> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Announcement for an upcoming Generation of TP-based educational math assistants Comments on *eduTPS*: "Theorem-Prover based Systems for Education"

Walther Neuper

Institute for Softwaretechnology Graz University of Technology

Working group *eduTPS* at CADGME'12 June 22 - 24, 2012 Novi Sad, Serbia

> Walther Neuper

Survey Examples

Characteristic Foundations Technology

Conclusion

This is **NOT** the topic

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Generation Walther Neuper

Theorem-Prover

(TP)

Survey on Mathematical Software Three Examples for TP-based Math Assistants

2 Characteristics for a "New Generation" Conceptual Foundations: Integration of Logics Technological Features: Transparency, Flexibility Expected Impact: Education, Research, Development

3 Conclusion — Invitation

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

	In science of	SW-tools for	standardized as
ics	mathematics	geometry	CAD/CAM DGS
	applied sciences	numerical computation	Spreadsheets (SSH)
	math. education	symbolic computation	
		Computer Algebra Macsyma 1968	CAS
		Theorem Proving Automath 1967	TPS

Theorem-
Prover
(TP)
Generation

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Survey on Math. Software

	In science of	SW-tools for	standardized as
tics	mathematics	geometry	CAD/CAM DGS
	applied sciences	numerical computation	Spreadsheets (SSH)
	math. education	symbolic computation	
		Computer Algebra Macsyma 1968	CAS
		Theorem Proving Automath 1967	TPS

. .

In science of ...

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Survey on Math. Software

CAD/CAM geometry DGS mathematics numerical Spreadsheets computation (SSH) applied sciences symbolic computation math. education **Computer Algebra** CAS Macsyma 1968 Theorem Proving TPS Automath 1967

SW-tools for ...

... standardized as ..

> Walther Neuper

In science of ...

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Survey on Math. Software

CAD/CAM geometry DGS mathematics numerical Spreadsheets computation (SSH) applied sciences symbolic computation math. education Computer Algebra CAS Macsyma 1968 Theorem Proving (TP) TPS Automath 1967

SW-tools for ...

... standardized as ..

> Walther Neuper

In science of ...

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Survey on Math. Software

CAD/CAM geometry DGS mathematics numerical Spreadsheets computation (SSH) applied sciences symbolic computation math. education Computer Algebra CAS Macsyma 1968 Theorem Proving (TP) TPS Automath 1967

SW-tools for ...

... standardized as ..

Theorem-
Prover
(TP)
Generation

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Survey on Math. Software

... standardized as .. In science of ... SW-tools for ... CAD/CAM geometry DGS mathematics numerical Spreadsheets computation (SSH) applied sciences symbolic computation math. education **Computer Algebra** CAS Macsyma 1968 Theorem Proving TPS Automath 1967

Theorem-
Prover
(TP)
Generation

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Survey on Math. Software

	In science of	SW-tools for	standardized as
ics	mathematics	geometry	CAD/CAM DGS
	applied sciences	numerical computation	Spreadsheets (SSH)
	math. education	symbolic computation	
		Computer Algebra Macsyma 1968	CAS
		Theorem Proving Automath 1967	TPS

. .

Theorem-
Prover
(TP)
Generation

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Survey on Math. Software

	In science of	SW-tools for	standardized as
ics	mathematics	geometry	CAD/CAM DGS
	applied sciences	numerical computation	Spreadsheets (SSH)
	math. education	symbolic computation	
		Computer Algebra Macsyma 1968	CAS
		Theorem Proving Automath 1967	TPS

. .

Theorem-
Prover
(TP)
Generation

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

	In science of	SW-tools for	standardized as
tics	mathematics	geometry	CAD/CAM DGS
	applied sciences	numerical computation	Spreadsheets (SSH)
	math. education	symbolic computation	
		Computer Algebra Macsyma 1968	CAS
		Theorem Proving Automath 1967	TPS TP-based Systems

Theorem-
Prover
(TP)
Generation

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

In science of	SW-tools for	standardized as
mathematics	geometry	CAD/CAM DGS
applied sciences	numerical computation	Spreadsheets (SSH)
math. education	symbolic computation	
	Computer Algebra Macsyma 1968	CAS
	Theorem Proving Automath 1967	TPS

Theorem-
Prover
(TP)
Generation

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

	In science of	SW-tools for	standardized as
	mathematics	geometry	CAD/CAM DGS
	applied sciences	numerical computation	Spreadsheets (SSH)
	math. education	symbolic computation	
		Computer Algebra Macsyma 1968	CAS
		Theorem Proving Automath 1967	TPS

Theorem-
Prover
(TP)
Generation

Survey

Technology Impact

Survey on Math. Software

	In science of	SW-tools for	standardized as
	mathematics applied sciences	geometry	CAD/CAM DGS
		numerical computation	Spreadsheets (SSH)
100.0	math advection	symbolic computation	
	math. education	Computer Algebra Macsyma 1968	CAS
		Theorem Proving Automath 1967	TPS !?!

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generation Walther Neuper

Theorem-Prover

(TP)

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Survey on Mathematical Software Three Examples for TP-based Math Assistants

Characteristics for a "New Generation" Conceptual Foundations: Integration of Logics Technological Features: Transparency, Flexibility Expected Impact: Education, Research, Development

Walther Neuper

Examples

GCLC, Univ. of Belgrade

GeoGebra's "academic relative", see prove {identical O_1 O_2} at bottom left.

Walther Neuper

Survey

Examples

Characteristics

Foundations Technology

Conclusion

Socos, Abo Akademi Turku

For software "correct by construction" in education.

Walther Neuper

Survey

Examples

Characteristics

Foundations Technology

Conclusio

Examples Theories Problems Methods NEXT AUTO

For step-wise problem solving in applied mathematics.

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generation Walther Neuper

Theorem-Prover

(TP)

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Survey on Mathematical Software Three Examples for TP-based Math Assistants

2 Characteristics for a "New Generation" Conceptual Foundations: Integration of Logics Technological Features: Transparency, Flexibility Expected Impact: Education, Research, Development

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Conceptual Foundations

Mathematics is the science of reasoning ...

- each operation can be proved
- ... to *"prove"* is the essence which distinguishes math.

TP ((Computer) Theorem *Proving*) realises this essence.

Consequences for TP-based software:

- 1 TP provides a logical framework for CAS, DGS, ...
- 2 TP is integrative (rather than competitive)
- 3 TP covers an essential range of mathematics including STEM¹.

¹STEM: "Science, Technology, Engineering_Eand Mathematies" 📱 🕤 ແຕ

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Conceptual Foundations

Mathematics is the science of reasoning ...

- each operation can be proved
- ... to *"prove"* is the essence which distinguishes math.

TP ((Computer) Theorem *Proving*) realises this essence.

Consequences for TP-based software:

- 1 TP provides a logical framework for CAS, DGS, ...
- 2 TP is integrative (rather than competitive)
- 3 TP covers an essential range of mathematics including STEM¹.

¹STEM: "Science, Technology, Engineering_Eand Mathematies" 📱 🕤 ແຕ

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Conceptual Foundations

Mathematics is the science of reasoning ...

- each operation can be proved
- ... to *"prove"* is the essence which distinguishes math.

TP ((Computer) Theorem *Proving*) realises this essence.

Consequences for TP-based software:

- 1 TP provides a logical framework for CAS, DGS, ...
- 2 TP is integrative (rather than competitive)
- 3 TP covers an essential range of mathematics including STEM¹.

¹STEM: "Science, Technology, Engineering and Mathematics"

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

in PISA's competence model for mathematics:

- **1 Communication**: "... perceiving the existence of some challenge and recognizing a problem situation ..."
- 2 Mathematising: "... transforming a problem defined in the real world to a strictly mathematical form ... "
- **8 Representation**: "... selecting, interpreting and using a variety of representations to capture a situation ..."
- A Reasoning and argument: "... logically rooted thought processes that check a justification that is given, ..."
- **6** Devising **strategies** for solving problems: "... critical control processes that solve problems ..."
- 6 Using **symbolic**, formal and technical language and **operations**: "... within a mathematical context ... "
- Using mathematical tools: "... being able to make use of various tools that may assist math activity ... "

ヘロア 人間 アメヨア ヘヨア

= nar

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

in PISA's competence model for mathematics:

- **1 Communication**: "... perceiving the existence of some challenge and recognizing a problem situation ..."
- 2 Mathematising: "... transforming a problem defined in the real world to a strictly mathematical form ... "
- **8 Representation**: "... selecting, interpreting and using a variety of representations to capture a situation ..."
- A Reasoning and argument: "... logically rooted thought processes that check a justification that is given, ..."
- **6** Devising **strategies** for solving problems: "... critical control processes that solve problems ..."
- 6 Using **symbolic**, formal and technical language and **operations**: "... within a mathematical context ... "
- **O** Using mathematical **tools**: "... being able to make use of various tools that may assist math activity ... "

ヘロア 人間 アメヨア ヘヨア

= nar

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

- ... respectively covered by TP-based systems:
 - 1 Communication: not specifically addressed by TP
 - 2 Mathematising: formalisation is a prerequisite for TPS support can be prepared and hidden from student
 - Representation: various specifications can be offered
 and tried out using next-step-guidance
 - A Reasoning: every operation in TPS has a mechanized justification can be hidden and handled on request
 - Strategies: various solving algorithms can be offered — and tried out using next-step-guidance

symbolic representation — next-step-guidance helps.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

7 Tools: TPS address the other capabilities above

Doesn't all that overstrain students ? Not necessarily !

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

- ... respectively covered by TP-based systems:
 - 1 Communication: not specifically addressed by TP
 - 2 Mathematising: formalisation is a prerequisite for TPS support can be prepared and hidden from student
 - Representation: various specifications can be offered
 and tried out using next-step-guidance
 - A Reasoning: every operation in TPS has a mechanized justification can be hidden and handled on request
 - Strategies: various solving algorithms can be offered — and tried out using next-step-guidance

symbolic representation — next-step-guidance helps.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

7 Tools: TPS address the other capabilities above

Doesn't all that overstrain students ? Not necessarily !

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

- ... respectively covered by TP-based systems:
 - 1 Communication: not *specifically* addressed by TP
 - 2 Mathematising: formalisation is a prerequisite for TPS support can be prepared and hidden from student
 - Representation: various specifications can be offered
 and tried out using next-step-guidance
 - A Reasoning: every operation in TPS has a mechanized justification can be hidden and handled on request
 - Strategies: various solving algorithms can be offered — and tried out using next-step-guidance

Tools: TPS address the other capabilities above

Doesn't all that overstrain students ? Not necessarily !

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

... respectively covered by TP-based systems:

- 1 Communication: not *specifically* addressed by TP
- 2 Mathematising: formalisation is a prerequisite for TPS support can be prepared and hidden from student
- Representation: various specifications can be offered
 and tried out using next-step-guidance
- A Reasoning: every operation in TPS has a mechanized justification can be hidden and handled on request
- Strategies: various solving algorithms can be offered
 and tried out using next-step-guidance

7 Tools: TPS address the other capabilities above

Doesn't all that overstrain students ? Not necessarily !

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

... respectively covered by TP-based systems:

- 1 Communication: not *specifically* addressed by TP
- 2 Mathematising: formalisation is a prerequisite for TPS support can be prepared and hidden from student
- Representation: various specifications can be offered
 and tried out using next-step-guidance
- A Reasoning: every operation in TPS has a mechanized justification can be hidden and handled on request
- 6 Strategies: various solving algorithms can be offered — and tried out using next-step-guidance

7 Tools: TPS address the other capabilities above

Doesn't all that overstrain students ? Not necessarily !

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

- ... respectively covered by TP-based systems:
 - 1 Communication: not specifically addressed by TP
 - 2 Mathematising: formalisation is a prerequisite for TPS support — can be prepared and hidden from student
 - Representation: various specifications can be offered
 and tried out using next-step-guidance
 - A Reasoning: every operation in TPS has a mechanized justification can be hidden and handled on request
 - Strategies: various solving algorithms can be offered — and tried out using next-step-guidance
- Symbolic operations: all TPS operations have a symbolic representation next-step-guidance helps.
- Tools: TPS address the other capabilities above

Doesn't all that overstrain students ? Not necessarily !

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

- ... respectively covered by TP-based systems:
 - 1 Communication: not specifically addressed by TP
 - 2 Mathematising: formalisation is a prerequisite for TPS support — can be prepared and hidden from student
 - Representation: various specifications can be offered
 and tried out using next-step-guidance
 - A Reasoning: every operation in TPS has a mechanized justification can be hidden and handled on request
 - Strategies: various solving algorithms can be offered
 and tried out using next-step-guidance
 - 6 Symbolic operations: all TPS operations have a symbolic representation — next-step-guidance help
 - Tools: TPS address the other capabilities above

Doesn't all that overstrain students ? Not necessarily !

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

- ... respectively covered by TP-based systems:
 - 1 Communication: not specifically addressed by TP
 - 2 Mathematising: formalisation is a prerequisite for TPS support — can be prepared and hidden from student
 - Representation: various specifications can be offered
 and tried out using next-step-guidance
 - A Reasoning: every operation in TPS has a mechanized justification — can be hidden and handled on request
 - Strategies: various solving algorithms can be offered
 and tried out using next-step-guidance
 - 6 Symbolic operations: all TPS operations have a symbolic representation next-step-guidance helps.
 - 7 Tools: TPS address the other capabilities above

Doesn't all that overstrain students ? Not necessarily !

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities ...

- ... respectively covered by TP-based systems:
 - 1 Communication: not specifically addressed by TP
 - 2 Mathematising: formalisation is a prerequisite for TPS support — can be prepared and hidden from student
 - Representation: various specifications can be offered
 and tried out using next-step-guidance
 - A Reasoning: every operation in TPS has a mechanized justification — can be hidden and handled on request
 - Strategies: various solving algorithms can be offered
 and tried out using next-step-guidance
 - 6 Symbolic operations: all TPS operations have a symbolic representation next-step-guidance helps.

Tools: TPS address the other capabilities above

Doesn't all that overstrain students ? Not necessarily !

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

- ... respectively covered by TP-based systems:
 - 1 Communication: not specifically addressed by TP
 - 2 Mathematising: formalisation is a prerequisite for TPS support — can be prepared and hidden from student
 - Representation: various specifications can be offered
 and tried out using next-step-guidance
 - A Reasoning: every operation in TPS has a mechanized justification — can be hidden and handled on request
 - Strategies: various solving algorithms can be offered
 and tried out using next-step-guidance
 - 6 Symbolic operations: all TPS operations have a symbolic representation next-step-guidance helps.

Tools: TPS address the other capabilities above

Doesn't all that overstrain students ? Not necessarily !

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities ...

... respectively covered by TP-based systems:

- 1 Communication: not specifically addressed by TP
- 2 Mathematising: formalisation is a prerequisite for TPS support can be prepared and hidden from student
- Representation: various specifications can be offered
 and tried out using next-step-guidance
- A Reasoning: every operation in TPS has a mechanized justification — can be hidden and handled on request
- Strategies: various solving algorithms can be offered
 and tried out using next-step-guidance
- 6 Symbolic operations: all TPS operations have a symbolic representation next-step-guidance helps.

Tools: TPS address the other capabilities above

Doesn't all that overstrain students ? Not necessarily !
Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities ...

... respectively covered by TP-based systems:

- 1 Communication: not specifically addressed by TP
- 2 Mathematising: formalisation is a prerequisite for TPS support can be prepared and hidden from student
- Representation: various specifications can be offered
 and tried out using next-step-guidance
- A Reasoning: every operation in TPS has a mechanized justification can be hidden and handled on request
- Strategies: various solving algorithms can be offered
 and tried out using next-step-guidance
- 6 Symbolic operations: all TPS operations have a symbolic representation next-step-guidance helps.

Tools: TPS address the other capabilities above

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities ...

... respectively covered by TP-based systems:

- 1 Communication: not specifically addressed by TP
- 2 Mathematising: formalisation is a prerequisite for TPS support can be prepared and hidden from student
- Representation: various specifications can be offered
 and tried out using next-step-guidance
- A Reasoning: every operation in TPS has a mechanized justification — can be hidden and handled on request
- Strategies: various solving algorithms can be offered
 and tried out using next-step-guidance
- 6 Symbolic operations: all TPS operations have a symbolic representation next-step-guidance helps.

Tools: TPS address the other capabilities above

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities

... respectively covered by TP-based systems:

- 1 Communication: not specifically addressed by TP
- 2 Mathematising: formalisation is a prerequisite for TPS support can be prepared and hidden from student
- Representation: various specifications can be offered
 and tried out using next-step-guidance
- A Reasoning: every operation in TPS has a mechanized justification — can be hidden and handled on request
- Strategies: various solving algorithms can be offered
 and tried out using next-step-guidance
- 6 Symbolic operations: all TPS operations have a symbolic representation next-step-guidance helps.

Tools: TPS address the other capabilities above

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

7 foundamental capabilities ...

... respectively covered by TP-based systems:

- 1 Communication: not specifically addressed by TP
- 2 Mathematising: formalisation is a prerequisite for TPS support can be prepared and hidden from student
- Representation: various specifications can be offered
 and tried out using next-step-guidance
- A Reasoning: every operation in TPS has a mechanized justification — can be hidden and handled on request
- Strategies: various solving algorithms can be offered
 and tried out using next-step-guidance
- 6 Symbolic operations: all TPS operations have a symbolic representation next-step-guidance helps.

Tools: TPS address the other capabilities above

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

For example "Mathematising"

The perpendicular midlines of the sides in a triangle meet in one point.

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

For example "Mathematising"

The perpendicular midlines of the sides in a triangle meet in one point.

We know !

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

For example "Mathematising"

The perpendicular midlines of the sides in a triangle meet in one point.

We know !

Really?

prove {identical O_1 O_2} requires
"non-degeneracy conditions"

Without "mathematising" (specifying formally) GCLC cannot prove!

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

For example "Mathematising"

The perpendicular midlines of the sides in a triangle meet in one point.

We know !

Really? prove {identical O_1 O_2} requires "non-degeneracy conditions"

Without "mathematising" (specifying formally) GCLC cannot prove!

> Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

For example "Mathematising"

The perpendicular midlines of the sides in a triangle meet in one point.

We know !

Really?

prove {identical O_1 O_2} requires "non-degeneracy conditions"

Without "mathematising" (specifying formally) GCLC cannot prove!

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Generation Walther Neuper

Theorem-Prover

(TP)

Survey Examples

Characteristics Foundations Technology Impact

Conclusion

Survey on Mathematical Software Three Examples for TP-based Math Assistants

2 Characteristics for a "New Generation" Conceptual Foundations: Integration of Logics Technological Features: Transparency, Flexibility Expected Impact: Education, Research, Development

> Walther Neuper

Survey Examples

Characteristics Foundations Technology

Conclusion

Technological Features

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

These features arise from TP ...

- check user input automatically, flexibly and reliably: Input establishes a *proof situation* (for *automated* proving) with respect to the logical context
- give explanations on request by learners: All underlying mathematics knowledge is **transparen**
 - the "LCF-paradigm" (not a program code!)
- B propose a next step if learners get stuck: "next-step-guidance" due to Lucas-Interpretation.

Thus featuring software support for:

- step-wise solving math problems in STEM
- learning interactively like with a chess-program

> Walther Neuper

Survey Examples

Characteristics Foundations Technology Impact

Conclusion

Technological Features

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

These features arise from TP ...

1 check user input automatically, **flexibly** and reliably:

nput establishes a *proof situation* (for *automated* proving) with respect to the logical context

give explanations on request by learners: All underlying mathematics knowledge is transpar

the "LCF-paradigm" (not a program code!)

propose a next step if learners get stuck: "next-step-guidance" due to Lucas-Interpretation

Thus featuring software support for:

- step-wise solving math problems in STEM
- learning interactively like with a chess-program

> Walther Neuper

Survey Examples

Characteristics Foundations Technology Impact

Conclusion

Technological Features

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

These features arise from TP ...

 check user input automatically, flexibly and reliably: Input establishes a *proof situation* (for *automated* proving) with respect to the logical context

give explanations on request by learners: All underlying mathematics knowledge is transparent due to the "LCF-paradigm" (not a program code!)

B propose a next step if learners get stuck: "next-step-guidance" due to Lucas-Interpretation.

Thus featuring software support for:

- step-wise solving math problems in STEM
- learning interactively like with a chess-program

> Walther Neuper

Survey Examples

Characteristics Foundations Technology Impact

Conclusion

Technological Features

These features arise from TP ...

- check user input automatically, flexibly and reliably: Input establishes a *proof situation* (for *automated* proving) with respect to the logical context
- **2** give explanations on request by learners:
 - All underlying mathematics knowledge is **transparent** due to the "LCF-paradigm" (not a program code!)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

B propose a next step if learners get stuck: "next-step-guidance" due to Lucas-Interpretation.

Thus featuring software support for:

- step-wise solving math problems in STEM
- learning interactively like with a chess-program

> Walther Neuper

Survey Examples

Characteristics Foundations Technology Impact

Conclusion

Technological Features

These features arise from TP ...

 check user input automatically, flexibly and reliably: Input establishes a *proof situation* (for *automated* proving) with respect to the logical context

2 give explanations on request by learners: All underlying mathematics knowledge is transr

All underlying mathematics knowledge is **transparent** due to the "LCF-paradigm" (not a program code!)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

B propose a next step if learners get stuck: "next-step-guidance" due to Lucas-Interpretation.

Thus featuring software support for:

- step-wise solving math problems in STEM
- learning interactively like with a chess-program

> Walther Neuper

Survey Examples

Characteristics Foundations Technology Impact

Conclusion

Technological Features

These features arise from TP ...

 check user input automatically, flexibly and reliably: Input establishes a *proof situation* (for *automated* proving) with respect to the logical context

2 give explanations on request by learners:

All underlying mathematics knowledge is **transparent** due to the "LCF-paradigm" (not a program code!)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

3 propose a next step if learners get stuck:

"next-step-guidance" due to Lucas-Interpretation.

Thus featuring software support for:

- step-wise solving math problems in STEM
- learning interactively like with a chess-program

> Walther Neuper

Survey Examples

Characteristics Foundations Technology Impact

Conclusion

Technological Features

These features arise from TP ...

 check user input automatically, flexibly and reliably: Input establishes a *proof situation* (for *automated* proving) with respect to the logical context

2 give explanations on request by learners: All underlying mathematics knowledge is transparent due to

the "LCF-paradigm" (not a program code!)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

propose a next step if learners get stuck:
 "next-step-guidance" due to Lucas-Interpretation.

Thus featuring software support for:

- step-wise solving math problems in STEM
- learning interactively like with a chess-program

> Walther Neuper

Survey Examples

Characteristics Foundations Technology Impact

Conclusion

Technological Features

These features arise from TP ...

 check user input automatically, flexibly and reliably: Input establishes a *proof situation* (for *automated* proving) with respect to the logical context

2 give explanations on request by learners: All underlying mathematics knowledge is trans

All underlying mathematics knowledge is **transparent** due to the "LCF-paradigm" (not a program code!)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

oppose a next step if learners get stuck: "next-step-guidance" due to Lucas-Interpretation.

Thus featuring software support for:

- step-wise solving math problems in STEM
- learning interactively like with a chess-program

> Walther Neuper

Survey Examples

Characteristics Foundations Technology Impact

Conclusion

Technological Features

These features arise from TP ...

 check user input automatically, flexibly and reliably: Input establishes a *proof situation* (for *automated* proving) with respect to the logical context

2 give explanations on request by learners: All underlying mathematics knowledge is transi

All underlying mathematics knowledge is **transparent** due to the "LCF-paradigm" (not a program code!)

oppose a next step if learners get stuck: "next-step-guidance" due to Lucas-Interpretation.

Thus featuring software support for:

- step-wise solving math problems in STEM
- learning interactively like with a chess-program

> Walther Neuper

Survey Examples

Characteristics Foundations Technology Impact

Conclusion

Technological Features

These features arise from TP ...

 check user input automatically, flexibly and reliably: Input establishes a *proof situation* (for *automated* proving) with respect to the logical context

2 give explanations on request by learners: All underlying mathematics knowledge is transp

All underlying mathematics knowledge is **transparent** due to the "LCF-paradigm" (not a program code!)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

oppose a next step if learners get stuck: "next-step-guidance" due to Lucas-Interpretation.

Thus featuring software support for:

. . .

- step-wise solving math problems in STEM
- learning interactively like with a chess-program

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Generation Walther Neuper

Theorem-Prover

(TP)

Survey Examples

Characteristics Foundations Technology Impact

Conclusion

Survey on Mathematical Software Three Examples for TP-based Math Assistants

2 Characteristics for a "New Generation" Conceptual Foundations: Integration of Logics Technological Features: Transparency, Flexibility Expected Impact: Education, Research, Development

> Walther Neuper

Survey Examples

Characteristics

Foundations

Impact

Conclusio

Impact expected ...

- independent learning in all phases of problem solving
- construction of solutions with "next-step-guidance"
- flexible access to knowledge in context of steps
- for **researchers** in science education, cognitive science
 - *logging of steps* for analysis of problem solving behav.
 - summative assessment of step-wise problem solving
 - mechanised analysis of prerequisites in curricula
- for educational planners and administrators
 - curriculum development on mechanised knowledge
 - cross-institutional interfaces are explicit
 - summative assessment of institutions
- for developers of systems, knowledge and dialogs
 - TP components contribute *support by automation* in checking user input, access to knowledge, ...
 - but require adherence to TP standards and logics

> Walther Neuper

Survey Examples

Characteristics

Foundations

- Impact
- .

Impact expected ...

- independent learning in all phases of problem solving
- construction of solutions with "next-step-guidance"
- flexible access to knowledge in context of steps
- for researchers in science education, cognitive science
 - *logging of steps* for analysis of problem solving behav.
 - summative assessment of step-wise problem solving
 - mechanised analysis of prerequisites in curricula
- for educational planners and administrators
 - curriculum development on mechanised knowledge
 - cross-institutional interfaces are explicit
 - summative assessment of institutions
- for developers of systems, knowledge and dialogs
 - TP components contribute *support by automation* in checking user input, access to knowledge, ...
 - but require adherence to TP standards and logics

> Walther Neuper

Survey Examples

Characteristics

Foundations

Impact

Conclusion

Impact expected ...

- independent learning in all phases of problem solving
- construction of solutions with "next-step-guidance"
- flexible access to knowledge in context of steps
- for researchers in science education, cognitive science
 - *logging of steps* for analysis of problem solving behav.
 - summative assessment of step-wise problem solving
 - mechanised analysis of prerequisites in curricula
- for educational planners and administrators
 - curriculum development on mechanised knowledge
 - cross-institutional interfaces are explicit
 - summative assessment of institutions
- for developers of systems, knowledge and dialogs
 - TP components contribute *support by automation* in checking user input, access to knowledge, ...
 - but require adherence to TP standards and logics

> Walther Neuper

Survey Examples

Characteristics

Foundations

Impact

Conclusion

Impact expected ...

- independent learning in all phases of problem solving
- construction of solutions with "next-step-guidance"
- flexible access to knowledge in context of steps
- for researchers in science education, cognitive science
 - *logging of steps* for analysis of problem solving behav.
 - summative assessment of step-wise problem solving
 - mechanised analysis of prerequisites in curricula
- for educational planners and administrators
 - curriculum development on mechanised knowledge
 - cross-institutional interfaces are explicit
 - summative assessment of institutions
- for developers of systems, knowledge and dialogs
 - TP components contribute *support by automation* in checking user input, access to knowledge, ...
 - but require adherence to TP standards and logics

> Walther Neuper

Survey Examples

Characteristics

Foundations

Impact

Conclusion

Impact expected ...

- independent learning in all phases of problem solving
- construction of solutions with "next-step-guidance"
- flexible access to knowledge in context of steps
- for researchers in science education, cognitive science
 - *logging of steps* for analysis of problem solving behav.
 - summative assessment of step-wise problem solving
 - mechanised analysis of prerequisites in curricula
- for educational planners and administrators
 - curriculum development on mechanised knowledge
 - cross-institutional interfaces are explicit
 - summative assessment of institutions
- for developers of systems, knowledge and dialogs
 - TP components contribute *support by automation* in checking user input, access to knowledge, ...
 - but require adherence to TP standards and logics

> Walther Neuper

Survey Examples

Characteristics

Foundations

Impact

Conclusion

Impact expected ...

- independent learning in all phases of problem solving
- construction of solutions with "next-step-guidance"
- flexible access to knowledge in context of steps
- for researchers in science education, cognitive science
 - *logging of steps* for analysis of problem solving behav.
 - summative assessment of step-wise problem solving
 - mechanised analysis of prerequisites in curricula
- for educational planners and administrators
 - curriculum development on mechanised knowledge
 - cross-institutional interfaces are explicit
 - summative assessment of institutions
- for developers of systems, knowledge and dialogs
 - TP components contribute *support by automation* in checking user input, access to knowledge, ...
 - but require adherence to TP standards and logics

> Walther Neuper

Survey Examples

Characteristics

Foundations

Impact

Conclusion

Impact expected ...

- independent learning in all phases of problem solving
- construction of solutions with "next-step-guidance"
- flexible access to knowledge in context of steps
- for researchers in science education, cognitive science
 - *logging of steps* for analysis of problem solving behav.
 - summative assessment of step-wise problem solving
 - mechanised analysis of prerequisites in curricula
- for educational planners and administrators
 - curriculum development on mechanised knowledge
 - cross-institutional interfaces are explicit
 - summative assessment of institutions
- for developers of systems, knowledge and dialogs
 - TP components contribute *support by automation* in checking user input, access to knowledge, ...
 - but require adherence to TP standards and logics

> Walther Neuper

Survey Examples

Characteristics

Foundations

Impact

Conclusion

Impact expected ...

- independent learning in all phases of problem solving
- construction of solutions with "next-step-guidance"
- flexible access to knowledge in context of steps
- for researchers in science education, cognitive science
 - *logging of steps* for analysis of problem solving behav.
 - summative assessment of step-wise problem solving
 - mechanised analysis of prerequisites in curricula
- for educational planners and administrators
 - curriculum development on mechanised knowledge
 - cross-institutional interfaces are explicit
 - summative assessment of institutions
- for developers of systems, knowledge and dialogs
 - TP components contribute *support by automation* in checking user input, access to knowledge, ...
 - but require adherence to TP standards and logics

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generation Walther Neuper

Theorem-Prover

(TP)

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

Survey on Mathematical Software Three Examples for TP-based Math Assistants

Characteristics for a "New Generation" Conceptual Foundations: Integration of Logics Technological Features: Transparency, Flexibility Expected Impact: Education, Research, Development

Conclusion

Renewed Pedagogy for the Future

Survey Examples

Characteristic Foundations Technology

Theorem-Prover

(TP) Generation Walther Neuper

Conclusion

inite variety of human though distilled to science of math abstracted to logics implemented in software TP ▽

Mechanised Foundation of Math

STEM

individualise, meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

・ ロ ト ・ 雪 ト ・ 目 ト ・

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought

stilled to science of ma abstracted to logics implemented in software TP ▽

Mechanised Foundation of Math

Conclusion

Renewed Pedagogy for the Future

STEM

meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

・ロト ・ 同ト ・ ヨト ・ ヨト

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math

abstracted to logics implemented in software TP ▽

Mechanised Foundation of Math

Conclusion

Renewed Pedagogy for the Future

STEM

meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

・ロト ・ 同ト ・ ヨト ・ ヨト

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics

nplemented software TP

Conclusion

Renewed Pedagogy for the Future

STEM

individualise, meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

・ロト ・ 同ト ・ ヨト ・ ヨト

Mechanised Foundation of Math

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics implemented in

TP

Conclusion

Renewed Pedagogy for the Future

STEM

individualise, meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

・ロト ・ 同ト ・ ヨト ・ ヨト

Mechanised Foundation of Math

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics implemented in software TP

Conclusion

Renewed Pedagogy for the Future

STEM

individualise, meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

・ロット (雪) ・ (日) ・ (日)

Mechanised Foundation of Math
Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics implemented in software TP

Conclusion

Renewed Pedagogy for the Future

STEM

meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

・ロト ・ 同ト ・ ヨト ・ ヨト

Mechanised Foundation of Math

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics implemented in software TP

Conclusion

Renewed Pedagogy for the Future

STEM individualise, meaningful math

inquiry-based learning embodyment, social experience Effective Practice in Math Education

・ロト ・ 同ト ・ ヨト ・ ヨト

Mechanised Foundation of Math

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics implemented in software TP

Conclusion

Renewed Pedagogy for the Future

STEM individualise, meaningful math inguiry-based learning

embodyment, social experience Effective Practice in Math Education

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Mechanised Foundation of Math

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics implemented in software TP

Conclusion

Renewed Pedagogy for the Future

STEM individualise, meaningful math inquiry-based learning embodyment, social experience

Effective Practice in Math Education

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Mechanised Foundation of Math

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics implemented in software TP

Conclusion

Renewed Pedagogy for the Future

STEM

individualise, meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Mechanised Foundation of Math

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics implemented in software TP ▽

Mechanised Foundation of Math

Conclusion

Renewed Pedagogy for the Future

STEM

individualise, meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics implemented in software TP ▽

Mechanised Foundation of Math

Conclusion

Renewed Pedagogy for the Future

△ STEM individualise, meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Walther Neuper

Survey Examples

Characteristics

Foundations Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics implemented in software TP ▽

Mechanised Foundation of Math

Conclusion

Renewed Pedagogy for the Future

△ STEM individualise, meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Walther Neuper

Survey Examples

Characteristics

Technology Impact

Conclusion

infinite variety of human thought distilled to science of math abstracted to logics implemented in software TP ▽

Mechanised Foundation of Math

Conclusion

Renewed Pedagogy for the Future

△ STEM individualise, meaningful math inquiry-based learning embodyment, social experience Effective Practice in Math Education

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

> Walther Neuper

Survey Examples

Characteristic

Technology Impact

Conclusion

TP Technology I

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 P. Quaresma and R.-J. Back, editors, Proceedings First Workshop on *TP Components for Educational Software*. Electronic Proceedings in Theoretical Computer Science, Vol. 79, 2012.

Theorem Prover Isabelle's theories, http://isabelle.in.tum.de/dist/library/HOL/index.html

Theorem Prover Coq, *http://coq.inria.fr/*