Exploring loci of points by DGS and CAS CADGME 2012

Jakub Jareš
University of South Bohemia, Czech Republic

22. - 24.06.2012

About me

Jakub Jareš

■ 1st year PhD. student Theory of education in mathematics, University of South Bohemia

■ Interested in searching for Loci of points with computer

Introduction

- What are loci of points?

Introduction

- What are loci of points?

■ Loci of points belong to difficult topics of school curricula at all levels of mathematics education

Introduction

- What are loci of points?

■ Loci of points belong to difficult topics of school curricula at all levels of mathematics education

- There are many interesting loci of points which students can recognize (students can also do experiments)

Introduction

- What are loci of points?

■ Loci of points belong to difficult topics of school curricula at all levels of mathematics education

- There are many interesting loci of points which students can recognize (students can also do experiments)

■ What technologies can we use?

Introduction

- What are loci of points?

■ Loci of points belong to difficult topics of school curricula at all levels of mathematics education

- There are many interesting loci of points which students can recognize (students can also do experiments)

■ What technologies can we use?

■ Suitable to use DGS (dynamic geometry system) and CAS (computer algebra system)

DGS benefits to Loci of points

■ The development of computers and mathematical software allows such activities that previously were not possible:

DGS benefits to Loci of points

■ The development of computers and mathematical software allows such activities that previously were not possible:

- Dynamic pictures (construction) and possibility to move with objects (points) - we can create the hypothesis using DGS (using trace of point)

DGS benefits to Loci of points

■ The development of computers and mathematical software allows such activities that previously were not possible:

- Dynamic pictures (construction) and possibility to move with objects (points) - we can create the hypothesis using DGS (using trace of point)
- Verification of hypothesis in DGS (button locus)

DGS benefits to Loci of points

■ The development of computers and mathematical software allows such activities that previously were not possible:

- Dynamic pictures (construction) and possibility to move with objects (points) - we can create the hypothesis using DGS (using trace of point)
- Verification of hypothesis in DGS (button locus)

■ But!!! DGS are based on numerical calculations, the result can not be considered absolutely true

Using DGS in exploring loci of points

■ There exist many DGS systems with some minor differences which behave in a similar way when obtaining loci

Using DGS in exploring loci of points

■ There exist many DGS systems with some minor differences which behave in a similar way when obtaining loci

■ In general, two objects must be selected:

Using DGS in exploring loci of points

■ There exist many DGS systems with some minor differences which behave in a similar way when obtaining loci

■ In general, two objects must be selected:

- driving point or mover (as name says it is bound to a path)

Using DGS in exploring loci of points

■ There exist many DGS systems with some minor differences which behave in a similar way when obtaining loci

■ In general, two objects must be selected:

- driving point or mover (as name says it is bound to a path)
- locus point (must depend somehow on the first one)

Using DGS in exploring loci of points

■ There exist many DGS systems with some minor differences which behave in a similar way when obtaining loci

■ In general, two objects must be selected:

- driving point or mover (as name says it is bound to a path)
- locus point (must depend somehow on the first one)
- Since the element dependency is preserved the driving point traverses its path, the locus is a trajectory of the locus point.

Exploring loci by DGS

■ To formulate a problem to students

Exploring loci by DGS

■ To formulate a problem to students

■ we construct the problem with DGS

Exploring loci by DGS

■ To formulate a problem to students

■ we construct the problem with DGS

- we can guess, what it can be

Exploring loci by DGS

■ To describe and demonstrate the problem by DGS and

Exploring loci by DGS

■ To describe and demonstrate the problem by DGS and

- move with the driving point

Exploring loci by DGS

■ To describe and demonstrate the problem by DGS and

■ move with the driving point

■ watch, what locus is generated with locus point

Exploring loci by DGS

- To describe and demonstrate the problem by DGS and

■ move with the driving point

■ watch, what locus is generated with locus point

■ discuss with students about, what the locus can be

Exploring loci by DGS

- To verify the locus, we can use a button LOCUS and we obtain the curve, but only in plane / 2D

Exploring loci by CAS

To identify locus we need locus equations or its characteristic property

■ Translation of a geometry problem into equations or inequations

Exploring loci by CAS

To identify locus we need locus equations or its characteristic property

■ Translation of a geometry problem into equations or inequations

- The use of CAS to obtain locus equation from the system of equations or inequations

Exploring loci by CAS

To identify locus we need locus equations or its characteristic property

■ Translation of a geometry problem into equations or inequations

■ The use of CAS to obtain locus equation from the system of equations or inequations

■ Elimination of variables is necessary

Exploring loci by CAS

To identify locus we need locus equations or its characteristic property

■ Translation of a geometry problem into equations or inequations

- The use of CAS to obtain locus equation from the system of equations or inequations

■ Elimination of variables is necessary

- Gröbner basis of ideals

Exploring loci by CAS

To identify locus we need locus equations or its characteristic property

■ Translation of a geometry problem into equations or inequations

- The use of CAS to obtain locus equation from the system of equations or inequations

■ Elimination of variables is necessary

- Gröbner basis of ideals
- Characteristic sets

Elimination

Elimination of variables is a basic procedure in exploring loci.
■ Realize that we eliminate variables in the system of non-linear algebraic equations.

- By elimination we used the program CoCoA which is freely distributed at http://cocoa.dima.unige.it. It is based on Gröbner basis of ideals.

■ Another elimination program is Geother which is freely distributed at http://www-calfor.lip6.fr/~wang/epsilon/. It is based on Wu-Ritt characteristic sets.

Asteroid

Problem:

Let k be a circle centered at O and two perpendicular lines x, y through point O. Denote A, B the feet of perpendicular lines dropped to x, y from an arbitrary $C \in k$. Let M be an intersection of a segment $A B$ and perpendicular line from C to $A B$.

Find the locus M when C moves along circle k.
First we construct with GeoGebra this problem. Using the button LOCUS we construct the locus of M when C moves along k.

Asteroid

introduction

Asteroid
introduction

"It looks like curve of asteroid"
We have no equation

Is it true?

What is the solution?

Cooperation between

DGS and CAS

is needed!

Asteroid

Place a coordinate system so that $A=[p, 0], B=[0, q]$, $C=[p, q], M=[m, n]$ and let k be a circle with the equation $k: x^{2}-y^{2}-a^{2}=0$.

We translate the geometry situation into the set of polynomial equations.

$$
\begin{aligned}
& M \in A B \Rightarrow H_{1}: \quad q m+p n-p q=0 \\
& M \in a \Rightarrow H_{2}: \\
& M m-q n-p^{2}+q^{2}=0 .
\end{aligned}
$$

Further

$$
C \in k \Rightarrow \quad H_{3}: p^{2}-q^{2}-a^{2}=0
$$

Asteroid

We get the system of three equations $H_{1}=0, H_{2}=0, H_{3}=0$ in variables p, q, m, n, a.

To find the locus of $M=[m, n]$ we eliminate variables p, q in the ideal $I=\left(H_{1}, H_{2}, H_{3}\right)$ to get a relation in m, n which depends on a. We enter in CoCoA

UseR ::= Q[p, q, m, n, a];
$\mathrm{I}:=\operatorname{Ideal}\left(\mathrm{qm}+\mathrm{pn}-\mathrm{pq}, \mathrm{pm}-\mathrm{qn}-\mathrm{p}^{2}+\mathrm{q}^{2}, \mathrm{p}^{2}+\mathrm{q}^{2}-\mathrm{a}^{2}\right)$; Elim(p..q, I);

Asteroid

CADGME 2012

Jakub Jareš
and get
Ideal $\left(-2 / 9 m^{6} a^{2}-2 / 3 m^{4} n^{2} a^{2}-2 / 3 m^{2} n^{4} a^{2}-2 / 9 n^{6} a^{2}+\right.$ $+2 / 3 m^{4} a^{4}-14 / 3 m^{2} n^{2} a^{4}+2 / 3 n^{4} a^{4}-2 / 3 m^{2} a^{6}-$
$\left.-2 / 3 n^{2} a^{6}+2 / 9 a^{8}\right)$.

Solve equation

$$
\begin{aligned}
& -2 / 9 m^{6} a^{2}-2 / 3 m^{4} n^{2} a^{2}-2 / 3 m^{2} n^{4} a^{2}-2 / 9 n^{6} a^{2}+2 / 3 m^{4} a^{4}- \\
& 14 / 3 m^{2} n^{2} a^{4}+2 / 3 n^{4} a^{4}-2 / 3 m^{2} a^{6}-2 / 3 n^{2} a^{6}+2 / 9 a^{8}=0
\end{aligned}
$$

get

$$
n^{2}-\left(a^{2 / 3}-m^{2 / 3}\right)^{3}=0
$$

Asteroid

The equation can be expressed as a function of two variables m, n

$$
n= \pm \sqrt{\left(a^{2 / 3}-m^{2 / 3}\right)^{3}}
$$

Or we can display the function as an implicitplot, when $a=1$

$$
\begin{aligned}
& \text { Ast }:=-2 / 9 m^{6}-2 / 3 m^{4} n^{2}-2 / 3 m^{2} n^{4}-2 / 9 n^{6}+2 / 3 m^{4}- \\
& 14 / 3 m^{2} n^{2}+2 / 3 n^{4}-2 / 3 m^{2}-2 / 3 n^{2}+2 / 9=0
\end{aligned}
$$

The locus above was found by algebraic and computer tools.

Asteroid - results
 function of two variables

CADGME 2012

Jakub Jareš

Asteroid - results

implicitplot of: $-2 / 9 m^{6}-2 / 3 m^{4} n^{2}-2 / 3 m^{2} n^{4}-2 / 9 n^{6}+2 / 3 m^{4}-$ $14 / 3 m^{2} n^{2}+2 / 3 n^{4}-2 / 3 m^{2}-2 / 3 n^{2}+2 / 9=0$

CADGME 2012

Jakub Jareš

Strophoid

Problem:

Let $A B C$ be a triangle with the given side $A B$ and the vertex C on a circle k centered at A and radius $|A B|$.

Find the locus of the orthocenter M of $A B C$ when C moves on k.

First we construct in GeoGebra the triangle $A B C$ with the point C on the circle k. Using the button LOCUS we construct the locus of the orthocenter M when C moves along k.

Strophoid

introduction

CADGME 2012
Jakub Jareš

Strophoid
 locus equations

Derivation of the locus is as follows:

Suppose that $A=[0,0], B=[a, 0], C=[p, q]$ and $M=[m, n]$.
Then:

$$
\begin{aligned}
M \in h_{A B} \Rightarrow H_{1}: \quad m-p=0, \\
M \in h_{B C} \Rightarrow H_{2}: \quad(p-a) m+q n=0, \\
C \in k \Rightarrow H_{3}: p^{2}+q^{2}-a^{2}=0 .
\end{aligned}
$$

Strophoid
 locus equations

Elimination of p, q in the system $H_{1}=0, H_{2}=0, H_{3}=0$ gives in the program Epsilon
with(epsilon);
$\mathrm{U}:=\left[m-p,(p-a) * m+q * n, p^{2}+q^{2}-a^{2}\right]:$
$\mathrm{X}:=[m, n, p, q]:$
CharSet(U, X);
the equation

$$
a n^{2}-m^{2} a+m^{3}+m n^{2}=0
$$

which is the equation of a cubic curve called strophoid.

Strophoid

Solve this equation

$$
\text { solve }\left(\mathrm{a} * \mathrm{n}^{2}-\mathrm{m}^{2} * \mathrm{a}+\mathrm{m}^{3}+\mathrm{m} * \mathrm{n}^{2}=0, \mathrm{n}^{2}\right)
$$

and get

$$
n^{2}(a+m)-m^{2}(a-m)=0
$$

The equation can be expressed as a function of two variables m, n

$$
n= \pm m \cdot \sqrt{\frac{a-m}{a+m}}
$$

Strophoid - results

function of two variables

Strophoid - results

 implicitplot $a * n^{2}-m^{2} * a+m^{3}+m * n^{2}=0$

Strophoid space

We try to do this problem in space:

Problem:

Let $A B C$ be a triangle with the given side $A B$ and the vertex C on a ball κ centered at A and radius $|A B|$.

Find the locus of the orthocenter M of $A B C$ when C moves on κ.

Strophoid space introduction

CADGME
2012
Jakub Jareš

Move: Drag or select objects (Esc)

Strophoid space

 introduction

Strophoid space

Place a coordinate system so that $A=[0,0,0], B=[a, 0,0]$, $C=[p, q, r], M=[m, n, o]$ and let κ be a ball in the center A with the equation $\kappa: x^{2}+y^{2}+z^{2}-a^{2}=0$.

We translate the geometry situation into the set of polynomial equations.

$$
\begin{aligned}
& M \in \rho_{1} \Rightarrow H_{1}: \quad m-p=0 \\
& M \in \rho_{2} \Rightarrow H_{2}: \\
& M \in q n+r o-p a=0 \\
& M \in A B C \Rightarrow H_{3}:-a r n+a q o=0 \\
& C \in k \Rightarrow H_{4}: p^{2}+q^{2}+r^{2}-a^{2}=0 .
\end{aligned}
$$

Strophoid space

We get the system of four equations $H_{1}=0, H_{2}=0, H_{3}=0$ and $H_{4}=0$ in variables p, q, r, m, n, o, a.

To find the locus of $M=[m, n, o]$ we eliminate variables p, q, r in the ideal $I=\left(H_{1}, H_{2}, H_{3}, H_{4}\right)$ to get a relation in m, n, o which depends on a. We enter in CoCoA

$$
\begin{aligned}
& \text { UseR }::=\mathrm{Q}[\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{~m}, \mathrm{n}, \mathrm{o}, \mathrm{a}] ; \\
& \mathrm{I}:=\operatorname{Ideal(m-p,pm}+\mathrm{qn}+\mathrm{ro}-\mathrm{pa},-\mathrm{arn}+\mathrm{aqo}, \\
& \left.\mathrm{p}^{2}+\mathrm{q}^{2}+\mathrm{r}^{2}-\mathrm{a}^{2}\right) ; \\
& \operatorname{Elim}(\mathrm{p} . . \mathrm{r}, \mathrm{I})
\end{aligned}
$$

Strophoid space

CADGME
and get
Ideal $\left(m^{4} a+m^{2} n^{2} a+m^{2} o^{2} a-2 m^{3} a^{2}+m^{2} a^{3}-n^{2} a^{3}-o^{2} a^{3}\right)$
Factor this equation in Maple and get
$a(-m+a)\left(a m^{2}-a n^{2}-a o^{2}-m^{3}-m n^{2}-m o^{2}\right)=0$.
Equation

$$
a m^{2}-a n^{2}-a o^{2}-m^{3}-m n^{2}-m o^{2}=0
$$

is equation of our searching locus.

Strophoid space - results

 implicitplot $a m^{2}-a n^{2}-a o^{2}-m^{3}-m n^{2}-m o^{2}=0$CADGME 2012

Jakub Jareš

Strophoid space - results

 implicitplot $a m^{2}-a n^{2}-a o^{2}-m^{3}-m n^{2}-m o^{2}=0$ with sphere

Future vision

New technologies shows new possibilities for exploring LOCI, not only in plane, but also in space...

The end

Thank you

