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Basic notions and notations

I strong Mal’cev condition
I idempotent strong Mal’cev condition
I linear strong Mal’cev condition
I locally finite variety
I congruence meet-semidistributive variety iff

α ∧ β = α ∧ γ ⇒ α ∧ β = α ∧ (β ∨ γ)

I for n ∈ N and A ⊆ n the tuple xA ∈ {x, y}n is defined with

xA(i) = y iff i ∈ A.
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Constraint Satisfaction Problem

Definition

An instance of the constraint satisfaction problem (CSP) is triple
(V; A; C) with

I V a nonempty, finite set of variables,
I A a nonempty, finite domain,
I C a finite nonempty set of constraints.

A solution of the instance (V; A; C) is a function f : V → A which
satisfies all constraints.

Let’s note that we can observe CSP through a relation structure on A.
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Notions

I 2-consistent instances
I 3-dense instances
I (2,3)-minimal instances

Theorem (Barto)

A an idempotent finite algebra generating a congruence
meet-semidistributive variety.

Then for every CSP(〈A; Γ〉) which is compatible with A, every
nontrivial (2, 3)-minimal instance of CSP(〈A; Γ〉) has a solution.
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Decent Mal’cev conditions

I We can assume that any idempotent linear Mal’cev condition
employs exactly one term symbol.

Definition

We define decent Mal’cev condition as linear, idempotent, and so
that it uses only two variables and one term symbol.
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I Let ε(Σ) be the equivalence relation determined by Σ.

Lemma

A an algebra and Σ a decent Mal’cev condition of arity n.

A realizes Σ by a term t(xi1 , . . . , xik), where E = {i1, . . . , ik} ⊆ n iff A
realizes

Σ′ = {f ′(xU∩E) ≈ f ′(xV∩E) : (U,V) ∈ ε(Σ)}.

Hence ε(Σ′) = {(U ∩ E,V ∩ E) : (U,V) ∈ ε(Σ)}.
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Decent Mal’cev conditions in the majority algebra

I Let A = ({0, 1}; m) be the unique two-element algebra with
ternary majority operation m, i.e.

A |= m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x.

Lemma

A realizes a decent Mal’cev condition Σ of arity n iff A realizes some
decent Mal’cev condition Π such that for ρ = ε(Π) hold:

1. ε(Σ) ⊆ ρ
2. ρ has exactly two equivalence complementary classes [∅]ρ and

[X]ρ;

3. [∅]ρ is a down-set and [n]ρ is an up-set.
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This is how it looks like!



Definition

An equivalence relation ε on P(X) is 0-1 distinguishing if there exist
no sets U,V,W,Z in P(X) such that:

1. UεVεWεZ;

2. U ∩ V = ∅;
3. W ∪ Z = X.

I Note that any equivalence relation on P(X) which satisfies (2)
and (3) of the previous lemma is 0-1 distinguishing.
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Definition

Let ε be an equivalence relation on P(n). We define the relation �ε

on P(n)/ε by

[U]ε �ε [V]ε iff (∃U′ ∈ [U]ε)(∃V ′ ∈ [V]ε)(U′ ⊆ V ′),

for all U,V ⊆ n.

Let ≤ε be the transitive closure of �ε.

Let ∼ε be the intersection ≤ε ∩ ≥ε.

I By its definition, ≤ε is preorder, while ∼ε is an equivalence
relation on P(X)/ε.

Definition

Given an equivalence relation ε on P(n), its closure ε will denote
{(U,V) : U,V ∈ P(n) and [U]ε ∼ε [V]ε}.



Or in other words, these guys shall go together...



I For any equivalence relation ε on P(X), its closure ε is convex.

I (U,V) ∈ ε(Σ) implies t(xU) ≈ t(xV).

Lemma

Let Σ be a decent Mal’cev condition on the set of variables X. A
realizes Σ iff ε(Σ) is a 0− 1 distinguishing equivalence relation on
P(X).
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Decent Mal’cev conditions in semilattices

I Let B = ({0, 1},∧) be the two-element semilattice.
I Now we discuss decent Mal’cev conditions realized in the

algebra C = ({0, 1}, s), where s(x, y, z) = x ∧ y ∧ z for all
x, y, z ∈ {0, 1}.

I B and C are term equivalent.
I Every term t(x1, . . . , xn) on the language {s} holds

C |= t(x1, . . . , xn) ≈
∧
i∈E

xi

for some nonempty E ⊆ n.
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Lemma

If C realizes a decent Mal’cev condition Σ on the set of variables
X = {x1, . . . , xn}, then C realizes Σ by interpreting f as

∧
xi∈X\D(Σ)

xi,

where D(Σ) is the least subset of X such that:

i) D(Σ)↓ contains [∅]ε and

ii) D(Σ)↓ is a union of ε-classes.

I We have an algorithm for determining D(Σ) for any given decent
Mal’cev condition.

I Let’s denote X \ D(Σ) with E(Σ).
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Decent Mal’cev conditions in the algebra D

Let us denote D = A× C.

Lemma

Let D realize a decent Mal’cev condition Σ of arity n. Then for
E = E(Σ), there exists a decent Mal’cev condition Π on the set of
variables {xi | i ∈ E} such that for ρ = ε(Π):

1. {(U ∩ E,V ∩ E) : (U,V) ∈ ε(Σ)} ⊆ ρ;

2. ρ has exactly four equivalence classes, I, J, {∅} and {E}, where
I and J are complementary;

3. I ∪ {∅} is a down-set in P(E) and J ∪ {E} is up-set in P(E);
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Definition

We say that a decent Mal’cev condition Σ of arity n such that:

1. ε(Σ) has exactly four equivalence classes, IΣ, JΣ, {∅} and {X},
where IΣ and JΣ are complementary,

2. IΣ ∪ {∅} is a down-set in P(X) and JΣ ∪ {X} is an up-set in
P(X) and

3. ρ is 0-1 distinguishing on P(X)

is a canonical decent Mal’cev condition.



Now that’s one we need!



Corollary

Let D realizes a decent Mal’cev condition Σ of arity n, and let
E = E(Σ). Then there exists a canonical decent Mal’cev condition Π
on the set of variables {xi | i ∈ E} such that
{(U ∩ E,V ∩ E) : (U,V) ∈ ε(Σ)} ⊆ ε(Π).

Corollary

Let Σ be a decent Mal’cev condition of arity n. Denote by ε′ the
equivalence relation on P(E(Σ)) generated by
{(U ∩ E(Σ),V ∩ E(Σ)) : (U,V) ∈ ε(Σ)}.

Then D realizes Σ iff ε′ is a 0− 1 distinguishing equivalence relation
on P(E(Σ)).



And we’ve got him!



Monochromatic representation of finite posets with
disjointness

Lemma

For every finite poset with disjontness P and every positive integer n
there exists an integer N so that for every coloring of P+(N) in n
colors there exists a monochromatic family F ⊆ P+(N) such that
P ∼= (F ;⊆, ||).

Proof:

I Ramsey says that for each level we have a large enough set we
need...
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...so we can pickup as many of them as we need.



Canonical decent Mal’cev conditions are realized in all
localy finite congruence meet-semidistributive varieties

Theorem

Let Σ be a canonical decent Mal’cev condition. Every locally finite
congruence meet-semidistributive variety realizes Σ.

Proof:
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Putting it all together

Theorem

Let Σ be a decent Mal’cev condition of arity n. The following
conditions are equivalent:

1. Every locally finite congruence meet-semidistributive variety
realizes Σ.

2. D realizes Σ.

3. There exists a canonical decent Mal’cev condition Π on the set
of variables E ⊆ X such that
{(U ∩ E,V ∩ E) : (U,V) ∈ ε(Σ)} ⊆ ε(Π).

Moreover, whether these three conditions are satisfied can be checked
in polynomial time in |Σ| and n.



Proof:
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