Interactive Course Material by TP-based Programming A Case Study

Jan Ročnik

Institute for Software Technology

Graz University of Technology

24. June 2012

What is Isabelle?

- Interactive Theorem Prover (Interactice TP)
- Large body of mechanized math knowledge
- Developed in Cambridge, Munich and Paris

What is ISAC?

- ISAbelle for Calculations
- Interactive Course Material
- Learning Coach
- Developed at Austrian Universities

ISAC for Interactive Course Material

- Stepwise solving of engineering problems \rightarrow One Framework for all phases of problem solving
- Explaining underlying knowledge
\rightarrow Transparent Content, Access to Multimedia Content
- Checking steps input by the student
\rightarrow Proof Situation
- Assessing stepwise problem solving
\rightarrow One system for tutoring and assessment

Course Material Creation Iterations

1. Problem Analysis

Variants of problem solving steps
2. Analysis of mechanized knowledge

Existing and missing knowledge
3. Programming in a TP based language (TP-PL)
4. Additional Content

Multimedia explanations for underlying knowledge

Issues to Accomplish Information Collection

- What knowledge is mechanized in Isabelle?

Theorems, Definitions, Numbers,...

- What knowledge is mechanized in $\mathcal{I S A C}$?

Problem specifications, Programs,...

- What additional explanations are required?

Figures, Examples,...

Representation Problems

- Can meaning of symbols be varied? $u[n]$ is a specific function in Signal Processing
- Simplification, tricks and beauty

$$
\begin{aligned}
& X \cdot(a+b)+Y \cdot(c+d)=a X+b X+c Y+d Y \\
& \frac{1}{j \omega} \cdot\left(e^{-j \omega}-e^{j 3 \omega}\right)=\frac{1}{j \omega} \cdot e^{-j 2 \omega} \cdot\left(e^{j \omega}-e^{-j \omega}\right)= \\
& =\frac{1}{\omega} e^{-j 2 \omega} \cdot \frac{1}{j}\left(e^{j \omega}-e^{-j \omega}\right)=\frac{1}{\omega} e^{-j 2 \omega} \cdot 2 \sin (\omega)
\end{aligned}
$$

Demonstration

- Backend
- Equation solving
- Notation problems, Working with Rulesets
- Framework expansion
- My Work

Conclusion

- Proof of concept for TP-PL succesfull
- Usability of TP-PL not sufficient
- Requirements for improved usability clarified
- Unacceptable to spend 200h on 1 program
- ISAC pointed at my own error

Contact

Isabelle
The $\mathcal{I S A C}$-Project
Project leader
Jan Rocnik
isabelle.in.tum.de
www.ist.tugraz.at/isac
wneuper@ist.tugraz.at
jan.rocnik@student.tugraz.at

