Mal'cev clones on finite sets

Erhard Aichinger
Institute for Algebra
Johannes Kepler University Linz, Austria

Supported by the Austrian Science Fund (FWF)
P29931

“Clonoids: a unifying approach to equational logic and clones”
Clones

We study operations on a set A.

$$O(A) := \bigcup_{k \in \mathbb{N}} \{f \mid f : A^k \to A\}.$$

Definition 1. A subset C of $O(A)$ is a **clone** on A if

1. $\forall k, i \in \mathbb{N}$ with $i \leq k$: $((x_1, \ldots, x_k) \mapsto x_i) \in C$,

2. $\forall n \in \mathbb{N}, m \in \mathbb{N}, f \in C^{[n]}, g_1, \ldots, g_n \in C^{[m]}$: $f(g_1, \ldots, g_n) \in C^{[m]}$.

$C^{[n]}$... the n-ary functions in C, $C^{[n]} \subseteq A^{A^n}$
Theorem 2. Let d be a Mal’cev operation on a finite set A, and let $\text{Clo}_A(d)$ be the clone generated by d.

(1) If d satisfies $dxyx = x$ (Pixley), then $[\text{Clo}_A(d), \mathbf{O}(A)]$ is finite. Each clone in the interval is determined by its binary invariant relations (Baker-Pixley, 1975).

(2) (Aichinger-Mayr-McKenzie, published in 2014): $[\text{Clo}_A(d), \mathbf{O}(A)]$ is at most countably infinite and has no infinite descending chains. Each clone in the interval is determined by one finitary invariant relation.
Clones from an algebra

Definition 3. Let $A = (A; F)$ be an algebra.

1. $\text{Clo}(A)$ is defined as $\text{Clo}_A(F)$, the clone generated by F. Called: the clone of A or clone of term functions on A.

2. $\text{Pol}(A)$ is defined as $\text{Clo}_A(F \cup \{\text{unary constant functions on } A\})$. Called: the clone of polynomial functions on A.

3. $\text{Comp}(A)$ is the set of all congruence preserving functions of A.
The interval $[\text{Pol}(A), \text{Comp}(A)]$

Theorem 4 (Bulatov, 2001). For $n \geq 2$, let

$$C_n := \text{Pol}(\mathbb{Z}_4, +, 2x_1x_2 \ldots x_n).$$

Then

1. $C_2 \subset C_3 \subset \ldots \subset \bigcup_{i \geq 2} C_i = C$.
2. C is not finitely generated.
3. C_n is described by its 2^{n+1}-ary invariant relations, but not by its $(2^{n+1} - 1)$-ary invariant relations.
4. C_n is not generated by its $(n - 1)$-ary members.
The interval \([\text{Clo}(A), \text{Pol}(A)]\)

Corollary 5. Let \(A\) be the alternating group on 6 letters. Then the interval \([\text{Clo}(A), \text{Pol}(A)] = [\text{Clo}(A), O(A)]\) contains an infinite ascending chain.

Proof: \(A\) has a four element cyclic subgroup.
The interval $[\text{Pol}(A), \text{Comp}(A)]$

Theorem 6. (Aichinger, Horváth, 2015, unpublished) Let A be a finite p-group. Then $[\text{Pol}(A), \text{Comp}(A)]$ is infinite $\iff \exists D, E \trianglelefteq A : 0 < E \leq D < A$, $\forall X \trianglelefteq A : X \geq E$ or $X \leq D$.

Theorem 7. (Aichinger, Lazić, Mudrinski; Monatshefte, 2016) Let A be a finite p-group. Then $\text{Comp}(A)$ is finitely generated $\iff (a \text{ condition on the shape of the normal subgroup lattice of } A)$.

Clearly: A finite, finite type, $\text{Comp}(A)$ not f.g. $\Rightarrow [\text{Pol}(A), \text{Comp}(A)]$ is infinite.
The relational degree

Definition 8. The **relational degree** of an algebra A is the minimal $k \in \mathbb{N}_0$ such that $\text{Clo}(A)$ is determined by its invariant relations of arity $\leq k$.

Example 9. For $n \geq 2$, the relational degree of $(\mathbb{Z}_4, +, 2x_1x_2 \ldots x_n)$ is 2^{n+1}.

Theorem 10. (Aichinger, Mayr, McKenzie). The relational degree of a finite algebra with edge term is finite.

Problem 11. Given a finite $A = (A, f_1, \ldots, f_k)$ with edge (or Mal’cev) term, is there a computable bound for the relational degree?
The relational degree

Theorem 12. (Kearnes, Szendrei, 2012) If A is finite, has a Mal’cev term and generates a residually finite variety, then its relational degree is at most

$$\max(2, m^{m+1}(B(m) + 1) - 1),$$

where $m := |A|$.

Corollary 13. Let A be a finite algebra of finite type with edge term such that $V(A)$ is residually small. Then there is $k \in \mathbb{N}$ such that every algebra in $V(A)$ is of relational degree at most k.

The bound k can be computed from the residual bound of $V(A)$ and the type of A.
The interval $[\text{Cl}_{\text{oa}}(d), \text{O}(A)]$

Proposition 14. A finite, d Mal’cev. Every infinite subset $S \subseteq [\text{Cl}_{\text{oa}}(d), \text{O}(A)]$ contains an infinite ascending chain.

Proof: If S has no such chain, there is maximal $C \in S$ with $[C, \text{O}(A)]$ infinite. C is finitely related, thus it has finitely many covers. The interval above one of these covers is infinite. Contradiction.

Problem 15. Are there finite A and a Mal’cev term d such that $[\text{Cl}_{\text{oa}}(d), \text{O}(A)]$ has no infinite antichain?
The interval \([\text{Pol}(A), \text{Comp}(A)]\)

Theorem 16. (Aichinger, Mudrinski; Order, 2013) Let \(A\) be a finite algebra with a Mal’cev term. Let \((C_i)_{i \in \mathbb{N}}\) be an infinite sequence of clones in \([\text{Pol}(A), \text{Comp}(A)]\). Let

\[F_i := ([\ldots]_{(A,C_i)}, [\ldots, \ldots](A,C_i), \ldots). \]

Then \((F_i)_{i \in \mathbb{N}}\) has an infinitely ascending subsequence.
If there only were no antichains . . .

Theorem 17. A finite, d Mal’cev, f, g operations on A. Suppose that there is no antichain of clones on A containing d. We define

$$f \leq_d g :\iff f \in \text{Clo}_A(g, d).$$

Let ψ be a property of operations such that

$$g \models \psi, f \leq_d g \Rightarrow f \models \psi.$$

Then ψ can be decided in polynomial time in $||f|| \sim |A|\text{arity}(f)$.

Proof: ψ has finitely many minimal counterexamples g_1, \ldots, g_k. The property $g_i \in \text{Clo}_A(f, d)$ can be checked “easily”.