow{\pi} A \otimes B$$

For any separately continuous map f from $A \times B$ to a sup-lattice C, there is a unique join-preserving map $\tilde{f}: A \otimes B \to C$ such that $f = \tilde{f} \circ \pi$.
Theorem (D. Kruml, J. Paseka, Th. V.)

Let F be a cut-continuous pomonoid. F-modules R and S possess a tensor product – a bihomomorphism π from $R \times S$ to $R \otimes_F S$ such that:

$$
\begin{array}{ccc}
R \times S & \xrightarrow{\pi} & R \otimes_F S \\
\downarrow f & & \downarrow \tilde{f} \\
T & &
\end{array}
$$

For any bimorphism f from $R \times S$ to an F-module and sup-lattice T, there is a morphism $\tilde{f}: R \otimes_C S \to T$ such that $f = \tilde{f} \circ \pi$.
Consider the cut-continuous pomonoid \((\mathbb{R}^{-}; \leq, +, 0)\).
Then \(\mathbb{R}^{-}\) becomes a \(\mathbb{R}^{-}\)-module by usual addition of reals.
Simple example of a tensor product

Consider the cut-continuous pomonoid \((\mathbb{R}^{-}; \leq, +, 0)\).
Then \(\mathbb{R}^{-}\) becomes a \(\mathbb{R}^{-}\)-module by usual addition of reals.
The tensor product of \(\mathbb{R}^{-}\) with itself is

\[\mathbb{R}^{-} \otimes_{\mathbb{R}^{-}} \mathbb{R}^{-} = \mathbb{R}^{-},\]

with

\[\pi: \mathbb{R}^{-} \times \mathbb{R}^{-} \rightarrow \mathbb{R}^{-}, \ (r, s) \mapsto r + s.\]
We want to determine the coextensions of

\[K = \{0, 1, 2, 3, 4\} \]

by \(\mathbb{R}^- \), such that the result is order-isomorphic to \([0, 1]\).
Example of a coextension

We want to determine the coextensions of

\[K = \{0, 1, 2, 3, 4\} \]

by \(\mathbb{R}^- \), such that the result is order-isomorphic to \([0, 1]\).

Our procedure:

- We choose the order-type of the \(\mathbb{R}^- \)-modules, e.g.:

 \[\mathbb{R}^+, \{0\}, \mathbb{R}^-, \mathbb{R}^-, \mathbb{R}^- \].
Example of a coextension

We want to determine the coextensions of

\[K = \{0, 1, 2, 3, 4\} \]

by \(\mathbb{R}^- \), such that the result is order-isomorphic to \([0, 1]\).

Our procedure:

- We choose the order-type of the \(\mathbb{R}^- \)-modules, e.g.:
 \[\mathbb{R}^+, \{0\}, \mathbb{R}^-, \mathbb{R}^-, \mathbb{R}^- \]

- We choose the parameters of the homomorphisms between the occurring \(\mathbb{R}^- \)-modules.
The result is a **triangular norm**:

\[
 a \odot b =
\begin{cases}
 a \wedge b & \text{if } a, b > \frac{3}{4}, \\
 a \wedge (b - \frac{1}{4}) & \text{if } b > \frac{3}{4} \text{ and } \frac{1}{2} < a \leq \frac{3}{4}, \\
 a \wedge (b - \frac{1}{2}) & \text{if } b > \frac{3}{4} \text{ and } \frac{1}{4} < a \leq \frac{1}{2}, \\
 a & \text{if } b > \frac{3}{4}, a \leq \frac{1}{4}, \text{ and } a + b > 1, \\
 0 & \text{if } b \leq \frac{3}{4}, a \leq \frac{1}{4}, \text{ and } a + b \leq 1, \\
 (a - \frac{1}{4}) \wedge (b - \frac{1}{4}) \wedge \frac{7}{16} & \text{if } \frac{1}{2} < a, b \leq \frac{3}{4}, \\
 \frac{1}{8} & \text{if } \frac{5}{8} < b \leq \frac{3}{4} \text{ and } \frac{3}{8} < a \leq \frac{1}{2}, \\
 0 & \text{or } b \leq \frac{5}{8} \text{ and } a \leq \frac{1}{2}.
\end{cases}
\]
Summary

- Cut-continuous pomonoids generalise residuated lattices.
- A tensor product of modules over cut-continuous pomonoids exists.
- The construction of coextensions is in this way facilitated.

Problems and ongoing work

The universality of the tensor product is restricted to mappings to sup-lattices.

The plan is elaborate on the case of conditionally complete lattices.

The shown application to coextensions restricts to the totally ordered case.
Conclusion

Summary

- Cut-continuous pomonoids generalise residuated lattices.
- A tensor product of modules over cut-continuous pomonoids exists.
- The construction of coextensions is in this way facilitated.

Problems and ongoing work

- The universality of the tensor product is restricted to mappings to sup-lattices.
 The plan is elaborate on the case of conditionally complete lattices.
- The shown application to coextensions restricts to the totally ordered case.