CADGME 2012

Exploring loci of points by DGS and CAS CADGME 2012

Jakub Jareš

University of South Bohemia, Czech Republic

22. - 24.06.2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

	About me
CADGME 2012 Jakub Jareš	Jakub Jareš
	 1st year PhD. student Theory of education in mathematics, University of South Bohemia

Interested in searching for Loci of points with computer

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

CADGME 2012

What are loci of points?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

CADGME 2012

What are loci of points?

 Loci of points belong to difficult topics of school curricula at all levels of mathematics education

CADGME 2012

What are loci of points?

- Loci of points belong to difficult topics of school curricula at all levels of mathematics education
- There are many interesting loci of points which students can recognize (students can also do experiments)

▲日▼▲□▼▲□▼▲□▼ □ ののの

CADGME 2012

What are loci of points?

- Loci of points belong to difficult topics of school curricula at all levels of mathematics education
- There are many interesting loci of points which students can recognize (students can also do experiments)

▲日▼▲□▼▲□▼▲□▼ □ ののの

What technologies can we use?

CADGME 2012

What are loci of points?

- Loci of points belong to difficult topics of school curricula at all levels of mathematics education
- There are many interesting loci of points which students can recognize (students can also do experiments)

What technologies can we use?

 Suitable to use DGS (dynamic geometry system) and CAS (computer algebra system)

CADGME 2012

> The development of computers and mathematical software allows such activities that previously were not possible:

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

CADGME 2012

> The development of computers and mathematical software allows such activities that previously were not possible:

 Dynamic pictures (construction) and possibility to move with objects (points) - we can create the hypothesis using DGS (using trace of point)

▲日▼▲□▼▲□▼▲□▼ □ ののの

CADGME 2012

> The development of computers and mathematical software allows such activities that previously were not possible:

 Dynamic pictures (construction) and possibility to move with objects (points) - we can create the hypothesis using DGS (using trace of point)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Verification of hypothesis in DGS (button locus)

CADGME 2012

> The development of computers and mathematical software allows such activities that previously were not possible:

- Dynamic pictures (construction) and possibility to move with objects (points) - we can create the hypothesis using DGS (using trace of point)
- Verification of hypothesis in DGS (button locus)
- But!!! DGS are based on numerical calculations, the result can not be considered absolutely true

CADGME 2012

 There exist many DGS systems with some minor differences which behave in a similar way when obtaining loci

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CADGME 2012

 There exist many DGS systems with some minor differences which behave in a similar way when obtaining loci

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In general, two objects must be selected:

CADGME 2012

- There exist many DGS systems with some minor differences which behave in a similar way when obtaining loci
- In general, two objects must be selected:
 - driving point or mover (as name says it is bound to a path)

CADGME 2012

- There exist many DGS systems with some minor differences which behave in a similar way when obtaining loci
- In general, two objects must be selected:
 - driving point or mover (as name says it is bound to a path)
 - locus point (must depend somehow on the first one)

CADGME 2012

- There exist many DGS systems with some minor differences which behave in a similar way when obtaining loci
- In general, two objects must be selected:
 - driving point or mover (as name says it is bound to a path)
 - locus point (must depend somehow on the first one)
- Since the element dependency is preserved the driving point traverses its path, the locus is a trajectory of the locus point.

To describe and demonstrate the problem by DGS and

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

To describe and demonstrate the problem by DGS and

- move with the **driving point**
- watch, what locus is generated with locus point
- discuss with students about, what the locus can be

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

CADGME

To verify the locus, we can use a button LOCUS and we obtain the curve, but only in plane / 2D

CADGME 2012

To identify locus we need locus equations or its characteristic property

Translation of a geometry problem into equations or inequations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CADGME 2012

- To identify locus we need locus equations or its characteristic property
 - Translation of a geometry problem into equations or inequations
 - The use of CAS to obtain locus equation from the system of equations or inequations

▲日▼▲□▼▲□▼▲□▼ □ ののの

CADGME 2012

- To identify locus we need locus equations or its characteristic property
 - Translation of a geometry problem into equations or inequations
 - The use of CAS to obtain locus equation from the system of equations or inequations

▲日▼▲□▼▲□▼▲□▼ □ ののの

Elimination of variables is necessary

CADGME 2012

- To identify locus we need locus equations or its characteristic property
 - Translation of a geometry problem into equations or inequations
 - The use of CAS to obtain locus equation from the system of equations or inequations

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Elimination of variables is necessary
 - Gröbner basis of ideals

CADGME 2012

- To identify locus we need locus equations or its characteristic property
 - Translation of a geometry problem into equations or inequations
 - The use of CAS to obtain locus equation from the system of equations or inequations

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Elimination of variables is necessary
 - Gröbner basis of ideals
 - Characteristic sets

Elimination

CADGME 2012 Jakub Jareš

Elimination of variables is a basic procedure in exploring loci.

- Realize that we eliminate variables in the system of non-linear algebraic equations.
- By elimination we used the program CoCoA which is freely distributed at http://cocoa.dima.unige.it. It is based on Gröbner basis of ideals.
- Another elimination program is Geother which is freely distributed at http://www-calfor.lip6.fr/~wang/epsilon/. It is based on Wu-Ritt characteristic sets.

CADGME 2012 Jakub Jareš

Problem:

Let k be a circle centered at O and two perpendicular lines x, y through point O. Denote A, B the feet of perpendicular lines dropped to x, y from an arbitrary $C \in k$. Let M be an intersection of a segment AB and perpendicular line from C to AB.

Find the locus M when C moves along circle k.

First we construct with GeoGebra this problem. Using the button LOCUS we construct the locus of M when C moves along k.

Asteroid introduction

Asteroid introduction

CADGME 2012 Jakub Jareš

"It looks like curve of asteroid" We have no equation Is it true ?

What is the solution?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Asteroid introduction

CADGME 2012 Jakub Jare

Cooperation between

DGS and CAS

is needed!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Asteroid locus equations

CADGME 2012

Place a coordinate system so that A = [p, 0], B = [0, q], C = [p, q], M = [m, n] and let k be a circle with the equation $k : x^2 - y^2 - a^2 = 0.$

We translate the geometry situation into the set of polynomial equations.

$$egin{array}{lll} M\in AB\Rightarrow & H_1: & qm+pn-pq=0, \ M\in a\Rightarrow & H_2: & pm-qn-p^2+q^2=0. \end{array}$$

Further

$$C \in k \Rightarrow H_3: p^2 - q^2 - a^2 = 0$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CADGME 2012

We get the system of three equations $H_1 = 0$, $H_2 = 0$, $H_3 = 0$ in variables p, q, m, n, a.

To find the locus of M = [m, n] we eliminate variables p, q in the ideal $I = (H_1, H_2, H_3)$ to get a relation in m, n which depends on a. We enter in CoCoA

$$\begin{split} & \texttt{UseR} ::= \texttt{Q}[p,q,\texttt{m},\texttt{n},\texttt{a}]; \\ & \texttt{I} := \texttt{Ideal}(q\texttt{m} + \texttt{pn} - \texttt{pq},\texttt{pm} - q\texttt{n} - \texttt{p}^2 + \texttt{q}^2,\texttt{p}^2 + \texttt{q}^2 - \texttt{a}^2); \\ & \texttt{Elim}(\texttt{p..q},\texttt{I}); \end{split}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Asteroid locus equations

CADGME 2012

and get

$$\begin{split} & \text{Ideal}\big(-2/9\text{m}^6\text{a}^2-2/3\text{m}^4\text{n}^2\text{a}^2-2/3\text{m}^2\text{n}^4\text{a}^2-2/9\text{n}^6\text{a}^2+\\ &+2/3\text{m}^4\text{a}^4-14/3\text{m}^2\text{n}^2\text{a}^4+2/3\text{n}^4\text{a}^4-2/3\text{m}^2\text{a}^6-\\ &-2/3\text{n}^2\text{a}^6+2/9\text{a}^8\big). \end{split}$$

Solve equation

$$\begin{array}{l} -2/9m^6a^2-2/3m^4n^2a^2-2/3m^2n^4a^2-2/9n^6a^2+2/3m^4a^4-\\ 14/3m^2n^2a^4+2/3n^4a^4-2/3m^2a^6-2/3n^2a^6+2/9a^8=0 \end{array}$$

get

$$n^2 - (a^{2/3} - m^{2/3})^3 = 0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Asteroid locus equations

CADGME 2012

The equation can be expressed as a function of two variables m, n

$$n = \pm \sqrt{(a^{2/3} - m^{2/3})^3}$$

Or we can display the function as an implicit plot, when a = 1

$$Ast := -2/9m^6 - 2/3m^4n^2 - 2/3m^2n^4 - 2/9n^6 + 2/3m^4 - 14/3m^2n^2 + 2/3n^4 - 2/3m^2 - 2/3n^2 + 2/9 = 0$$

The locus above was found by algebraic and computer tools.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Asteroid - results function of two variables

Asteroid - results implicit plot of: $-2/9m^6 - 2/3m^4n^2 - 2/3m^2n^4 - 2/9n^6 + 2/3m^4 - 14/3m^2n^2 + 2/3n^4 - 2/3m^2 - 2/3n^2 + 2/9 = 0$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Strophoid introduction

CADGME 2012 Jakub Jareš

Problem:

Let ABC be a triangle with the given side AB and the vertex C on a circle k centered at A and radius |AB|.

Find the locus of the orthocenter M of ABC when C moves on k.

First we construct in GeoGebra the triangle ABC with the point C on the circle k. Using the button LOCUS we construct the locus of the orthocenter M when C moves along k.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Strophoid introduction

Strophoid locus equations

CADGME 2012

Derivation of the locus is as follows:

Suppose that A = [0, 0], B = [a, 0], C = [p, q] and M = [m, n]. Then:

$$\begin{split} & M \in h_{AB} \Rightarrow \quad H_1 : \quad m-p = 0, \\ & M \in h_{BC} \Rightarrow \quad H_2 : \quad (p-a)m + qn = 0, \\ & C \in k \Rightarrow \quad H_3 : \quad p^2 + q^2 - a^2 = 0. \end{split}$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Strophoid locus equations

CADGME 2012

Elimination of p, q in the system $H_1 = 0, H_2 = 0, H_3 = 0$ gives in the program Epsilon

with(epsilon);

$$U := [m - p, (p - a) * m + q * n, p^2 + q^2 - a^2]$$
:
 $X := [m, n, p, q]$:
CharSet(U, X);

the equation

$$an^2 - m^2a + m^3 + mn^2 = 0$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

which is the equation of a cubic curve called strophoid.

Strophoid locus equations

CADGME 2012

Solve this equation

$$solve(a * n^2 - m^2 * a + m^3 + m * n^2 = 0, n^2);$$

and get

$$n^2(a+m)-m^2(a-m)=0$$

The equation can be expressed as a function of two variables m, n

$$n = \pm m \cdot \sqrt{\frac{a - m}{a + m}}$$

- ◆ □ ▶ → 個 ▶ → 目 ▶ → 目 → のへで

Strophoid - results function of two variables

Strophoid - results implicit $a * n^2 - m^2 * a + m^3 + m * n^2 = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Strophoid space

CADGME 2012

We try to do this problem in space:

Problem:

Let ABC be a triangle with the given side AB and the vertex C on a ball κ centered at A and radius |AB|.

Find the locus of the orthocenter *M* of *ABC* when *C* moves on κ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Strophoid space

Strophoid space

Strophoid space locus equations

CADGME 2012

Jakub Jareš

Place a coordinate system so that A = [0, 0, 0], B = [a, 0, 0], C = [p, q, r], M = [m, n, o] and let κ be a ball in the center A with the equation $\kappa : x^2 + y^2 + z^2 - a^2 = 0$.

We translate the geometry situation into the set of polynomial equations.

$$\begin{split} & M \in \rho_1 \Rightarrow \quad H_1 : \quad m - p = 0, \\ & M \in \rho_2 \Rightarrow \quad H_2 : \quad pm + qn + ro - pa = 0, \\ & M \in ABC \Rightarrow \quad H_3 : \quad -arn + aqo = 0, \\ & C \in k \Rightarrow \quad H_4 : \quad p^2 + q^2 + r^2 - a^2 = 0. \end{split}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Strophoid space locus equations

CADGME 2012

We get the system of four equations $H_1 = 0$, $H_2 = 0$, $H_3 = 0$ and $H_4 = 0$ in variables p, q, r, m, n, o, a.

To find the locus of M = [m, n, o] we eliminate variables p, q, r in the ideal $I = (H_1, H_2, H_3, H_4)$ to get a relation in m, n, o which depends on a. We enter in CoCoA

▲日▼▲□▼▲□▼▲□▼ □ ののの

$$\begin{split} & \texttt{UseR} ::= \texttt{Q}[p,q,\texttt{r},\texttt{m},\texttt{n},\texttt{o},\texttt{a}]; \\ & \texttt{I} := \texttt{Ideal}(\texttt{m}-\texttt{p},\texttt{pm}+\texttt{qn}+\texttt{ro}-\texttt{pa},-\texttt{arn}+\texttt{aqo}, \\ & \texttt{p}^2 + \texttt{q}^2 + \texttt{r}^2 - \texttt{a}^2); \\ & \texttt{Elim}(\texttt{p..r},\texttt{I}); \end{split}$$

Strophoid space locus equations

CADGME 2012 Jakub Jareš

and get

$$\label{eq:constraint} \begin{split} \mbox{Ideal}(m^4a+m^2n^2a+m^2o^2a-2m^3a^2+m^2a^3-n^2a^3-o^2a^3) \\ \mbox{Factor this equation in Maple and get} \end{split}$$

 $a(-m+a)(am^2 - an^2 - ao^2 - m^3 - mn^2 - mo^2) = 0.$ Equation

$$am^2 - an^2 - ao^2 - m^3 - mn^2 - mo^2 = 0$$

is equation of our searching locus.

Strophoid space - results implicitly $am^2 - an^2 - ao^2 - m^3 - mn^2 - mo^2 = 0$

Strophoid space - results implicitlet $am^2 - an^2 - ao^2 - m^3 - mn^2 - mo^2 = 0$ with sphere CADGME

CADGME 2012

Future vision

New technologies shows new possibilities for exploring **LOCI**, not only in plane, but also in space...

▲日▼▲□▼▲□▼▲□▼ □ ののの

