The Necessary Components of Materials and Textbooks

Used in Math Classes

Setsuo Takato Toho University

June 22nd 2012, Novi Sad

And

Yamashita Kitahara Maeda & Usui Kaneko

Our project is supported by Grant-in-Aid for Scientific Research in Japan No : 24501075

KeTpic project

(1) We are mathematics teachers in Japan.(2) We give lessons in collegiate math classes.

We are mathematics teachers in Japan. We give lessons in collegiate math classes.

- (1) We are mathematics teachers in Japan.
- (2) We give lessons in collegiate math classes.
- (3) We use printed materials together with textbooks.
- (4) We have been editing and publishing a series of textbooks.

- (5) We use LATEX and KETpic on a daily basis to make materials and textbooks.
 (6) We developed KETpic to make it easy into insert figures to LATEX documents.
- (7) We have brought up KETpic to be more useful and comprehensive LATEX helper.

(1) It is a CAS macro package for inserting graphs easily into LATEX documents Maple, Mathematica, Maxima, Scilab, Matlab (in part), R (2) It is free downloadable from www.ketpic.com (3) It has some TFX macros generated by KFTpic to help us make materials.

Components of Materials

Using T_FX

 We can make documents with mathematical expressions easily and finely.
 Materials and textbooks require various

components from an educational perspec-

tive.

- (3) $T_{E}X$ itself cannot handle these components easily.
- (4) KETpic shores up this weekness of T_EX .

Necessary Components

- Sentences
- Mathematical Formulae
- Figures
- Symbols
- Tables
- Pointers, Highlighting
- Pagenation (Layout)

Necessary Components

Stewart's Culculus, Brook/Cole

Very heavy Weight: 2500 g Thickness: 4.5cm Number of pages: 1300

With deep cosideration from an educational point of view

Plenty of Figures

9

Plenty of Figures

New Symbols and Pointers

is therefore an approximation to what we intuit

This approximation appears to become better

New Symbols and Pointers

is therefore an approximation to what we intuit

 $\begin{cases} x+y+z=2\\ 2x-3y-z=5\\ x+3y=2 \end{cases}$

This approximation appears to become better

New Symbols and Pointers

is therefore an approximation to what we intuit

 $\begin{cases} x+y+z=2\\ 2x-3y-z=5\\ x+3y=2 \end{cases}$

$$\begin{cases} x+y+z=2\\ 2x-3y-z=5\\ x+3y=2 \end{cases}$$

This approximation appears to become better

Tables

SOLUTION $f'(x) = 12x^3 - 12x^2 - 24x = 12x(x-2)(x+1)$

To use the I/D Test we have to know where f'(x) > 0 and where f'(x) < 0. This depends on the signs of the three factors of f'(x), namely, 12x, x - 2, and x + 1. We divide the real line into intervals whose endpoints are the critical numbers -1, 0, and 2 and arrange our work in a chart. A plus sign indicates that the given expression is positive, and a minus sign indicates that it is negative. The last column of the chart gives the conclusion based on the I/D Test. For instance, f'(x) < 0 for 0 < x < 2, so f is decreasing on (0, 2). (It would also be true to say that f is decreasing on the closed interval [0, 2].)

Interval	12x	x = 2	x + 1	f'(x)	f
x < -1	_	-	-	_	decreasing on $(-\infty, -1)$
-1 < x < 0	-	-	+	+	increasing on $(-1, 0)$
0 < x < 2	+	-	+	-	decreasing on (0, 2)
x > 2	. +	+	+	+	increasing on $(2, \infty)$

The graph of f shown in Figure 2 confirms the information in the chart.

Tables

$$y = x^{4} - 2x^{3}$$

$$y' = 4x^{3} - 6x^{2}$$

$$y'' = 12x^{2} - 12x = 12x(x - 1)$$

x		0		1		3	
y'		0	+	+	+	0	+
$y^{\prime\prime}$	+	+	+	0	_	0	+
y		-11	1	0	~	16	1

3D Figures(1)

the tangent plane, whereas Δz represents the change in height of the surface z = f(x, y) when (x, y) changes from (a, b) to $(a + \Delta x, b + \Delta y)$.

TEC Visual 6.2C shows how the solid in Figure 12 is generated.

EXAMPLE 7 Figure 12 shows a solid with a circular base of radiu sections perpendicular to the base are equilateral triangles. Find

SOLUTION Let's take the circle to be $x^2 + y^2 = 1$. The solid, its ba section at a distance x from the origin are shown in Figure 13.

FIGURE 12 Computer-generated picture of the solid in Example 7

14

Future Works

Developments of KETpic

KETpic is now developing in various directions with various teachers. **Developments of KETpic**

K_E**Tpic** is now developing in various directions with various teachers. And **K**_E**T**pic will certainly become a comprehensive helper and more useful helper of teachers who make materials using T_FX.