Mal'cev clones on finite sets

Erhard Aichinger Institute for Algebra Johannes Kepler University Linz, Austria

Supported by the Austrian Science Fund (FWF) P29931

"Clonoids: a unifying approach to equational logic and clones"

Clones

We study **operations** on a set A.

$$\mathbf{O}(A) := \bigcup_{k \in \mathbb{N}} \{ f \mid f : A^k \to A \}.$$

Definition 1. A subset C of O(A) is a **clone** on A if

(1)
$$\forall k, i \in \mathbb{N}$$
 with $i \leq k$: $((x_1, \ldots, x_k) \mapsto x_i) \in C$,

(2)
$$\forall n \in \mathbb{N}, m \in \mathbb{N}, f \in C^{[n]}, g_1, \dots, g_n \in C^{[m]}$$
:
 $f(g_1, \dots, g_n) \in C^{[m]}.$

 $C^{[n]}$... the $n\text{-}\mathrm{ary}$ functions in C, $C^{[n]}\subseteq A^{A^n}$

Clones with a Mal'cev operation

Theorem 2. Let d be a Mal'cev operation on a finite set A, and let $Clo_A(d)$ be the clone generated by d.

- (1) If d satisfies dxyx = x (Pixley), then $[Clo_A(d), O(A)]$ is finite. Each clone in the interval is determined by its binary invariant relations (Baker-Pixley, 1975).
- (2) (Aichinger-Mayr-McKenzie, published in 2014): $[Clo_A(d), O(A)]$ is at most countably infinite and has no infinite descending chains. Each clone in the interval is determined by one finitary invariant relation.

Clones from an algebra

Definition 3. Let A = (A; F) be an algebra.

- (1) Clo(A) is defined as $Clo_A(F)$, the clone generated by F. Called: the clone of A or clone of term functions on A.
- (2) Pol(A) is defined as

 $Clo_A(F \cup \{unary \text{ constant functions on } A\}).$

Called: the clone of **polynomial functions on** A.

(3) Comp(A) is the set of all congruence preserving functions of A.

The interval [Pol(A), Comp(A)]

Theorem 4 (Bulatov, 2001). For $n \ge 2$, let

$$C_n := \operatorname{Pol}(\mathbb{Z}_4, +, 2x_1x_2\ldots x_n).$$

Then

- (1) $C_2 \subset C_3 \subset \ldots \subset \bigcup_{i \geq 2} C_i = C.$
- (2) C is not finitely generated.
- (3) C_n is described by its 2^{n+1} -ary invariant relations, but not by its $(2^{n+1}-1)$ -ary invariant relations.
- (4) C_n is not generated by its (n-1)-ary members.

The interval [Clo(A), Pol(A)]

Corollary 5. Let A be the alternating group on 6 letters. Then the interval [Clo(A), Pol(A)] = [Clo(A), O(A)] contains an infinite ascending chain.

Proof: A has a four element cyclic subgroup.

The interval [Pol(A), Comp(A)]

Theorem 6. (Aichinger, Horváth, 2015, unpublished) Let A be a finite *p*-group. Then [Pol(A), Comp(A)] is infinite $\Leftrightarrow \exists D, E \trianglelefteq A : 0 < E \le D < A, \forall X \trianglelefteq A : X \ge$ E or $X \le D$.

Theorem 7. (Aichinger, Lazić, Mudrinski; Monatshefte, 2016) Let A be a finite *p*-group. Then Comp(A) is finitely generated \Leftrightarrow (*a condition on the shape of the normal subgroup lattice of* A).

Clearly: A finite, finite type, Comp(A) not f.g. \Rightarrow [Pol(A), Comp(A)] is infinite.

The relational degree

Definition 8. The relational degree of an algebra A is the minimal $k \in \mathbb{N}_0$ such that Clo(A) is determined by its invariant relations of arity $\leq k$.

Example 9. For $n \ge 2$, the relational degree of $(\mathbb{Z}_4, +, 2x_1x_2...x_n)$ is 2^{n+1} .

Theorem 10. (Aichinger, Mayr, McKenzie). The relational degree of a finite algebra with edge term is finite.

Problem 11. Given a finite $\mathbf{A} = (A, f_1, \dots, f_k)$ with edge (or Mal'cev) term, is there a computable bound for the relational degree?

The relational degree

Theorem 12. (Kearnes, Szendrei, 2012) If \mathbf{A} is finite, has a Mal'cev term and generates a residually finite variety, then its relational degree is at most

$$\max(2, m^{m+1}(B(m) + 1) - 1),$$

where m := |A|.

Corollary 13. Let A be a finite algebra of finite type with edge term such that V(A) is residually small. Then there is $k \in \mathbb{N}$ such that every algebra in $\mathbb{V}(A)$ is of relational degree at most k.

The bound k can be computed from the residual bound of $V(\mathbf{A})$ and the type of \mathbf{A} .

The interval $[Clo_A(d), O(A)]$

Proposition 14. *A* finite, *d* Mal'cev. Every infinite subset $S \subseteq [Clo_A(d), O(A)]$ contains an infinite ascending chain.

Proof: If S has no such chain, there is maximal $C \in S$ with [C, O(A)] infinite. C is finitely related, thus it has finitely many covers. The interval above one of these covers is infinite. Contradiction.

Problem 15. Are there finite A and a Mal'cev term d such that $[Clo_A(d), O(A)]$ has no infinite antichain?

The interval [Pol(A), Comp(A)]

Theorem 16. (Aichinger, Mudrinski; Order, 2013) Let A be a finite algebra with a Mal'cev term. Let $(C_i)_i \in \mathbb{N}$ be an infinite sequence of clones in [Pol(A), Comp(A)]. Let

$$F_i := ([.,.]_{(A,C_i)}, [.,.,.]_{(A,C_i)}, \ldots).$$

Then $(F_i)_{i \in \mathbb{N}}$ has an infinitely ascending subsequence.

If there only were no antichains ...

Theorem 17. A finite, d Mal'cev, f, g operations on A. **Suppose that there is no antichain of clones on** A **containing** d. We define

 $f \leq_d g :\Leftrightarrow f \in \operatorname{Clo}_A(g, d).$

Let ψ be a property of operations such that

$$g \models \psi, f \leq_d g \Rightarrow f \models \psi.$$

Then ψ can be decided in polynomial time in $||f|| \sim |A|^{\operatorname{arity}(f)}$.

Proof: ψ has finitely many minimal counterexamples g_1, \ldots, g_k . The property $g_i \in \operatorname{Clo}_A(f, d)$ can be checked "easily".