Teaching Geometry using a Computer

Elvira Ripco Šipoš

Bolyai Grammar School Senta

□ Introduction
☐ Matematical creativity and talented students
□Geometrija 1
□Geometrija 2
□Geometrija 3
□Apollonius' problems
☐ Is there geometry after Euclid?

Steps of spirality

Teaching method

Experiments on computer Experience Conjecture Formulation Deductive proof

Matematical creativity and talented students

The pyramid of talented students in mathematics: Jane Piirto

Geometrija 1 Planimetry

- •Triangle centers (H orthocenter, T centroid, O circumcenter, S incenter)
- •Euler's line
- •Cognitive aim of teaching mathematics

Geometry 1 Planimetry

1. Visualization on computer

- i) experiments on computer
- ii) experiences
- iii) conjecture
- iv) formulation of the theorem
- v) Deducitve proof
- (affective end effective aim)

Geometry 1 Planimetry

- 2. Construction on paper with technical pencil, rulers, bow
- Construction
- Control
- Psichomotorical aim

Fewerbock kinn et Euler egyeues

Geometry 1 Planimetry

3. Systematization and repetition (teorethical proof)

Triangle centers in constructions

Given three points, one vertex, the orthocenter and the circumcenter of the triangle.

Construct that triangle.

Didactically dual task

Geometry 2 Trigonometry

Ceva's theorem: Given a triangle ABC, and points D, E, and F that lie on lines BC, CA and AB respectively, than lines AD, BE and CF are concurrent if and only if

$$\frac{\overline{AF}}{\overline{FB}} \cdot \frac{\overline{BD}}{\overline{DC}} \cdot \frac{\overline{CE}}{\overline{EA}} = 1$$

$$\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = \frac{\frac{AS \cdot \sin \angle ASF}{\sin \angle AFS}}{\frac{BS \cdot \sin \angle BSF}{\sin \angle BFS}} \cdot \frac{\frac{BS \cdot \sin \angle BSD}{\sin \angle BDS}}{\frac{CS \cdot \sin \angle CSD}{\sin \angle CDS}} \cdot \frac{\frac{CS \cdot \sin \angle CSE}{\sin \angle CES}}{\frac{AS \cdot \sin \angle ASE}{\sin \angle AES}} = 1$$

Geometry 2 Trigonometry

Menelaus' theorem: Given points A, B, C that form triangle ABC, and points D, E, F that lie on lines BC, AC, AB, points D, E, F are collinear if and only if

Given three vertices of the triangle: A(3; 5), B(6; 2), C(-2;-1). Find the equation of the Euler's line.

- 1. the equations of the lines AB, BC and AC;
- the altitudes and the orthocenter of the triangle;
- the medians and the barycenter;
- 4. the perpendicular bisectors and the circumcenter
- the equation of the line HO (or HT or OT) and the verification of whether the third point belongs to that line;
- 6. the coordinates of vectors \overrightarrow{HT} and \overrightarrow{TO} ;
- 7. checking the ratio of vectors \overrightarrow{HT} and \overrightarrow{TO} .

Given three vertices of the triangle: A(3; 5), B(6; 2), C(-2;-1). Find the equation of the Euler's line.

Euler's line

If triangle ABC has vertices A(a $_1$,a $_2$), B(b $_1$, b $_2$) and C(c_1 , c_2) , then the edges of the triangle are:

```
AB = Det \begin{bmatrix} a_1 & b_1 & x \\ a_2 & b_2 & y \\ 1 & 1 & 1 \end{bmatrix}
AC = Det \begin{bmatrix} a_1 & c_1 & x \\ a_2 & c_2 & y \\ 1 & 1 & 1 \end{bmatrix}
CB = Det \begin{bmatrix} c_1 & b_1 & x \\ c_2 & b_2 & y \\ 1 & 1 & 1 \end{bmatrix}
Solve[(b_1 - c_1) a_1 + (b_2 - c_2) a_2 + n == 0, n]
\{ \{ n \rightarrow -a_1 b_1 - a_2 b_2 + a_1 c_1 + a_2 c_2 \} \}
Solve[(a_1 - c_1) b_1 + (a_2 - c_2) b_2 + m == 0, m]
\{ \{ m \rightarrow -a_1 b_1 - a_2 b_2 + b_1 c_1 + b_2 c_2 \} \}
```

General form:

Given three vertices $A(a_1, a_2)$,

 $B(b_1, b_2)$, $C(c_1, c_2)$ of the triangle ABC.

Find the equation of the Euler's line

Geometry 1 examines:

- •Isometric transformations
- •Transformation of similarity
- •Inversion

Apollonius' problems

Poincaré's model for non-Euclidean geometry

Inversion

- 1. The inverse of a circle (not through the center of inversion) is a circle.
- 2. The inverse of a circle through the center of inversion is a line.
- 3. The inverse of a line (not through the center of inversion) is a circle through the center of inversion.
- 4. A circle orthogonal to the circle of inversion is its own inverse.
- 5. A line through the center of inversion is its own inverse.
- 6. Angles are preserved in inversion.

Apollonius' problems

The basic problem is:

Given three objects, each of which may be a point, line, or circle, draw a circle that is tangent to each.

- 1. The circle crosses three given points (A, B, C).
- 2. The circle crosses two points and tangents a line (A, B, p).
- 3. The circle crosses two points and tangents a circle (A, B, k).
- 4. The circle crosses one point and tangents two given lines (A, p, q).
- 5. The circle crosses one point and tangents a lien and a circle (A, p, k).
- 6. The circle crosses one point and tangent two given circle (A, k_1, k_2) .
- 7. The circle tangents three given lines (p, q, r).
- 8. The circle tangents two lines and a circle (p, q, k).
- 9. The circle tangents a line and two circles (p, k_1, k_2) .
- 10. The circle tangents three given circles (k_1, k_2, k_3) .

Ripco Sipos Elvira

Apollonius' problems

5. THE CIRCLE ACROSS ONE POINT A TOUCHES THE GIVEN LINE p AND THE GIVEN CIRCLE l

Non-Euclidean Geometry Hyperbolic geometry

Playfair's axiom: Given a line and a point not on it, at most one parallel to the given line can be drawn through the point.

Bolyai János-Nikolai Lobachevsky's axiom:

Given a line and a point not on it, at least two parallel to the given line can be drawn through the point.

Non-Euclidean Geometry Spherical geometry

Lénárt Sphere

Senta

Latitude 45° 55' 45,48"N Longitude 20° 5' 10,18" E

New York

Latitude 41 8' 44" N Longitude 73 59' 42" W

Results and Comments

This visualization in experimental geometry helps to:

- develop/improve spatial and perception skills;
- increase intuitive skills, gain insight;
- predict theorems and the properties of geometrical figures, discovering new patterns and relations;
- increase divergent thinking and the checking of new ideas;
- recognize "visible" proofs and suggest approaches for formal proof;
- motivate students' active participation;
- increase the students' enthusiasm.

Results and Comments

The disadvantages of computer aided teaching are:

- a decrease of desire to prove the theorems;
- the deficiency of mathematical rigorousness since "everything is visible on the drawing";
- some students find the computer difficult to use therefore they become frustrated;
- it is still expensive for schools.

Thank You very much

