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• Term operations satisfies a condition if the equations hold for every
choice of variables.
• Algebra satisfies a condition if there exist such term operations.
• An equational condition is trivial if it is satisfied by every algebra.
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• Examples:
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binations

• Equational condition is idempotent if it forces all involved terms to be
idempotent.
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• Universal algebra

Nontrivial equational conditions describes structural properties. For
example, Maltsev term is equivalent to congruence permutability. Such
conditions are often idempotent.

• Constraint Satisfaction Problem

In finite case, the complexity of CSP problem is determined by idempo-
tent algebra of polymorphisms. It is conjectured that CSP is solvable
in polynomial time if and only if this algebra satisfies a nontrivial equa-
tional condition.
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...

t(?, ?, ..., ?, x) = t(?, ?, ..., ?, y),

where each question mark represents either x or y .
• Theorem (Siggers 2010) Moreover, if A is finite, it has a 6-ary term

operation s satisfying s(ab,ac,bc) = s(ba, ca, cb).
• Is it true in general?
• No! (Kazda)

The free idempotent algebra with WNU3: w(xyy) = w(yxy) = w(yyx)
does not satisfy any single nontrivial equation without nested terms.
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• What if we allow two equations without nested terms?
• Consider previous equation as an equation concerning an n2-ary term
• And add the equation

t(t(a,a,a, ...,a), t(b,b,b, ...,b), ..., t(z, z, ..., z, z)) =
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• The question: Is there a weakest nontrivial idempotent equational
condition? (Taylor: not true without idempotency)
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• Following conditions are equivalent:

(i) A satisfies a nontrivial idempotent equational condition.
(ii) A has a 6-ary idempotent term operation t satisfying:

t(xyy , yxx) =

= t(yxy , xyx) =

= t(yyx , xxy)
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• Local version: Let S ⊂ A.
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• Algebra A satisfy an equational condition locally on A if there are

term operations in A satisying it.

• Is there a weakest local equational condition for idempotent algebras?
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