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Partial wreath product and partial automorphisms

For a semigroup S define SPX by

SPX = {f : dom(f ) ⊆ X → S}.

For f , g ∈ SPX , define the product fg by:

(fg)(x) = f (x)g(x), x ∈ dom(fg) = dom(f ) ∩ dom(g).

If a ∈ IS(X ), f ∈ SPX , we define f a by:

(f a)(x) = f (xa), x ∈ dom(f a) = dom(a)∩ {x : xa ∈ dom(f )}
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Definition
Partial wreath product of semigroup S with semigroup (P,X )
of partial transformations of the set X is the set

{(f , a) ∈ SPX × (P,X ) | dom(f ) = dom(a)}

with composition defined by (f , a) · (g , b) = (fga, ab).

We will denote the partial wreath product of semigroups S and
(P,X ) by S op P.

The partial wreath product of two semigroup is a semigroup
itself. Moreover, partial wreath product of inverse semigroups
is an inverse semigroup.
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We may recursively define partial wreath product of any finite
number of inverse semigroups. We pay special attention to the
semigroup ISd op . . . op ISd .

The cardinality of semigroup In = ISd op . . . op ISd︸ ︷︷ ︸
n

is

Nn = S(Nn−1) = S(S . . . (S(1)) . . .)︸ ︷︷ ︸
n

,

where S(x) =
∑d

k=1

(d
k

)2
k!xk .
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Let T be a rooted n-level d-regular tree. Let PAutT be the
semigroup of partial automorphisms of the tree T ; by a partial
automorphism we mean a level-preserving isomorphism of
subtrees containing the root.

Proposition

PAutT ∼= In.

In the following we identify In with PAutT .
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Matrix of partial action

Let
V n =

{
vnj , j = 1, 2, . . . , dn

}
be the vertices of nth level of T .
To a randomly chosen y ∈ In, we assign the matrix

Ax =
(
1{y(vn

i )=vn
j }
)dn

i ,j=1

describing the action of y on the nth level of T .
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Matrix of partial action. Example

Let d = 2, n = 2. Consider partial automorphism y ∈ I2,
which acts as follows (dotted lines mean that these edges are
not in domain of y):

◦

◦1 ◦2

◦(1, 1) ◦(1, 2) ◦(2, 1) ◦(2, 2)

Then the corresponding matrix is

Ay =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


.
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Eigenvalues of random wreath products

Let χ(λ) be the characteristic polynomial of Ay , and
λ1, . . . , λdn be its roots. Denote

Ξn =
1

dn

dn∑
k=1

δλk

the uniform distribution on eigenvalues of Ay .
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Evans (2002) has studied asymptotic behaviour of a spectral
measure of a randomly chosen element σ of n-fold wreath
product of symmetric group Sd .
He considered the random measure Θn on the unit circle C ,
assigning equal probabilities to the eigenvalues of σ.
Evans has shown that if f is a trigonometric polynomial, then

lim
n→∞

P
{∫

C
f (x) Θn(dx) 6=

∫
f (x)λ(dx)

}
= 0,

where λ is the normalized Lebesgue measure on the unit circle.
Consequently, Θn converges weakly in probability to λ as
n→∞.

Evans S.N. Eigenvalues of random wreath products //
Electron. J. Probability. – 2002. – Vol.7. – No. 9, P. 1–15.
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Theorem
For any function f ∈ C (D), where D = {z ∈ C | |z | ≤ 1} is a
unit disc, ∫

D
f (x) Ξn(dx)

P−→ f (0), n→∞.

In other words, Ξn converges weakly in probability to δ0 as
n→∞, where δ0 is the delta-measure concentrated at 0.
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Idea of proof

For a partial automorphism y ∈ In, let ηn(y) = Ξn(0) be the
fraction of zero eigenvalues of Ay , and let ξn(y) = 1− ηn(y)
denote a fraction of non-zero eigenvalues. We have to prove
that

ηn(y)
P−→ 1, n→∞,

or, equivalently,

ξn(y)
P−→ 0, n→∞.

Thanks to Markov inequality, it is enough to show that

Eξn(y)→ 0, n→∞.
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Idea of proof

Denote

S(y) =
{
j : vnj ∈ dom ym for all m ≥ 1

}
the indices of vertices of the bottom level, which “survive”
under the action of y , and define the ultimate rank of y by
rk(y) = #S(y). Then

ξn(y) =
rk(y)

dn
,

whence

Eξn(y) =
Rn

dnNn
,

where Rn =
∑

y∈In rk(y).
Also define rank y = # (dom y ∩ V n).
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Recalling that
In = In−1 op ISd ,

we can identify y ∈ In with an element ay ∈ ISd and a
collection (yx ∈ In−1, x ∈ dom a).
We can write

Rn =
∑

a∈ISd

Rn(a), where Rn(a) =
∑

y∈In:ay=a

rk y .
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The ultimate rank rk(y) is the sum of elements “surviving”
under x , x = 1, . . . , d .
A partial transformation a ∈ ISd is a product of disjoint cycles
and chains [x1 . . . xk ]: a(xi ) = xi+1, 1 ≤ i ≤ k − 1 and
xk /∈ dom a.
If x belongs to a chain, then no elements survive under x .
If x = x1 belongs to a cycle (x1, . . . , xk), then the number of
elements surviving under x is

rk(yx1 · · · yxk ).

As a result, if a contains cycles (xi1, . . . , xici ), i = 1, . . . r , then

rk y =
r∑

i=1

ci rk
(
yxi1 · · · yxici

)
.
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Therefore,

Rn(a) =
r∑

i=1

ci
∑

y1,...,yci∈In−1

rk (y1 · · · yci )

Let us estimate the latter sum for ci > 1. The element y1 can
be decomposed into a product of idempotent ey1 on the
domain of y1 and an automorphism σy1 . Then∑

y1,...,yci∈In−1

rk (y1 · · · yci ) =
∑

y1,...,yci∈In−1

rk (ey1σy1y2 · · · yci )

=
∑

y1,...,yci∈In−1

rk (ey1y2 · · · yci ) ≤
∑

y1,...,yci∈In−1

dn∑
k=1

1vn
k∈dom y11vk

n∈S(y2···yci )
.

By symmetry,∑
y1∈In−1

1vn
k∈dom y1 =

1

dn

∑
y∈In−1

rank(y) =:
1

dn
R ′n−1.
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Consequently,∑
y1,...,yci∈In−1

rk (y1 · · · yci ) ≤
R ′n−1
dn

∑
y2,...,yci∈In−1

rk (y2 · · · yci )

≤
(
R ′n−1
dn

)ci−1 ∑
yci∈In−1

rk (yci ) =

(
R ′n−1
dn

)ci−1
Rn−1.

This, using the recurrence for Nn, eventually leads to

Rn

dnNn
≤ rn

Rn−1
dn−1Nn−1

with lim supn→∞ rn < 1. As a result,

Rn

dnNn
→ 0, n→∞,

exponentially fast.
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