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1 Introduction

In the process of protein transcription, the genetic information needs to be sent from
the DNA to the ribosomes. In order for this to happen, the information is conveyed by
mRNA molecules. In the work by [Golding and Cox 2004], the authors have been able to
study the dynamics of these particles into living bacterial cells. The newly recorded data
have been then analyzed based on a common Brownian motion model. This has been
used to estimate macro-scale parameters related to the movement, such as displacement
of the tethered molecule, elongation rate and diffusion coefficient. The results found
agreed with know biophysical properties of the cells. However, a qualitative analyses of
the videos has revealed a more complex picture. If some of the RNA molecules seem to
move freely in the cell, the molecules remain often partly bounded to the DNA. This
results in a limited and constrained motion, which can not be described by standard
diffusion model. For this reason, we here propose a new quantitative analyses of the
same data based however on the more general Fractional Brownian Motion model.
This allows us to encompass a wide range of dynamics with little assumption on the
actual motion of the particles. In particular, a single parameter, H, will identify the
general nature of the transport mechanism: either sub-diffusion, normal diffusion or
super-diffusion. Starting from a general overview of Fractional Brownian Motion in the
framework of stochastic analysis, we will then present the general procedure followed
in the analyses of the data-set. The results obtained will be presented in Section 4,
where we will also discuss them in comparison to the study previously proposed in the
literature. As we will see, the qualitative observations in [Golding and Cox 2004] agree
with our mathematical results. These suggest that a sub-diffusion mechanism led the
movement of mRNA molecules, supporting the idea that this is passive and impede by
external constraints. The new mathematical model will finally be used to extrapolate
information on the actual biophysical system, with particular focus on the diffusion
coefficient.
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2 Theory

As mentioned, the first part of this work is focused on a brief overview of fractional
Brownian motion in the framework of stochastic process. In particular, we will present
the key feature that uniquely characterize this class of models.

Throughout this section we will denote by X a general random variable. A continuous-
time stochastic process is a collection of indexed random variables {X(t)}t∈T , where T
is a set of index sampled on the real line.

We start from the general concept of stable distribution, which is defined as follows:

Definition 2.1. (Stable distribution) A random variable X is said to be stable if
for the two independent copies of X, X1, X2 and for a, b, c > 0 and d ∈ R

aX1 + bX2 = cX + d

.A stable distribution is uniquely defined by 4 parameters: α ∈ (0, 2], the stability
parameter, β ∈ [−1, 1] the skewness parameter(not the third order moment, which is
undefined), γ ∈ R>0 the scale parameter and δ ∈ R the location parameter. For this
reason, this are usually denoted as S (α, β, γ, δ).

Normal distributions, Cauchy distributions and Lévy distributions are just some of the
most well-known examples belonging to this class.

From the point of view of stochastic processes, stable distribution have a key advantage.
If the process X(t) is stable than the increment and process distribution belong to the
same family. A classical example is the Brownian motion.

Definition 2.2. (Brownian motion) A brownian motion, Xt is a stochastic process
characterized by the four properties

1. X0 = 0

2. Xt is almost surely continuous

3. The increments are stationary and independent

4. The increments are normally distributed with (Xs−Xt) ∼ N(0, s−t) for s ≥ t ≥ 0

As mentioned in the introduction, this model has been successfully applied to the study
of particle dynamics. However, its usage is limited. A process that encapsulates a
greater set of stochastic processes is called the Lévy process.

Definition 2.3. (Lévy process) A Lévy process, Xt is a stochastic process charac-
terized by the four properties

1. X0 = 0 with probability 1.
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2. Xt is continuous in probability: For any ε > 0 it holds that
limh→0P(|Xt+h −Xt| > ε) = 0.

3. The increments are stationary and independent.

The motion is said to be a Lévy stable motion process if it is a Levý process and its
increments are distributed by Ls − Lt ∼ S(α, β, γ|s− t|1/α, 0). As it can be seen, this
includes standard Brownian motion.

Based on the concepts here presented, we can now defined the idea of Fractional
Brownian Motion. This model will then be applied to the study of our data-set.

2.1 Fractional Brownian Motion

A generalization of the Brownian motion can be made, where the increments doesn’t
need to be independent.

Definition 2.4. A Fractional Brownian Motion, Xt is a stochastic process characterized
by the four properties

1. X0 = 0

2. Xt is almost surely continuous

3. The increments of Xt are stationary

4. The increments have an autocovariance given by

E[(Xt+k+1 −Xt+k)(Xt+1 −Xt)] = 1
2(|k + 1|2H + |k − 1|2H − 2|k|2H)

which is equivalent to

E [XsXt] = 1
2
(
s2H + t2H − |s− t|2H

)

where H ∈ (0, 1) is a parameter often called the self-similarity parameter or Hurst
parameter. In particular, a Brownian motion is a Lévy stable process with α = 2,
whereas the fractional Brownian motion for H 6= 1

2 is not a Lévy stable process.

2.2 Properties of FBM

Having defined FBM, we now look at the key features that characterize this class of
stochastic process. First of all, we introduce the concept of stationary process.
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Definition 2.5. A stochastic process {X(n)}n=0,1,··· is said to be stationary if its
unconditional joint probability distribution F (xt1 , · · ·Fxtn ) does not change when shifted
in time:

F (xt1+τ , · · ·Fxtn+τ ) = F (xt1 , · · ·Fxtn ) (1)

When dealing with FBM, the distribution of the increments is stationary. In other
words, if we consider {X(n)}n=0,1,··· to be a fractional Brownian motion, we can define
the process {dX(n)}n=1,2···, where dX(n) = X(n)−X(n− 1). Then we have that dX
is a stationary process.

Consequently the stationarity of the increments is a necessary condition for a process
to be a fractional Brownian motion. Given several realizations of the process, this
requirement can be check with the use of a quantiline test. This technique will be
presented more in detail in the next section.

Another important property of the increment of a FBM process is ergodicity. Intuitively,
a stationary stochastic process is said to be ergodic if all of its properties can be deduced
from only one sample of the process. When this is the case, the Bolztmann ergodic
hypothesis holds: the time averages converge to ensemble averages. Given a general
function g depending on the process, this translates in the following condition:

lim
T→∞

1
T

T∫
0

g (Y (t)) dt = E [g (Y (0))] (2)

Notice that in order to extrapolate valid information from the analysis of a sample, this
property is essential. However, from a practical perspective, a more useful definition
of ergodicity is the one introduced in [Burnecki et al. 2012], which first requires the
definition of the dynamical function.
Definition 2.6. For a weak stationary process {Y (n)}n=0,1,... the dynamical function
D(n) is defined as

D(n) = E [exp {i(Y (n)− Y (0))}] (3)

Given this, we can defined an ergodic process as follows:
Definition 2.7. A stationary stochastic process {Y (n)}n=0,1,... is said to be ergodic if

lim
n→∞

1
n

n−1∑
k=0

D(k) = |E [ exp {iY (0)} ] |2 (4)

Another fundamental property is mixing, that is, the asymptotic independence of two
random variables X(n) and X(0) as n goes to infinity. Formally:
Definition 2.8. A stationary stochastic process is said to be mixing if and only if

lim
n→∞

D(n)− | exp {iY (0)} |2 = 0 (5)

In some cases it is easier to check if a process has the mixing property than if this is
ergodic. Since the mixing property implies ergodicity, this can be particularly useful in
the analysis of data.
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3 Method

Having completed a brief overview of the theory behind Fractional Brownian Motion,
we now apply this model to the study of RNA dynamics in real cells. To do that, we
have worked on real data, provided by [Golding and Cox 2004]. Before moving to actual
analysis, we first focus on the description of the data. Indeed, due to the intrinsic
problematic associated with real measurements, these can not be directly used, but
they first need to be pre-processed.

3.1 Dataset

The dataset consists of the trajectories of 27 RNA molecules in live Escherichia Coli
cells. For each particle the x and the y components of the position had been recording
using epiflourescent microscopy at different times. An accurate description of the
experimental method applied can be found in the study by Golding et al. [Golding and
Cox 2004], who kindly provided us the results of their experiments. The position of
each particle has been recorded for around 10 minutes, sampling every other second,
with a total of 300− 500 samples for particles. However, out of these 27 trajectories,
only 10 are complete, while the remaining present gaps from 1 up to 20 frames missing.
As for any other experiment, the recording are likely to have been subjected to noise,
however no information on its nature was available.

3.2 Interpolation

As mentioned previously, most of the trajectories in the data set present gaps. However,
our analysis requires the sampling rate to be constant. Following a common approach,
we were able to reconstruct continuous path interpolating the data at our disposal using
deterministic methods. More precisely, for each trajectories we have considered only the
longest interval with gaps of maximum length 3, i.e. for which up to two detection were
missing. In this way, of the 27 initial particles, only 4 of them have to be discarded. Let
us denote with xi and xi+1 the recorded particle position at time ti and ti+1 respectively.
In order to find the intermediate position x̂ at time t̂, such that di = t̂ − ti > 0 and
di+1 = ti+1 − t̂ > 0, we have used the interpolating technique known as inverse squared
distance weighting, which is based on the formula:

x̂ =
xi
d2
i

+ xi+1
d2
i+1

1
d2
i

+ 1
d2
i+1

. (6)

We just point out that in the case of gap of di = di+1, e.g a single missing detection,
Equation (6) reduces to simple linear interpolation. The same technique could also be
applied to fill longer gaps, in order to recover more and longer samples than the one used
in our study. However, the reader may be aware that this deterministic modification of
the data set might introduce a bias, leading to an inaccurate mathematical description
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of the particle motion. Indeed, even though the approach above discussed is commonly
used, there are no qualitative or quantitative studies in the literature on how this impact
on the results of time series analysis. Due to the limited amount of time, we have not
had the chance to look at this aspect, thus this can be a natural extension of the work
here presented.

3.3 Identifying FBM

In order to properly identify FBM, a method was proposed in [Burnecki et al. 2012].
The algorithm is as follows:

1. Use parallel quantile lines to check if the increments of the data are stationary

2. Verify the probability distribution of the increments using normality tests

3. Check if the data is mixing and thus ergodic using the dynamic functional test.

4. Find the self similarity parameter H and memory parameter d using the sample
and ensemble average mean squared distance.

5. Validate the model using the generalized p-variation test.

3.4 Probability distribution of the increments

In a fractional Brownian motion {Xt}t>0, the increments follow a standard normal
distribution. In order to check for normality, multiple statistical tests have been
computed.

1. Kolmogorov-Smirnov test: It computes the maximum difference between the
theoretical and empirical distribution function. It is sensitive to differences in
both location and shape of the empirical and theoretical cumulative distribution
functions.

2. Lilliefors test: It is an improvement of Kolmogorov-Smirnov test when both
the mean and variance are unknown. It measures the same statistic as the
Kolmogorov-Smirnov test but considering that it has a different distribution.

3. Anderson-Darling test: It computes a weighted distance between the empirical
and theoretical distribution function. This method gives a higher weight to the
tails of the distribution, while the previous two test focus more on the central
values.

4. Jarque bera test: It compares the skewness and kurtosis of both the empirical
and the theoretical distribution.
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3.5 Ergodicity via Mean Square Displacement

In order to check if the process is ergodic, we will calculate the estimators of the
ensemble average mean square displacement (EA −MSD), the time average mean
square displacement (TA − EA −MSD) and the time and ensemble mean square
displacement (EA− TA−MSD)

EA−MSD(τ) = 1
N

N∑
k=1

(Xk(τ)−Xk(0))2 (7)

TA−MSD(k, τ) = 1
N + 1− τ

N−τ∑
t=0

(Xk(t+ τ)−Xk(t))2 (8)

EA− TA−MSD(τ) = 1
N

N∑
k=1

TA−MSD(τ) (9)

For τ = 0, 1, · · · , N − 1.

In an ergodic process, EA − MSD and EA − TA − MSD should coincide in the
long time and sample limit. However, we are dealing with a finite and rather short
sample, both in time and ensemble, and therefore one would expect there to be dif-
ferences in EA −MSD and EA − TA −MSD even if the process is ergodic. The
problem is to decide whether the differences are significant or not. Just as it was done
in [Janczura and Weron 2015], we will not only compare the curves of EA−MSD and
EA− TA−MSD but also to see if the latest lies between the confidence interval for
EA−MSD. If it does, we will conclude that the process is ergodic and that differences
between EA−MSD and EA− TA−MSD come from the finite sample. As it was
calculated in [Janczura and Weron 2015], the confidence interval for EA−MSD with
confidence α is given by(

EA−MSD(τ)− E(X2)
Zχ2

n,1−α/2/N
,
EA−MSD(τ)− E(X2)

Zχ2
n,α/2/N

)
(10)

Where Zχ2
n,α/2 is the quantile of order α of the χ2 distribution with n degrees of freedom.

3.6 Estimation of parameter H

3.6.1 Memory parameter method

When each particle has been proven to have a fractional Brownian motion, we will
estimate the self-similarity parameter H. If H < 1/2 there is subdiffusion, if H = 1/2
the process has a Brownian Motion, and if H > 1/2 there is superdiffusion. After
estimating the H parameter, we will be able to make different clusters of particles
corresponding to different values of H.

If the data sample comes from an H-self similar process with stationary increments
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belonging to the domain of attraction of the Lévy α stable law, then for a large time
domain N ,

TA−MSD(τ) ∼ τ 2H (11)

By doing a linear fit of log(TA−MSD(τ)) with log(τ) we can obtain parameter H.

3.6.2 p-Variation test

Another method to estimate the H parameter for a is the so called p-Variation test.
Given p > 0 and for τ = 0, 1, · · · , N we define the function

V (τ)(p) =
N/m−1∑
k=0

|X((k + 1)τ)−X(kτ)|p (12)

Then, we plot V (τ)(p) for p = 1/H, where H = 0, 0.1, 0.2, · · · , 1. If Hr is the real value
of the H parameter in our sample, we expect that for p < 1/Hr V (τ)(p) is a decreasing
function of time, whereas for p > 1/Hr V (τ)(p) increases with time. Therefore, at
p ∼ 1/Hr the plot of V (p) should become flat. This method is not as precise as the
memory parameter method, as there is a wide range of p that give similar behaviours of
V (p). However, it is a good tool to check the results obtained in the Memory parameter
method.
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4 Results

4.1 Simulations

In order to establish an intuition about the effect of the Hurst parameter, different
FBM sample paths were simulated using different values of H. The variance of the
increments were kept the same for all the three paths. For the low value of H, it can

0 50 100 150 200

t

-30

-20

-10

0

10

20

30

40

X
(t

)

H = 0.2

H = 0.5

H=0.8

Figure 1: Simulation of three different sample paths, using differ-
ent values of H

be seen that the motion has a tendency to regress to the mean, meanwhile for large
H the motion has a tendency to cluster in a direction, and for H = 0.5 the motion is
standard Brownian motion. This can be confirmed by inspecting the autocovariance
function of the increments of the FBM given in definition 2.4. The correlation will be
negative for H < 0.5, zero for H = 0 and positive for H > 0.5.

4.2 Gaussianity tests

In order to verify the probability distribution of the trajectory increments, we will
perform multiple normality tests as described in section 3.4. We have performed these
tests with both the interpolated data in the initial coordinates and the one obtained
after the Principal Component Analysis. We obtained similar results for both sets of
data. Here we show the p-values obtained for the four tests and for both the principal
and orthogonal principal component.
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Particle Kolmogorov-Smirnov test Anderson-Darling test Lilliefors test Jarcque-Bera test
1 0.972 0.357 0.812 ∼ 10−16

2 0.282 0.00120 0.0200 ∼ 10−16

3 0.102 0.000268 0.00134 0.00815
4 0.0591 ∼ 10−14 ∼ 10−7 ∼ 10−16

5 0.6795 0.172 0.237 ∼ 10−10

6 0.404 0.0291 0.0535 0.00235
7 0.392 0.0136 0.0491 0.000469
8 0.826 0.0514 0.440 0.000641
9 0.0123 ∼ 10−9 0.0217 ∼ 10−14

10 0.0894 3.68 ·10−5 0.000688 ∼ 10−16

11 0.329 0.0114 0.0298 ∼ 10−16

12 0.476 0.342 0.0837 0.232
13 0.101 0.00148 0.000968 ∼ 10−16

14 0.545 0.00292 0.00542 0.00163
15 0.534 0.0392 0.115 0.0462
17 0.955 0.537 0.753 0.146
18 0.0193 ∼ 10−14 ∼ 10−9 0.688
21 0.861 0.305 0.505 0.904
22 0.087 ∼ 10−7 ∼ 10−6 0.00296
23 0.127 0.528 0.0216 0.0265
25 0.0650 ∼ 10−13 ∼ 10−6 ∼ 10−16

26 0.0729 0.0575 0.00381 0.0286
27 0.0838 ∼ 10−6 0.0650 ∼ 10−7

Table 1: p-value for the Gaussianity tests of the principal compo-
nent increments.

Particle Kolmogorov-Smirnov test Anderson-Darling test Lilliefors test Jarcque-Bera test
1 0.9167 0.0552 0.00670 0.00962
2 0.251 0.00876 0.0144 ∼ 10−66

3 0.146 0.0009288 0.00321 0.00405
4 0.0418 ∼ 10−16 ∼ 10−11 ∼ 10−16

5 0.105 0.172 0.0121 0.268
6 0.182 0.0291 0.00572 0.00173
7 0.0958 0.0136 0.00912 0.00656
8 0.415 0.0514 0.0578 0.00267
9 0.255 0.0151 0.0155 ∼ 10−14

10 0.0897 ∼ 10−6 0.00695 ∼ 10−13

11 0.0173 ∼ 10−8 ∼ 10−5 0.0133
12 0.853 0.2896 0.491 0.421
13 0.233 0.00122 0.0109 ∼ 10−5

14 0.858 0.373 0.501 ∼ 10−8

15 0.607 0.149 0.166 0.602
17 0.695 0.0517 0.253 0.00114
18 0.935 0.517 0.684 0.152
21 0.892 0.505 0.573 0.303
22 0.0297 ∼ 10−7 ∼ 10−5 0.00109
23 0.178 ∼ 10−6 0.00563 ∼ 10−8

25 0.0377 ∼ 10−10 ∼ 10−8 ∼ 10−8

26 0.193 0.0575 0.653 0.310
27 0.0856 ∼ 10−6 0.00694 ∼ 10−7

Table 2: p-value for the Gaussianity tests of the orthogonal
principal component increments.
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A p-value smaller than 0.01 means that if the increments followed a Gaussian distribution,
the probability of obtaining the experimental values would be less than 1%. In that
case, we would reject the hypothesis of normality. Otherwise, if the p-value is greater
than 0.01 we would accept that the increments are normally distributed. If we look
at tables 1 and 2, we can see that there are particles, such as particle 12 which pass
all four tests of normality. However, there are other particles which fail only some
of the tests. We noticed that most of the particles seem to have worse results in the
Anderson-Darling and Jarque-Bera tests. These two tests give more value to the tails
of the distribution than to the central values. This motivates us to look at the QQ-plot
of these distributions. The following figures show an example of these QQ-plots for two
different particles.

(a) Particle 9 (b) Particle 12

Figure 2: QQ-plots of the increments’ distribution of the principal
component.

The QQ-plot show the quantiles of the experimental distribution against the theoretical
distribution. If the two distributions are equal, the experimental data should coincide
with the theoretical one. This happens with particle 9 of figure 2. If we look at the
QQ-plot of particle 12, we can see that the experimental distribution coincides with the
theoretical one in the central values, whereas in the tails the experimental distribution
has more extreme values. The presence of heavy tails is usually caused by the existing
noise of the data. As we do have noisy data, it was expected to have heavy tails and
therefore worse results in the normality tests. In order to check if this is the case,
we could repeat the experiments with longer trajectories and see if the distribution
resemble more to a normal one.

Since all particles seem to pass the Kolmogorov-Smirnov test, and the failure of some
of the other tests is caused by the presence of heavy tails, which might be attributed to
the noise, we can accept that the general trend of the increments follows a Gaussian
distribution. Therefore, we accept the hypothesis of normality and move on to check
the other properties of the fractional Brownian motion.
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4.3 Estimation of the H parameter

Now that we have checked for the normality of the increments, we will estimate the
Hurst parameter for each particle and each motion component. Assuming that the
particles follow a fractional Brownian motion, we can use the memory parameter method
to estimate the value of H. As presented in Section 3.6.1, this method is based on
the asymptotic behaviour of the mean square displacement. As illustrated in Figure
3, in order to estimate H a linear approximation of the logarithm of the mean square
displacement is considered. According to the theory, the slope of the is ∼ 2H.

Figure 3: Memory parameter method to estimate the Hurst
parameter for particle 1 in the principal component.

Using this technique, we have calculated the H parameter for the original x and y
coordinates. The result are illustrate in Figure 4.

Figure 4: H parameter for all particles in the x and y direction.

We noticed that there are pairs of particles that have symmetric H values, that is,
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that the value of H in the x coordinate for one particle is similar to the value of H for
the y coordinate for another particle. Moreover, looking at the original video of the
detection [Golding and Cox 2004], we noticed the bacteria cells are not aligned, but
disposed with a random inclination. This facts motivate us to perform the principal
component analysis. In this way we were able to identify for each particle the direction
of movement with the largest variability. By changing the coordinates in this way, we
would expect that the value of H for the principal component is larger than the value of
H for the orthogonal principal component, as shown in Figure 5. We can now discern
clearly a common trend in the behaviour of different particles.

Figure 5: H parameter for all particles in the principal component
and orthogonal principal component.

In this case, most of the particles have a value of H < 0.5, and only three of them have
H ∼ 0.5. In other words, most of the particles seems to be subjected to sub-diffusion,
meanwhile only few behaves according to standard Brownian motion.

4.4 Clustering

By looking at Figure 5 we have clustered particles according to the value of H. Since we
consider the motion in the principal and orthogonal component independent, we form
different clusters as listed in Table 3 and Table 4. We now assume that the trajectories
in the same cluster are realization of the same process, so that this can be treated as
an ensemble.

16



Principal component:

Cluster Particles mean H
1 3,4,5,6,7,8,10,11,13, 14,15,17,18,21,23,25,26 0.385
2 1,2,22 0.513
3 9, 27 0.288

Table 3: Clusters for the principal component.

Orthogonal principal component:

Cluster Particles mean H
1 1,2,3,6,9,10,11,12,13, 15,18,21,22,25,26 0.150
2 5,7,8,17, 23,27 0.0782
3 4,14 0.315

Table 4: Clusters for the orthogonal principal component.

4.5 Stationarity

Following the procedure outlined in Section 3.3, we can now use each cluster identified
as an ensemble. In particular, we will consider Cluster 1 in Table 3 and Table 4 as
independent process defining the motion of the particle in the principal and orthogonal
component respectively.

The first step consists in the analysis of the quantile lines for the increments. As
specified previously, for a stationary process as FBM, these are expected to be parallel.
However, as illustrated in Figure 6, this is not the case for neither of the samples
considered. Instead of straight lines, the plots present highly oscillating curves.

(a) Quantile lines Principal component (b) Quantile lines Orthogonal component

Figure 6: Quantile lines plots with the following color convention:
0.2 (dark blue), 0.3 (orange), 0.4 (yellow), 0.5 (purple), 0.6 (green)
and 0.75 (light blue).

However, the same trend characterizes Figure 7. The latter is obtained using samples of
the same size as the one we have been using but generated from an exact distribution.
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Even though we know that the underline process is stationary, the limited size of the
ensemble make the quantile-line test inconclusive.

Figure 7: Quantile lines obtained with 20 samples generated from
an exact Fractional Brownian Motion: H = 0.2 (left), H = 0.25
(centre) and H = 0.3 (right). Each color stands for a different
quantile: 0.25 (blue), 0.5 (orange) and 0.75 (yellow).

Given this, in order to proceed with our analysis, we will just assume that the processes
are indeed stationary.

4.6 Mean square displacement for ergodicity

As described in Section 3.5, we will now check for ergodicity using each cluster as an
ensemble of particles of the same distribution. The following figures show the values
of EA-MSD, TA-MSD and EA-TA-MSD as a function of time, and also the confident
intervals for EA-MSD, for the first clusters.

(a) Ergodicity for the principal component. (b) Ergodicity for the orthogonal component.

For the principal component, the EA− TA−MSD fits perfectly inside the confidence
interval of the EA−MSD, with a confidence of 1−α = 0.95. Therefore, we conclude that
the process is ergodic. For the orthogonal principal component, the TA− EA−MSD
does not always fit in the confidence interval of the EA−MSD. However, with the
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99% confidence, the values of EA− TA−MSD do lie in the confidence interval, as
seen in Figure 9.

Figure 9: Ergodicity for the orthogonal principal component with
the α = 0.01 interval of confidence.

Therefore, we conclude that the ergodicity is mostly satisfied for both motion components
but the results are better for the principal component.

4.7 A deterministic point of view

As known, diffusion can also be describe deterministically with the use of Partial
Differential Equation. In particular, the motion is characterized by the value of the
diffusion coefficientD. This macroscopic constant can be either estimated experimentally
or determined based on microscopic properties of the motion. In particular, the following
relation holds:

TA− EA−MSD(τ) ∼ 6D τ 2H + C (13)

Looking at equation (13), we notice that the left hand side is the same quantity estimated
in Section 4.6. On the other hand, the right hand side has three unknown parameters,
D, C and H. We have already discussed the meaning of H and D. The constant C is
instead a measure of the noise present in the measurements. The estimate obtained
using MATLAB package for interpolation are listed in Table 5. In Figure 10, we have
compared the estimated quantities with the corresponding analytic fit. For both the
components, we notice that the value of C is approximately zero. This means the results
are unlikely to be affected by a systematic error. However, random error may still plays
a role. Despite the difference, the value of H is below 0.5 in both cases. This means
that along both direction the motion is not completely random. Remember indeed that
H = 0.5 corresponds to a standard Brownian motion. We are instead dealing with
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sub-diffusion. Despite this indicates a form of passive transport as well as standard
diffusion, this is impeded by the presence of obstacles in environment. In particular, the
lower the H the more constrained the motion. As expect from the results obtained in
Section 4.3, the value of H is higher in the principal component than in the orthogonal
one. Consequently, we can conclude that the motion is constrained along one direction,
where the particle moves almost randomly. This is in line with the properties of the
intra-cellular fluid, or cytoplasmic matrix, the particles are diffusing in. Besides its
viscosity, this contains several organelles which represent obstacles for the particles.
The nature of the media is related also to the diffusion coefficient D. In both directions,
the value is of the order of 10−3, which is in the range estimated by [Golding and Cox
2004]: from 10−3 to 3× 10−2.

Principal Orthogonal Units
D 0.001 0.001446 µm2/sec
H 0.3825 0.1220 −
C 0.005186 ∼ 0 µm2

Table 5: Estimation of the parameters in Equation (13). Cluster
1 in Table 3 and 4 have been used respectively for the Principal
and Orthogonal components.

(a) Principal component (b) Orthogonal principal component

Figure 10: Plot of TA − EA −MSD(τ) as defined by 9 and
based on the analytic fit given by Equation 13.
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5 Conclusion

Starting from a brief overview of fractional Brownian and its properties, we have
introduced the methodology proposed by [Burnecki et al. 2012]. This has then been
applied to the analyses of RNA molecule dynamics in bacterial cells. Using the principal
component analysis, we have first set a 2 dimensional local coordinate system for
each trajectory in the data-set. Treating the principal and orthogonal component
independently, we have analyzed the motion in the two directions separately. Based on
the value of the parameter H, as defined in 4, we have identified 3 clusters. To get a
better insight in the nature of RNA motion, each have been considered as an ensemble
of realizations of the same process. In agreement with the qualitative observation
[Golding and Cox 2004], the results obtained suggests that there is also a quantitative
evidence that particles are mainly subjected to sub-diffusion. This supports the idea
that RNA molecules are not subjected to active transport mechanism, but they are
instead impeded in their motion even though at different degree. However, the small
size of the sample of trajectories and the gaps in the position recorded significantly
narrowed the reliability of our conclusion. A pre-processing of the data can be applied
to recover more and longer trajectories and consequently draw more reliable conclusions.
This is a natural extension of the work together with a more detailed analysis of the
noise involved in the experimental measurements.

6 Group work dynamics

During the Modelling week 2018 we developed the project regarding diffusion and
anomalous diffusion, under the mentorship of our instructor Michał Balcerek. After-
wards, the students group wrote a final report containing the methodology and results
obtained during the stay in Novi Sad.

The group dynamics during the modelling week evolved as follows. In the first one an a
half days, our instructor taught us some lectures including the fundamental concepts
we needed to know and some supplementary information. Afterwards, all together we
started getting familiar with the data set and planning the possible steps that we could
follow throughout the stay. Once we had a clearer view of the problem, we distributed
some tasks between the students and began working. We discussed all together the
new trajectories that could lead the project as well as the results and methodology
followed by each partner. We distributed the work so that everyone could develop their
strengths and provide a useful insight to the project. Since everyone explained their
tasks and how they performed them, we could all learn from the others’ experience
and give suggestions for improvements. In this way, all of us took part in all the parts
developed during the stay.

We started writing the report the last day in Novi Sad. All together we decided
what we should write and how it should be structured. Afterwards, we distributed
the tasks so that everyone could take part in the writing of the report. We wrote
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each part individually but we all read the others’ part work and give suggestions of
improvements.

7 Instructor’s assessment

During ECMI Modelling Week in Novi Sad the students were given a task to explore
topic connected with bio-mathematics. Specifically, the task was to analyze the well-
known data set of Escherichia Coli cells, presented in Golding and Cox article. The
plan was to propose a mathematical model which could describe movement of the E.
Coli bacteria.
Given given such a advanced and complicated problem the students performed really
well. During the modelling week they obtained thorough mathematical intuition
and knowledge concerning the studied problem. They considered different stochastic
models, starting from ones describing classical diffusion, usually used in mathematical
biology, going through some of its modifications, and finally examining anomalous
diffusion models in form of Fractional Brownian Motion and ARFIMA models. They
demonstrated a handful of fresh and interesting ideas, such as using principal component
analysis presented in this report. I am considering using such a approach myself!
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