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(1) We are mathematics teachers in Japan.

(2) We give lessons in collegiate math classes.
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Our Introduction |

(1) We are mathematics teachers in Japan.

(2) We give lessons in collegiate math classes.

(3) We use printed materials together with
textbooks.

(4) We have been editing and publishing a se-

ries of textbooks.



Our Introduction |

(5) We use BKTEX and KgT'pic on a daily basis
to make materials and textbooks.

(6) We developed KgT'pic to make it easy into
insert figures to IXTEpX documents.

(7) We have brought up KgTpic to be more
useful and comprehensive IXTEX helper.



What is KgI'pic I

(1) It is a CAS macro package for inserting
graphs easily into ETEX documents
Maple, Mathematica, Maxima,
Scilab, Matlab ( in part ), R
(2) It is free downloadable from
www.ketpic.com
(3) It has some TEX macros generated by KgI'pic

to help us make materials.



Components of Materials



Using TEX I

(1) We can make documents with mathemat-
ical expressions easily and finely.

(2) Materials and textbooks require various
components from an educational perspec-
tive.

(3) TeX itself cannot handle these components
easily.

(4) KETpic shores up this weekness of TEX.



Necessary Components I

® Sentences

e Mathematical Formulae
e Figures

e Symbols

e Tables

e Pointers, Highlighting
e Pagenation (Layout)



Necessary Components I

Stewart’s Culculus, Brook/Cole

Very heavy
Weight : 2500 g

Thickness : 4.5cm
Number of pages : 1300

With deep cosideration from

an educational point of view

8



Plenty of Figures

292 ||l CHAPTER 5 INTEGRALS

[}
It can be shown that the lower approximating sums also approach _%. that is,

lim L, = 3
n—e
From Figures 8 and 9 it appears that, as n increases, both L, and R, become better and b
ter approximations to the area of S. Therefore, we define the area A to be the limit of t
sums of the areas of the approximating rectangles, that is,
I 1nVisual 5.1 you can create pic-
tures like those in Figures 8 and 9 for
other values of 1.

A=lmR,=lim L, =3

y y

n=10 R,=0.385 =50 Ry=0.3434
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FIGURE 9
'[];he "‘"ﬁ" is the ““mbe‘d'i’“ is 5'1:‘“”3" Let's apply the idea of Examples 1 and 2 to the more general region S of Figure 1.¥
DL i B AT S start by subdividing S into n strips Si, Sa, . . ., S, of equal width as in Figure 10.
all lower sums
=
y=fx)

0 @ X X X - Xeg & . Ky b

FIGURE 10
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KrT'pic’s Way I
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K¥TI'pic’s Way I

G1=Plotdata("x"2","x"); Y

Dx=1/N; n=10 Ry = 0.3850
G2=1ist(); Sum=0;

for I=1:N

X1=Dx* (I-1) ;X2=Dx*I;Y2=X2"2;

G2($+1)=Framedata([X1,X2],[0,Y2]);

Sum=Sum+Dx*Y2;

end;

Openfile(Fname) ;

Beginpicture("5cm") ;

Texcom("\color{GreenYellow}") ;

Shade (G2) ; O
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KgTI'pic’s Way I

Texcom("\color{Red}") ;
Drwline(G1);
Texcom("\color{blackl}");
Drwline (G2) ;
Fontsize("n");
StN=string(N) ;
StS=msprintf ("%5.4f",Sum) ;

Str="n="+StN+"R_{"+StN+"}="+StS;

Expr([0,1],"e4",Str);
Htickmark(1,"1");
Endpicture(1);
Closefile();
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n = 10 RlO = 0.3850




KgT'pic’s Way I

Texcom("\color{Red}"); Y
Drwline(G1); n =30 Rs3y = 0.3502
Texcom("\color{black}");
Drwline (G2) ;
Fontsize("n");
StN=string(N) ; 77
StS=msprintf ("%5.4f",Sum) ; 77
Str="n="+StN+"R_{"+StN+"}="+StS; 777
Expr([0,1],"e4",Str); 777
Htickmark(1,"1");
Endpicture(1); _EaﬁﬁﬁTTTTTT
Closefile(); O
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KgT'pic’s Way I

Texcom("\color{Red}") ;
Drwline (G1) ;
Texcom("\color{black}");
Drwline (G2) ;
Fontsize("n");
StN=string(N) ;
StS=msprintf ("%5.4f",Sum) ;
Str="n="+StN+"R_{"+StN+"}="+StS;
Expr([0,1],"e4",Str);
Htickmark(1,"1");
Endpicture(1);

Closefile(); O
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New Symbols and Pointersl

is therefore an approximation to what we intuit
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(a) Typical rectangle

This approximation appears to become bette:

11



New Symbols and Pointersl

is therefore an approximation to what we intuit
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New Symbols and Pointersl

is therefore an approximation to what we intuit

' r+y+z=2
! /”I 2x—3y—zz5
/mmi x4+ 3y = 2
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2 20 — 3y — 2z =25

(a) Typical rectangle

T+ 3y =2

This approximation appears to become bette:
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Tables |

SOLUTION fi(x) =12x° — 12x* — 24x = 12x(x — 2)(x + 1)

To use the I/D Test we have to know where f'(x) > 0 and where f'(x) < 0. This
depends on the signs of the three factors of f'(x), namely, 12x, x — 2, and x + 1. We
divide the real line into intervals whose endpoints are the critical numbers —1, 0, and

2 and arrange our work in a chart. A plus sign indicates that the given expression is posi-
tive, and a minus sign indicates that it is negative. The last column of the chart gives the
conclusion based on the I/D Test. For instance, f'(x) < 0 for 0 < x < 2, so f is decreas-
ing on (0, 2). (It would also be true to say that f is decreasing on the closed interval [0, 2].)

Interval | 12x x—2 | x+1 f(x) i

== .1._ e : ——————— L T = et — = )
| r<—1 | | —~ - decreasing on (—=, —1)
' —] L ¥ <1) ! - } + e increasing on (—1, 0)
! pEEsl : + = | : e decreasing on (0, 2)
' g | + + J -+ ! o increasing on (2, =)

| |

The graph of f shown in Figure 2 confirms the information in the chart. [
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Tables |

y =zt — 227
y = 4a® — 627
Y = 122% — 122 = 122(x — 1)

x 0 1 3

‘|10 |+ |+ |+]0]+
I+ ] O] =] 0]+
y i\ [-11] Ao | /716 S
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3D Figures(1) I

the tangent plane, whereas Az represents the change in height of the surface z = f(x, y)
when (x, y) changes from (a, b) to (a + Ax, b + Ay).

Zh

(a+Ax, b+ Ay, fla+ Ax, b+ Ay))
surface z = f(x, y)

fla,b) {| .# 4
/ @+ Ax,b+ Ay, ()

(a, b, ﬂ] ﬁ}, — d},
tangent plane

z - fla,b) = f,(a, b)(x — a) + f,(a, b)(y — b)
13



3D Figures(1) I




3D Figures(2)

EXAMPLE 7 Figure 12 shows a solid with a circular base of radi
sections perpendicular to the base are equilateral triangles. Find

SOLUTION Let’s take the circle to be x* + y? = 1. The solid, its ba

LIS Visual 6.2C shows how the solid section at a distance x from the origin are shown in Figure 13.

in Figure 12 is generated.

f B(x, y)

v ¥

(a) The solid (b) Its base

FIGURE 12 FIGURE I3

Computer-generated picture
of the solid in Example 7
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3D Figures(2) I
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Future Works
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Developments of KpT'pic I

KrT'pic is now developing
in various directions

with various teachers.
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Developments of KgI'pic I

KrT'pic is now developing
in various directions

with various teachers.
And
KET'pic will certainly become a

comprehensive helper and
more useful helper

of teachers who make materials using TgX.
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