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1 Introduction

Espresso coffee - consumed millions of times a day around the globe - is on closer
inspection of high complexity. It is not without reason that many Italians consider the
preparation of a perfect espresso as high art and enter into a relationship of trust with
their favourite barista. Scientifically speaking, the preparation of a cup of espresso is a
fluid process that takes place at high temperatures and pressure.

The task was kept open to cope with the high complexity of the problem and to allow
creative modelling approaches. First the goal and some basics of coffee will be described.
In the main part the process of flowing through the espresso powder is divided into the
sub-aspects of mechanics and chemistry for modelling. It was found that the bimodality
of the size distribution of ground coffee beans significantly influences both sub-problems.
As described in the third chapter of the report, in the mechanical modelling, the espresso
powder presents a flow resistance that is highly nonlinear due to the different particle
sizes. This behaviour could be mapped using differential equations in the mechanics
model. In the chemical model, which depicts the solution process of the coffee powder,
the different particle sizes act as source terms with very different time constants. Details
are discussed in the fourth chapter of the report. The merging of the submodels allows
trend forecasts for the adjustment of process parameters to ensure the preparation of
a perfect espresso and is still to be further investigated as is stated in chapters 5 and
6. In Chapter 7 we will take a look at the group work dynamics before the report is
closed in chapter 8 with the instructor’s assessment.

2 Project "Espresso Coffee Problem"

Before the actual modelling of the "Espresso Coffee Problem" is discussed we will present
the goal of the project, data that was used during the modelling and our approach to
start the modelling with in this chapter.

2.1 Goal of this project

Due to the short amount of time given, we decided to focus on two single aspects of the
whole extremely complex problem of coffee preparation, namely:

• The mechanical modelling of a flow passing through the cake of grounded coffee
powder,

• the modelling of the solution process of soluble coffee substances into the water
flowing through the cake.
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While the chemistry of the solution process is dependent on the mechanics of the flow
the development of the two models was started with low dependency due to the short
amount of time and the low number of scientists available. The goal was to have a basic
model for each aspect so in a next step it could be further investigated how to combine
those into a fully descriptive "Espresso Coffee Model".

2.2 Objective and data available

In figure 1 is shown a simplified model of the preparation of espresso coffee.

Figure 1: Simplified model of coffee preparation

For the modelling of the preparation the focus was on the mechanisms that act inside
the so called coffee cake. All auxiliaries inside the coffee machine are neglected and it is
assumed that hot water is pushed through a container densely packed with grounded
coffee to get an outflow of coffee.

As a first step to mechanical modelling the system described above can be seen as
a fluid-mechanical problem. The water is an inflow while the coffee is an outflow.
Applying the Bernoulli’s law neglecting gravity we get:

(pin + ρ
u2

in

2 )− (pout + ρ
u2

out

2 ) = −R. (1)

The change in total pressure (p+ ρu2/2) between inlet and outlet in due to a hydraulic
resistance (R) in the coffee cake. How this resistance is dependent on boundary
conditions and how it can be modelled is explained in chapter 3.
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2.3 Size Distribution of Grounded Coffee

The following section will give a short introduction in the bimodality of the size
distribution of grounded coffee since this is of high importance for both the mechanical
model discussed in chapter 3 as well as the chemistry model discussed in chapter 4.

As can be seen from experimental investigations grounded coffee contains particles of
different sizes. Particle sizes are influenced by the type of coffee beans that are used and
also on the grounding process. Nevertheless size distributions have a bimodal shape.
There is a peak in the volume fraction around 25 µm and a higher peak around 300 µm
as can be seen from figure 2.

Figure 2: Representative particle size distributions (taken
from Moroney et al. (2015))

Dealing with a continuous function for the size distribution is of high complexity for
modelling. For this reason the size distribution function was approximated by two
representative particles - namely a small and a big particle. It is assumed that those
two representative particles are able to capture the mean macroscopic behaviour of the
original continuous distributed particles.

To extract the identifying particles, in a first step the experimental data is fitted to
a continuous function. We use the sum of two Gaussian functions to reconstruct the
bimodal appearance of the particle size distribution:

ν(d) = 1
σ1
√

2π
exp

1
2 ( d−µ1

σ1
)2

+ 1
σ2
√

2π
exp

1
2 ( d−µ2

σ2
)2
. (2)

Now this function can be used to get the representative particle sizes and their volume
fractions. We transform the continuous function into two Diract-δ-peak-functions.

6



Therefore a threshold-size is defined and the mean weighted radii are calculated:

r̄small =
∫ rT

0
riνidr̃, (3)

r̄big =
∫ ∞

rT
riνidr̃. (4)

To these mean radii we can then match the belonging volume fraction:

νsmall =
∫ rT
0 νidr̃∫∞
0 νidr̃

(5)

by dividing the volume of small particles by the total volume. With that we easily get
νbig by:

νbig = 1− νsmall. (6)

Using this transformation procedure we now have access to two distinct representative
particles we know size and volume fraction of.
In figure 3 the size distribution of the particles is shown and the dimension of the small
and the big particles is highlighted. It can be seen that the size of the big particles is
roughly 10 times the size of the small ones.
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Figure 3: Approximate particle size distribution is shown in
blue, with the size and volume fraction of big and small particles
highlighted in red.
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3 Particle Sizes influencing Mechanics

3.1 The compact layer

The presence of particles of different sizes, explained in the previous section, influences
the mechanical behaviour of the production of coffee.
Figure 4 shows the microscopical structure of the coffee cake. At the initial time, before
the water goes through the coffee cake, the small particles are uniformly distributed in
the container and some of them are bounded to the big particles, because of the oily
substances present in the system and possibly also for bonds of electric type.
When the process starts and the water enters the containers, the flow breaks some of
the bonds and transport some of the the small particles, which reach the end of the
container that is permeable to liquid, but not to the solid component. As a result, the
fine particles will build up a layer at the end of the container, called the compact layer,
which has a resistance much larger than the rest of the container.
As time increases and the removal process goes on, the resistance in the compact layer
is assumed to be constant, but the thickness of the compact layer grows, resulting in a
rise of the total resistance in the container. The thickness of the compact layer reaches
then an asymptotic value, called Smax, and so does the total resistance.

Figure 4: Microscopical structure of the coffee cake. A detailed
description of this figure is given in the text.

Let us now model analytically the behaviour of the compact layer.
We assume that the process is described by a one-dimensional model because the
physical problem suggests that filtration can be considered in a good approximation
predominant in the axial direction. We therefore introduce the x-axis which is directed
from the top to the bottom of the coffee cake. Thus in our model, the upper layer of
the container is located at x = 0 and the bottom layer of the coffee cake is located at
x = L, where L denotes the length of the container.
The x-coordinate of the upper bound of the compact layer changes in time and is
denoted by s(t). Therefore the region with 0 < x < s(t) represents the upper layer of

8



the container, while the part with s(t) < x < L is the compact layer.

At the initial time t = 0, the fine particles are not compacted yet and the thickness of
the compact layer is zero. Thus the initial condition is s(0) = L.
When the water goes through the coffee grains, the compact layer starts growing until
it stabilises, reaching its asymptotic thickness Smax. Therefore the coordinate s(t)
decreases in time, until it reaches its asymptotic value L− Smax.
Since the pressure of the water moves the compact layer border very rapidly, a reasonable
choice to describe the position s(t) of the upper border of the compact layer with respect
to time is a decreasing exponential function.

The formula we have used for the coordinate s(t) is the following:

s(t) = L− Smax(1− e−Ct), (7)

where C is a constant to be determined.
The following figure represents exactly how the compact layer behaves.

Figure 5: Illustration of the behaviour of the compact layer.
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3.2 Experimental Discharge

The experimental approach is an naive approximation of coffee preparation. To obtain
the ideal cup of coffee, the temperature and pressure need to be correctly adjusted.
In order to provide an approximation of the model, Darcy’s law is used and gives the
following equation,

p = Rq (8)
where p is the injection pressure, q the volumetric velocity and R the hydraulic resistance
of the cake.
However, experimental observations prove a contradiction to Darcy’s law, since

• flow has not a linear behaviour as it attains a sharp maximum in the beginning
of the procedure and then reaches an asymptotic value,

• there is no proportionality of the asymptotic value and the pressure.

These observations are visualised by the figure [6]. Temperature dependence of the
model influence this non-linear effect. Even, by injecting low temperature water this
non-monotone effect is occurred. The following part is dedicated to the manipulation
of experimental data in order to approximately implement the discharge and remark
the observations mentioned above.

The discharge q is approximately expressed as a function of time as follows,

q(t) = a+ de−ct, (9)
where

• a expresses the value of discharge when time tends to infinity,

• d is the difference between a and the maximum of the curve,

• c is chosen as 1− 1
∆p

, where ∆p signifies the difference between the initial and
the final pressure.

In order to have explicit values of the previous coefficients, a graph of the article Fasano,
Talamucci, and Petracco (2000) is used. The following table represents their values for
different gradient pressures.

∆p a d

3 0 14
5 5 16
7 4 13

Table 1: Discharge coefficients for different ∆p.
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As the number of given points is small, we did an interpolation for a and d given by,


a(∆p) = −3

4∆p2 + 17
2 ∆p− 75

4
d(∆p) = −5

2∆p2 + 6∆p+ 13
8

(10)

(11)

The following figure illustrates the discharge as a function of time for different values of
∆p. The initial pressure is p0 = 8 bars.

Figure 6: Plot of the experimental discharge as a function of time
for ∆p = 3,5,7.
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3.3 Modelling the problem

We can now start modelling the problem. Let us call b the concentration (i.e. mass per
unit volume of the total system) of the fine particles when they are bounded to the
big particles and m the concentration of the small particles that are transported by
the flow. Our goal is to find some equations to describe the behaviour of b and m with
respect to time and space.

3.3.1 Stable Particles

Let’s start setting a model for b. We assume that during the particle removal process,
not all the fine particles can be removed, but only those ones with bonds that are weak
enough. Such a behaviour is modelled by introducing a threshold function β(q) such
that the particle removal process occurs only as long as the concentration b exceeds the
value of β(q).
We suppose that β(q) is a decreasing function of q, because the more intense a flow
is, the larger the amount of removable fine particles is. The effect of the threshold is
that, since typically q decreases in time, β will increase and may switch off the removal
process at some time.

As stated in Fasano, Talamucci, and Petracco (2000) , the production rate of stable
particles in the upper layer of the coffee cake is described by the following equation:

∂b

∂t
= −q(t)[b− β(q)]+, 0 < x < s(t), t > 0,

b(0) = b0 > 0,
(12)

where the symbol [·]+ denotes the positive part and b0 is the concentration of bounded
fine particles at the initial time t = 0.
Equation (12) models the fact that if b > β, the production rate is proportional to the
discharge q while if b < β, the concentration b is constant in time which means than no
more fine particles are removed and therefore the removal process has stopped.

An important feature of the concentration b is that it is constant with respect to x and
thus equation (12) becomes:

db

dt
= −q(t)[b− β(q)]+, t > 0,

b(0) = b0 > 0.
(13)

This is a consequence of having chosen a constant value for b at t = 0 and of q depending
only on t. It can be proofed using equation (12) in the following way: if b > β(q),
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equation (12) becomes
∂b

∂t
= −q(t) (b− β(q(t))) ,

from which we get
∂b

∂t
+ q(t)(b− β(q(t))) = 0. (14)

Then, taking the derivative of (14) with respect to x we get

∂

∂x

(
∂b

∂t
+ q(t)(b− β(q(t)))

)
= 0

and thus
btx + q(t)bx = 0. (15)

From (15), we read that bt + q(t)b doesn’t depend on x, but it’s only a function of time
t and therefore b = b(t). We have now proofed that b is constant with respect to x
when b > β(q).
Let us now consider the case b ≤ β(q). In this case equation (12) becomes

∂b

∂t
= 0,

and this b is constant through time. Since we have chosen a constant value b0 for b at
t = 0, then b doesn’t depend on x in this case either.

Let us now numerically solve Equation (13) with respect to b, for values of time t ∈ [0, 1]
and with initial value given by b0 = 1. In regards to q(t), we have inserted into Equation
(13) the expression of the experimental discharge q(t) = a + de−ct with values of the
constants a, d, c derived in the previous section. For the threshold β(t), we have chosen
the following decreasing function of q(t):

β(q(t)) = q(0)− q(t),

where q(t) is given by the experimental discharge. The constant q(0) is chosen so that
at time t = 0 the threshold function β is zero and therefore the removal process starts
certainly at t = 0.

In order to numerically solve Equation (13), we first solve the corresponding equation
without the positive part, given by

db

dt
= −q(t)[b− β(q)], t > 0,

b(0) = b0 > 0,
(16)

with respect to b, using a finite difference scheme.
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The resulting finite difference scheme is given by:

b(ti+1) = b(ti)−∆t
(
a+ de−cti

) (
b(ti)− d+ de−cti

)
i = 1, ..., N − 1

where we have divided the interval [0, 1] in N = 1000 equally spaced points

t0 = 0, t1, ..., tN−1, tN = 1

and we denote ∆t = ti+1 − ti ∀i.

Once we have the numerical solution for b, we recover the approximate solution b of
Equation (13) by cutting the function b at its global minimum and, from that point on,
using a constant value for b, chosen in order to preserve the continuity of the function.
The cutting point represents the time in which β becomes large enough to stop the
removal process.
The resulting numerical solution for b(t) is shown in Figure 7. We can see that b(t)
decreases very fast in time and reaches quickly its asymptotic constant value. This
means that the removal process happens really fast and it stops in a short time.

Figure 7: Plot of the numerical solution of Equation (13) with
respect to b, with t ∈ [0, 1], b0 = 1, q(t) = a + de−ct, β(q(t)) =
q(0)− q(t).
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3.3.2 Moving Particles

After modelling the stable particle concentration, we proceed to the fine particles that
are free to move. In order to find the formula of the moving particles, the characteristics
method is used.
First let us introduce the differential equation of the production rate of moving particles
as stated in Fasano, Talamucci, and Petracco (2000),


∂m

∂t
+ µq(t)∂m

∂x
= −db

dt
, for 0 < x < s(t), t > 0,

m(x, 0) = m0(x) > 0, for 0 < x < s(t),
m(0, t) = 0, for t > 0.

The characteristics method is applied on the sum of b and m and then m is easily
found as we already know b from the previous section. This can be accomplished as b
is independent of space, which means ∂b

∂x
= 0.

Using this assumption, the differential equation of the moving particles is transformed
as,

∂(m+ b)
∂t

+ µq(t)∂(m+ b)
∂x

= 0

By imposing u = m+ b, the problem we search to solve is transformed to a transport
differential equation, 

∂u

∂t
+ µq(t)∂u

∂x
= 0,

u(x, 0) = m0(x) + b0.

First, we need to solve the following system in order to find the characteristic curve
related to (x, t). This system is composed by the differential equation equal to the
coefficient of the partial derivative of u with respect to the space and the position of
the characteristic curve at a given time t.
Let (x, t) fixed.


X ′(s) = µq(s) for s > 0,

X(t) = x
(17)

The solution of the previous system is devoted by X(s) and is called characteristic
curve.

The solution, after imposing the experimental discharge q(t) = a+ de−ct, is given by,

X(s) = µ(a(s− t) + d

c
(e−ct − e−cs)) + x

Along the characteristic line, for example for s = 0, the solution to the differential
problem remains constant.
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In order to complete the characteristics method and find the solution to the problem,
the following equation needs to be solved.


Z ′(s) = 0

Z(0) = u(X(0), 0) = m0(x+ µ(−at+ d

c
(e−ct − 1))) + b0

(18)

The solution of the previous system is

Z(s) = m0(x+ µ(−at+ d

c
(e−ct − 1))) + b0 (19)

The characteristics method provides the solution when the variable of Z is the time
across the characteristic line, u(X(t), t) = Z(t). Finally, the solution for u is,

u(x, t) = (m+ b)(x, t) = m0(x+ µ(−at+ d

c
(e−ct − 1))) + b0 (20)

As the b was previously solved, the m formula can be easily deduced.
Figure 8 represents the behaviour of m as a function of time for x0 = 0.1 and initial
condition m0(x) = e−x2 .
From the plot, we can see that, as the water goes through the coffee, some of the
particles start to move. After reaching a sharp maximum, the concentration of moving
particles starts decreasing as the compact layer increases radically.

Figure 8: Plot of the concentration of moving particles m as a
function of time for x0 = 0.1 and initial condition m0(x) = e−x2 .
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3.3.3 Discharge

After having set up a model for the concentrations b and m, we are now interested
in modelling the discharge q(t). We can then write Darcy’s law above and below the
boundary of the compact layer:

q(t) = −K1(b,m)∂p
∂x
, 0 < x < s(t), t > 0,

q(t) = −K2
∂p

∂x
, s(t) < x < L, t > 0,

(21)

where ∂p
∂x

signifies the pressure gradient of the two parts of the container, K1 is the hy-
draulic resistance above the compact layer boundary and K2 is the hydraulic resistance
of the compact layer.
It is important to mention that the hydraulic resistance of the compact layer is signifi-
cantly higher than the other one.

Now, we have a complete mechanical model for the espresso coffee problem, given by:

∂m

∂t
+ µq(t)∂m

∂x
= −db

dt
, 0 < x < s(t), t > 0,

db

dt
= −q(t)[b− β(q)]+, t > 0,

q = −K1(b,m)∂p
∂x
, 0 < x < s(t), t > 0,

q = −K2
∂p

∂x
, s(t) < x < L, t > 0,

with the following initial conditions,

b(0) = b0 = 1,
m(x, 0) = m0, 0 < x < L,

m(0, t) = 0, t > 0,
s(0) = L,

p(0, t) = p0, t > 0,
p(L, t) = 0 t > 0.

We are now interested in finding a unique explicit formula for the discharge q(t); for
this purpose, the fundamental theorem of calculus is used:∫ L

0

∂p

∂x
dx = p(L)− p(0) = −p0. (22)
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Then, using (21), we get:

(23)

∫ L

0

∂p

∂x
dx =

∫ s(t)

0

∂p

∂x
dx+

∫ L

s(t)

∂p

∂x
dx

=
∫ s(t)

0
−R1(b,m)q(t)dx+

∫ L

s(t)
−R2 q(t)dx

= −q(t)
(∫ s(t)

0
R1(b,m)dx+R2(L− s(t))

)
,

where we introduced the resistivity in the two layers R1(b,m) = 1
K1(b,m) and R2 = 1

K2
.

Therefore, from (22) and (23) we get

q(t) = p0∫ s(t)
0 R1(b,m)dx+R2(L− s(t))

(24)

where p0 is the pressure difference between the upper and the bottom layer of the
container.

In figure 9, we show the behaviour of the theoretical discharge obtained using the
formula (24), with the following values of the parameters: L = 1 and p0 = 8.
Regarding the choice of the x-coordinate of the upper bound of the compact layer s(t),
we have used, according to (7), the following formula:

s(t) = 1− 0.2(1− e−0.8t). (25)

Figure 9: Illustration of the theoretical discharge given by (24)
with L = 1, p0 = 8 and s(t) = 1− 0.2(1− e−0.8t).

18



It is remarkable to notice that the graphs of the experimental and theoretical discharge
are quite similar.
It is important to mention the choice we have done for the resistivity in the two layers, in
order to provide an implementation of the problem. The resistivity above the compact
layer we used is defined as a linear combination of b and m:

R1(x, t) = b(t) +m(x, t).

As mentioned before, the resistivity of the compact layer is importantly higher then the
one above the layer and constant. That is the reason why it is chosen as

R2 = 10 ·R1(x0, t0),

where x0, t0 are arbitrary.

Finally, figure 10 represents the behaviour of R1 as a function of time, for a given
x0 = 0.4.
It worth highlighting that we initially had some difficulties in finding a function that
modelled properly the resistivity R1(x, t), namely a function that had the expected
behaviour with respect to time and space. This problem was finally overcome by the
choice of the function R1(x, t) = b(t) +m(x, t), using m0(x) = e−x2 as initial condition
for m(x, t) at t = 0.
From figure 10 we can see that the resistivity above the compact layer grows in the
first time interval, when the concentration of moving particles is increasing, and then
when m starts decreasing, so the resistivity does. This is the behaviour that we expect
for the resistivity above the compact layer, with respect to time.

Figure 10: Plot of the resistivity above the compact layer as a
function of time t, for x0 = 0.4.

19



4 Modelling of Coffee Chemistry

The mechanical modelling is based on observations at conditions where solution processes
can be neglected. Anyhow an espresso is not just hot water but there are several chemical
substances solved in. In this chapter we focus on modelling the processes that lead to
the solution of substances into the hot water flowing through the coffee cake.

One basic assumption of the moving boundary theory is that the coffee cake is already
completely saturated. This ignores the initial transient process of a moving waterfront
propagating through the coffee cake. The final state of the imbibition process is used
as an initial state for the formation of the separated layers. While this assumption is
justified for the modelling of the layers it is not with respect to the chemical processes.
As can be told from the very basic experiment of preparing a coffee the initial phase
is crucial - at first the coffee comes out strongly black and then becomes lighter with
time. The colour is an indicator for the amount of coffee molecules solved in the water.
This means that initially there is a high rate of solution which is decreasing in time.

Having figured out the importance of the initial phase it is obvious that for the
modelling we have to focus on a different part of the preparation time than we did for
the mechanical aspects.

Before starting the description of modelling it is essential to take a look at the structure
of coffee particles. As mentioned before we consider the properties of grounded coffee to
be described by only two different particle sizes. There are small particles with a peak
around r̄small ≈ 40 µm and big particles having a peak at r̄big ≈ 550 µm. Those behave
different with regards to solution due to the average size of a coffee cell being around
25− 50 µm. This means that small particles to a high amount are considered as cell
fragment or broken cells while the big particles consist of an agglomerate of intact and
broken cells as is sketched in figure 11.

Figure 11: Structure of particles: Broken cell walls are shown as
dashed lines

While coffee is a rather complex substance composed of over 1800 chemical compounds
(compare Petracco (2008)) we consider coffee to only consist of two entities which are
soluble and insoluble substances. Those soluble compounds are sketched in figure 11 as
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exemplary molecules inside the cell. Due to the high temperature of around 900◦ C it is
assumed that solution processes are very quick. Once a soluble substance gets in contact
with water it is considered to be solved instantaneously. Experimental observations
by Dentan (1977) showed that extraction mainly appears on the outer surface because
soluble substances are well protected inside the cell. With the protecting cell wall
around them broken, in small particles those substances are easily accessible for a
surrounding flow. This allows for convective transport to happen taking the soluble
substances out of the cell. The timescale of this extraction is very small. Convection
is fast and starting nearly without dead time making it the dominant process at the
initial phase of the preparation.

Big particles also contain broken cells that distribute to the total amount of solved
coffee with the same mechanism as the small particles. But in addition they also consist
of intact cells. The soluble substances in those are well protected by the cell walls so
the dominant mechanism of transporting them to the surface of the cell where they will
be picked up by convection is diffusion. Diffusion in general has a much larger timescale
than convection making it a slower process. Adding to that, diffusion is forced by a
gradient of concentration which will decrease over time. Those two observations justify
the assumption that diffusion will start to contribute to the overall solution of coffee
molecules at a later point.

4.1 Initial Phase

The explanations of the previous section are used to develop a model allowing to
estimate the mass of soluble substances that were solved in the coffee during an initial
phase. Modelling the real processes would be rather complex so we use an integral
method. We look at the time t = Tinit when we consider the initial convective transport
to have solved most of the soluble substances accessible by broken cell walls and having
discharged them out of the coffee container. This allows us to model the complex
processes happening for 0 ≤ t ≤ Tinit by approximating the final state at t = Tinit as the
result of those processes. Within the next sections we will model the mass of extracted
coffee by making use of information about the size distribution within the grounded
coffee.

4.1.1 Small Particles

We know the volume fraction of small particles νsmall so with the total mass of coffee
mcoffee we know the mass of small particles assuming that the density of coffee is similar
for both,

msmall = νsmall ·mcoffee. (26)

To compute the mass of solved substances ζsmall ≤ 1 and γsmall ≤ 1 are introduced.
While ζsmall is the fraction of mass that is soluble, γsmall is used to take in account that
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not all smart particles might have been affected by the initial solution process. With
that we get the solved mass coming from the small particles in the initial phase as:

msmall,solved = msmall · ζsmall · γsmall. (27)

4.1.2 Big Particles

For the big particles’ contribution to the solved mass of coffee we need to adapt the
modelling. This is due to the consideration that only the broken cells on the surface are
contributing to the initial solution. First we compute the total surface of big particles.
The volume of big particles is defined by:

Vbig = νbig ·
mcoffee

ρcoffee

. (28)

We assume all particles to be of spherical shape. This allows us to make use of the
surface to volume fraction ψ = 3

r
. We then get the surface as follows:

Sbig = Vbig ·
3
r̄big

. (29)

For estimating the volume addressed by the convection we assume the height of the
active surface to be equal to the size of the small particles. We also introduce ξbig ≤ 1
which takes into account the fraction of broken cell walls on the surface compared to
the total surface,

Vbig,active = Sbig · r̄small · ξbig. (30)

Again we have ζ and γ as before and get the solved coffee mass coming from the big
particles in the initial phase as:

mbig,solved = Vbig,active · ρcoffee · ζbig · γbig. (31)

The amount of solved substances discharged at time t = Tinit is computed by summing
up the solved masses coming from both the small and the large particles. In addition
the fraction of solved mass can be computed,

msolved(t = Tinit) = msmall,solved +mbig,solved, (32)

χ(t = Tinit) = msolved(t=Tinit)

mcoffee

. (33)
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4.2 Subsequent Phase

After the initial time where there is instantaneous solution as a dominant process with
increasing time diffusion becomes more important. While we considered our flow to be
one-dimensional, diffusion always is multidimensional. This and the coupling of flow,
convection and diffusion would lead to a complex problem to solve. Instead of dealing
with that we therefore propose a basic model based on an exponential function.

The results of the initial phase modelling are used as an initial boundary condition of
this modelling. With t∗ = t − Tinit the initial extracted mass fraction is χ(t∗ = 0) =
χ(t = Tinit). From literature we get an upper bound for the maximum mass fraction
that is extractable from coffee as ζcoffee. We then express the extracted mass fraction
over time by:

χ(t∗) = ζcoffee ·
(

1−
(

1− χ(0)
ζcoffee

)
· exp(− t

∗
τ

)
)
. (34)

With this approach the only unknown is τ which can be tuned when experimental data
is available.

The modelling of χ using an exponential function is justified considering the underlying
processes. The initial instantaneous solution processes are fading out with the solved
substances discharged. With that the concentration changes and diffusion become more
dominant. Diffusion is happening on a large timescale making it a relative slow process
which also affects the solution. As time continues the gradient of concentration becomes
smaller because the amount of soluble substances inside the intact cells is decreasing.
Being the main force of diffusion processes the diffusion will also slow further down
over time. Summing this up, the rate of solution is monotonously decreasing while
χ is monotonously increasing. The knowledge of an upper limit for ζcoffee that is
reached after a long extraction time and cannot be further increased by heighten the
extraction time fits well with the asymptotic behaviour of an exponential function. The
free constant τ is considered to be dependent on the temperature of the process, the
grounding process of the coffee beans that affects the size distribution of particles, the
pressure difference and finally the coffee machine’s geometry which affects the raise of
the pressure, the flow’s velocity by defining the flowed through area and the efficiency
of the solution process in general.
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5 Application of chemistry model

The proposed model of chemistry introduced in the previous section will be applied to
a concrete set of values explained in the following.

5.1 Initial Phase

We assume the amount of grounded coffee used for preparation to be mcoffee = 10 g
and it’s density ρcoffee = 400 kg/m3. The fraction of extractable soluble substances in
grounded coffee is set to ζcoffee = 0.3 following Moroney et al. (2015). We get mean
size and volume fraction of the particles as mentioned before as r̄small = 40µm, r̄big =
550µm, νsmall = 0.25, νbig = 0.75. We choose ζsmall = 0.25 and ζbig = 0.25 assuming
that the amount of soluble substances addressable by instantaneous solution is around
80 % of ζcoffee. γsmall and γbig are set to 0.9. Finally ξbig is 0.3 assuming approximately
a third of the surface of big particles consists of broken cell walls. All Values are
summarized in table 2

Variable Value Unit
mcoffee 10 g
ρcoffee 400 kg/m3

ζcoffee 0.3 -

r̄small 39 µm
r̄big 550 µm
νsmall 0.25 -
νbig 0.75 -

ζsmall 0.25 -
ζbig 0.25 -
γsmall 0.9 -
γbig 0.9 -
ξbig 0.3 -

Table 2: values of model

With those values used for the modelling we get χ(t∗ = 0) ≈ 0.07

5.2 Subsequent Phase

For the subsequent phase modelling there is also a set of variables to be quantified.
First we consider the initial time to be approximately same as it takes to overcome
the peak of the discharge. For a pressure difference of ∆p = 7 bar we get Tinit ≈ 1 s
from Fasano, Talamucci, and Petracco (2000).
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Having Tinit the starting time t∗ of the chemical modelling is defined. With ζcoffee

already defined in the previous section the only open variable is τ which is needed to
be tuned.

For that we first use our fit of the experimental discharge to get the time at which we
reach the desired volume of Vcoffee = 30 ml. Since our discharge model neglects initial
phase we need an approximate for the volume discharged before t∗ = 0. From Fasano,
Talamucci, and Petracco (2000) we get the mean initial velocity V̇init as 8 ml/s. Mul-
tiplying it with Tinit we get Vcoffee(t∗ = 0) = 8 ml. For the total volume of coffee we
then use the results of the discharge modelling by integrating it:

Vcoffee(t∗) = Vcoffee(0) +
∫ ∞

0
V̇coffee. (35)

From figure 12 we get t∗ = 35 s for reaching the 30 ml goal.

Figure 12: Volume of prepared coffee with ∆p = 7 bar

To have the perfect coffee and get the assumed perfect extraction yield of 25% proposed
by Illy and Viani (2005) at t∗ = 35s we choose τ = 25 s. The course of extraction can
be seen in figure 13.
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Figure 13: Extraction yield over time with ∆p = 7 bar

The proposed model is based on observations of underlying processes which makes
it reasonable. Nevertheless there are several variables used whose values are only
estimated due to the lack of experimental data. This leads to the assessment that this
model cannot be seen as a predictive model for absolute values. Nevertheless it can be
used to predict trends. Changes of operation parameters lead to a different discharge.
This results in a different preparation time for Vcoffee = 30 ml. For ∆p = 5 bar the
preparation time is t∗ = 24 s as can be seen from figure 14.

Figure 14: Volume of prepared coffee with ∆p = 5 bar

To reach the perfect extraction yield of χ = 25 % an adaptation of τ is needed (compare
figure 15).
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Figure 15: Extraction yield over time with ∆p = 5 bar

The new τ is now 16 s indicating the need of a much faster extraction process. Since τ
is dependent on temperature, grounding process and machine’s geometry we can adjust
this parameters to reach a perfect espresso.
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6 Discussion and conclusions

The mechanical model described in chapter 3 and the chemistry model discussed in
chapter 4 fulfil the goal of the project to have basic models for the main aspects of
the preparation of coffee. Nevertheless there are simplified assumptions made while
developing the models. In chapter 5 the chemical model was applied to a set set of
values. However due to a lack of information for some of the used variables this is not
prescriptive. Also experimental data was used to determine the discharge of coffee. In
a next step the mechanical model could be connected to the chemistry at that point.
Finally while the mechanical modelling allows a deeper inside of the complex mechanics
the happen in the coffee cake during preparation, the chemistry model is suitable for
trend-forecasting and could be further optimised when experimental data was available.

7 Group work dynamics

Since the goal of the project was not fully predefined by the instructor group work
started with defining own goals to reach within the Modelling Week. The separation
of the problem into two distinctive modelling approaches allowed to split the group
into subgroups. One pair was mainly working on the chemistry modelling while two
pairs faced the mechanic modelling. Due to the complexity of the problem there was a
high level of communication. Frequent summaries and discussions on the blackboard
led to a higher understanding of the problem for all attendants. Also discussions with
the instructor and an invited professor were very helpful. The lack of time within one
week was limiting the complexity of the developed models, nevertheless by providing
two modelling approaches we fulfilled our own goals. The high complexity of the
problem and the parallel development of two models was a challenge but was also very
interesting. The different study directions of the attendants sometimes complicated the
communication but on the other hand led to a higher bandwidth of ideas. Writing the
report was complicated by the previously distributed work. Collecting the output of
every working pair and fit it into a coherent structure took some iterations. At the end
we would like to point out that although the Modelling Week was challenging work but
also a lot of fun and very instructive, both professional and also personal.
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8 Instructor’s assessment

Modelling the preparation of espresso-coffee is known to be a process which possesses
extraordinary complexity. In brief, a stream of hot water is forced to flow through the
bounded layer of coffee in granules. Afterwards it is collected in the cup. The flow of
water (percolation) is accompanied by the extraction of soluble substance of coffee, as
well as the transport of the solid phase which becomes the part of the coffee emulsion.
The goal of the project was very general, to study the basic aspects of this process and
to establish an appropriate mathematical model.

Due to the complexity of the problem, students separated in multiple groups on the
first day. Although separated, they interacted very often and discussed achievements
and problems they met in each group. Every student was present and active during
the whole Modelling Week. The two main aspects of the problem were discussed, the
mechanical and chemical part. Students consulted available literature, but also they
built their own model, by specifying some possible – the simplest – submodels and
numerically or analytically solving the corresponding equations. Therefore, we can say
that the initial goal of the Modelling Week is achieved, with some perspectives, such as
to consider more complicated submodels, and to improve chemical part of the problem.

The group gratefully acknowledges the support of prof. Srboljub Simic from the
University of Novi Sad.
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