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1 Introduction

Wind power as a renewable energy source is a growing factor in global electrical power
supply. The share of wind power in the European Union’s total installed power capacity
has increased from 6% in 2005 to 18% in 2017 (in “Wind in power 2017-Annual
combined onshore and offshore wind energy statistics”) with support by the politics.
However, the electrical power supplement system is designed for energy generation on
demand, whereas the wind power generation is weather dependent. Therefore, the
power supplement system is a combination from renewable energy generation and fossil
fuels. In order to combine them in a smart and efficient way wind speed prediction is
necessary.

For different applications, predictions in different time scales are utilized. A short time
scale (48-72h) is important for energy trading and power supplement management,
a longer time scale is used for maintenance. This report aims to predict the wind
power in Sofia for six hours ahead. Therefore data from the weather station at the
airport in Sofia from 01.06.2017 till 01.06.2018 for every half an hour is provided
and includes temperature, pressure, wind speed and direction and meteorological
information. Additionally, data from the Global Forecast System (GFS) is used. GFS is
a weather forecast model produced by the National Centers for Environmental Prediction
(NCEP)(Global Forecast System). First of all, we introduce the power curve to figure
out the dependency of the wind power from the wind speed. Thus, only the prediction
of wind speed remains. To do so, we apply two different approaches: the physical
and statistical approach. In the statistical approach, the wind speed observations
are considered as a time series and the distribution is investigated. Furthermore, the
auto-regressive integrated moving average (ARIMA) model is introduced and trained
with the provided data in order to determine suitable parameter for the model.
The physical approach starts from an atmospheric model based on the Navier-Stokes-
Equations. We propose simplifications, which will lead to two methods. One using
modified streamfunction-vorticity reformulation and the other a two-dimensional Burgers
equation. Then both will be discretized in time and space with a finite difference
approximation.

2 The Power Curve

The power curve connects the wind speed forecast with the desired wind power forecast.
In order to calculate the power curve, data from wind speed with the corresponding
generated wind power is utilized. The data includes measurements from one month in
a time interval of one minute.
In Figure 1, the scatter diagram of wind speed with the corresponding wind power is
depicted. Also three fitted piece-wise polynomials of the degrees 3, 4 and 5 are shown.
Their coefficients are determined by the data. The polynomial function of degree 3
has a root-mean-square-error (RMSE) of 100.700, the polynomial function of degree
4 has an RMSE of 79.772 and the polynomial function of degree 5 has an RMSE of
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Figure 1: Historical data of wind speeds and the corresponding
powers, as well as power curves fitted by the data as polynomial
functions of various degrees.

79.349. So the power curve fits the data sufficiently well and will be used to calculate
the wind power. Therefore, the following presented techniques will concentrate on the
wind speed forecast.

3 Wind Speed Prediction Methods

3.1 The Statistical Approach

3.1.1 Time series

Given the observations being sequentially ordered with respect to 30 minute separated
time stamps, an instinctive initial approach is to consider the wind speed observations
as a time series. However as many time series methods assume Gaussian distribution,
a normality check to validate this assumption is necessary. The distribution of the
considered wind speed is illustrated in Figure 2a, where a clear positive skewness is
visible. The skewness is further illustrated in Figure 2b where the probability plot
illustrates a poor fit to the Normal distribution.
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(b) Q-Q plot of wind speed observations against Gaussian distribution.

Figure 2: Validation of Gaussian distribution assumption.

In order to obtain a Normal distribution of the observed wind speeds, a suitable power
transformation is necessary. A common transformation for non-normal variables is the
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transformation of Box and Cox 1964, which is defined as

y
(λ)
i =


xλi − 1
λ

if λ 6= 0,
ln xi if λ = 0,

(1)

for some scale parameter λ. However as the Box-Cox transformation only accepts
positive observations and the wind speed data contains several zero-values instances (as
seen in Figure 2a), an alternative version of (1) is considered for (xi + 1) instead of xi.

By thereafter incorporating a square root transform, i.e. λ = 0.5, the distribution will
be given as illustrated in Figure 3a, where a slightly less skewed distribution is visible.
The improvement is more obvious in Figure 3b where the probability shows alignment
with the Normal distribution with a minor tail.

6



0 1 2 3 4 5 6
Wind speed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Wind speed distribution
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(b) Q-Q plot of Box-Cox transformed wind speed observations against Gaussian distribution.

Figure 3: Validation of Gaussian distribution assumption after
Box-Cox transformations with λ = 0.5.

In order to gain a more initiated understanding of the wind speed patterns, an additive
deconstruction of the time series components is established such that

yi = Ti + Si +Ri (2)
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where Ti is the trend component, reflecting the long-term progression of the series, Si
represents the seasonal variation and Ri represents the residuals, i.e. noise of the ith
observation. The decomposition of (2) for the last two weeks of observed wind speed in
May 2018 is illustrated in Figure 4, where a very obvious daily seasonality is detected.

Since the seasonality will affect the wind speed value given time of its periodicity, the
mean of the time series will be non-stationary and therefore unstable. In order to
stabilize the time series from the daily seasonality, differencing is implemented. The
differencing technique simply transforms each instance to be the difference between
the current value and the value at the same periodicity of the previous season, i.e.
yi = yi − yi−48 since the daily seasonality consists of 48 half-hour intervals.
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Figure 4: Seasonal decomposition of wind speed time series during
last two weeks of May 2018.

With non-stationarity being eliminated by differencing, an autoregressive integrated
moving average (ARIMA) model from Box et al. 2015 is introduced. ARIMA is
a generalized combination of three polynomials providing a greedy description of a
stationary stochastic process. An ARIMA(p, d, q) model is fitted using an autoregressive
part p, describing how the feature of interest is regressed on its lagged values, a moving
average part q, describing how the regression error is a linear combination of error terms
occurring at various past times, and a integrated part d, which indicates whether the
data has been exploited to a differencing process.

In order to determined suitable parameter values for the ARIMA model, the correlations
of the time series are analyzed. Figure 5 illustrates the autocorrelation, i.e. the
observations correlation to lags, and partial autocorrelation, i.e. the autocorrelation
with indirect correlations being removed, respectively. As seen in Figure 5b a cut-off at
lag 6 is visible which, according to Box et al. 2015, indicates that p = 6 is a suitable fit
for the data. Figure 5a however shows significant values for lags of order larger than 60,
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indicating that the time series need to be integrated, i.e. d = 1, and that q could be
rather large. For simplicity due to limited time however, q = 1 is chosen as an initial
model estimation.
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(a) Autocorrelation plot.
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(b) Partial Autocorrelation plot.

Figure 5: Autocorrelation plots of Wind speed observations with
a 95% confidence interval.

The initial model will hence be an ARIMA(6, 1, 1) model. The model is initially trained
on all observations prior to the last week of the time series, and a forecast of the next
4 hours is provided by the trained model. The test data will subsequently be added
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to the training set and the model is retrained and tested on the next 4 hours of the
test set. This iteration process will continue until the full test set has been considered,
and the entire forecasting sequence of the last week of the time series is illustrated in
Figure 6, with the total root mean squared error being 1.626. As seen in the figure,
the model shows some delay in following the true drifts of the series, but overall the
forecast captures the true series sufficiently well considering being an initial model.
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Figure 6: 4 hour wind speed forecast. Root mean square error of
the forecast is 1.626.
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3.2 The Physical Approach

As well as statistical methods, we also considered a more physical approach for pre-
dicting wind speed. Numerical Weather Prediction, commonly abbreviated to NWP,
is practised regularly by weather forecasting companies to produce both short and
long range forecasts. It achieves such results by generating a numerical simulation of
the atmospheric governing equations, given some initial atmospheric conditions. The
simulations predict the evolution of several meteorological quantities such as wind
velocity, temperature, and pressure, and hence, it is possible to forecast wind speed in
Sofia using this method.

However, the NWP method does not come without its flaws; such simulations require a
high level of computing power, and the chaotic nature of the atmosphere introduces a
reliance on the accuracy of the initial data provided. Nevertheless, the aim of this section
is to demonstrate the capability and proficiency of NWP for wind speed prediction.

In the first subsection we introduce the full atmospheric model taken from Kalnay 2002,
describe assumptions we made, and present the simplified model that we proceeded to
use in our simulations. The following two subsections focus on two different methods that
we implemented to predict how the wind velocity evolves in time using our initial data.
The first method uses a modified streamfunction-vorticity reformulation to solve our
simplified atmospheric model, whereas the second method simplifies our model further
to the two-dimensional Burgers equation and produces results using a semi-implicit
scheme.

3.2.1 Atmospheric Model

The governing physical equations of the atmosphere, often referred to as the primitive
equations, are a set of coupled, non-linear, differential equations that are used to
approximate atmospheric flow. They can be presented in several different forms but,
since we are interested in predicting wind speeds in a small, localised area, we worked
with the primitive equations on an f -plane, which is when the Coriolis parameter, f ,
is assumed to be constant. Taken from Kalnay 2002, these equations in Cartesian
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coordinates are:
∂u

∂t
+ v̄ · ∇u = fv − 1

ρ

∂p

∂x
, (3a)

∂v

∂t
+ v̄ · ∇v = −fu− 1

ρ

∂p

∂y
, (3b)

∂w

∂t
+ v̄ · ∇w = −1

ρ

∂p

∂z
− g, (3c)

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) + ∂

∂z
(ρw) = 0, (3d)

p = ρRT, (3e)
∂s

∂t
+ v̄ · ∇s = Q

T
, (3f)

s = Cp ln θ. (3g)
In equations (3a) - (3g) v̄ = (u, v, w) denotes the velocity vector, p represents pressure,
ρ is density, T is temperature, s is the specific entropy of an air parcel, and θ is potential
temperature. There are also some constants present in our system: f represents the
Coriolis parameter, g is the gravitational acceleration, Cp is the coefficient of specific
heat at constant pressure, and Q is the rate at which heat is supplied to an air parcel
(Kalnay 2002).

System (3) is highly intricate and takes a lot of computational power to solve numerically.
In order to demonstrate its capability in delivering wind speed forecasts, we simplify this
system by assuming two-dimensional, incompressible fluid flow. This reduces system
(3) to:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= fv − 1

ρ

∂p

∂x
, (4a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −fu− 1

ρ

∂p

∂y
, (4b)

∂u

∂x
+ ∂v

∂y
= 0. (4c)

The next two subsections present different methods in which we can solve system (4).

3.2.2 Streamfunction-Vorticity Formulation

The Streamfunction-Vorticity formulation has often been used to successfully solve
the two-dimensional incompressible Navier-Stokes equations using a finite difference
algorithm (Salih 2013). As these equations are very similar to those that we wish to
solve in system (4), we took the same approach. This approach involves reformulating
system (4) using the vorticity vector, ω̄, defined generally as

ω̄ = ∇× v̄,
and, more specifically in the two-dimensional x− y plane, as

ω = ∂v

∂x
− ∂u

∂y
. (5)
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This reformulation also introduces the concept of a streamfunction, which is a scalar
quantity defined for incompressible fluid flow in two dimensions. The fluid flow velocity
components can be expressed as the derivatives of the streamfunction, Ψ, such that

u = ∂Ψ
∂y

, and v = −∂Ψ
∂x

. (6)

Equation (6) can be substituted into Equation (5) to obtain a Poisson equation for Ψ:

∇2Ψ = −ω. (7)

Equation (7) can be used in place of the continuity equation in (4c) since it is automati-
cally satisfied by Equation (6). To complete the streamfunction-vorticity reformulation,
another relationship between Ψ, ω, and the velocity components, must be obtained in
addition to Equations (6) and (7).

The advantage of using the streamfunction-vorticity approach to solving System (4)
is that it allows the admission of a solution without explicitly involving pressure.
Differentiating Equation (4a) with respect to x and Equation (4b) with respect to
y leads to a common mixed derivative of pressure in the two resulting equations.
Subtracting one of these equations from the other eliminates pressure and results in the
following vorticity transport equation:

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= 0, (8)

where we have simplified Equation (8) by using Equations (4c) and (5).

Together with Equation (6), Equations (7) and (8) provide all of the relationships
necessary to be able to calculate the velocity components using ω and Ψ. By discretising
all three equations, a finite difference algorithm can now be implemented to calculate
how these quantities will evolve in time. However, we must first discretise the numerical
spatial and temporal domains.

Let D = [0, 1]× [0, 1] be the spatial domain on which we wish to solve these equations.
We begin by generating a uniform Cartesian grid over D with grid points (xi, yj) defined
by

xi = 0 + i∆x, i = 0, 1, ..., Nx,

yj = 0 + j∆y, j = 0, 1, ..., Ny,
(9)

where ∆x = 1
Nx

and ∆y = 1
Ny

represent the grid step sizes in the x and y directions,
respectively and spacing measured by h = 1

N+1 . We also discretise the temporal domain
by introducing time levels tn = t0 + n∆t, with a uniform time step ∆t = t1−t0

Nt
. Here,

Nt is the number of time steps that the simulation will take between the start time, t0,
and the final time, t1. From here on, we use the notation uni,j to represent the value of
variable u at grid point (xi, jj) at time tn.

We can now begin discretising our equations. Since the Poisson equation in (7) is an
elliptic partial differential equation, the standard central difference scheme is used to
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(a) Wind velocity field at t1=0.1 seconds. (b) Wind velocity field at t1=2 seconds.

Figure 7: Evolution of the wind velocity field at different times
in the simulation.

discretise the second order spatial derivatives, which gives

Ψn+1
i+1,j − 2Ψn+1

i,j + Ψn+1
i−1,j

∆x2 +
Ψn+1
i,j+1 − 2Ψn+1

i,j + Ψn+1
i,j−1

∆y2 = −ωn+1
i,j , (10)

where ∆x and ∆y are the step sizes in the x and y directions, respectively. Equation
(6) is approximated by using a first order one-sided finite difference scheme for both of
its spatial derivatives, which means that we update the velocity components using

un+1
i,j =

Ψn+1
i,j+1 −Ψn+1

i,j

∆y and vn+1
i,j =

Ψn+1
i,j −Ψn+1

i+1,j

∆x . (11)

For the vorticity transport equation in (8) we followed (Salih 2013) and used a third
order upwind scheme for the discretisation of the first order spatial derivatives and the
Euler forward difference scheme (otherwise known as the explicit Euler method) for the
temporal derivative. Mathematically, this is written as

ωn+1
i,j − ωni,j

∆t + uni,j

(
ωni+1,j − ωni−1,j

2∆x

)
+ q(u+ω−

x + u−ω+
x )

+vni,j
(
ωni,j+1 − ωni,j−1

2∆y

)
+ q(v+ω−

y + v−ω+
y ) = 0,

(12)

where q = 0.5 and
u− = min(uni,j), u+ = max(uni,j),
v− = min(vni,j), v+ = max(vni,j),

ω−
x =

ωni−2,j − 3ωni−1,j + 3ωni,j + ωni+1,j

3∆x , ω+
x =

ωni−1,j − 3ωni,j + 3ωni+1,j + ωni+2,j

3∆x ,

ω−
y =

ωni,j−2 − 3ωni,j−1 + 3ωni,j + ωni,j+1

3∆y , ω+
y =

ωni,j−1 − 3ωni,j + 3ωni,j+1 + ωni,j+2

3∆y .

Now that all of the key equations have been discretised, we are completely ready to
implement the finite difference algorithm that will allow the prediction of the wind
velocity components. The algorithmic process uses the following steps:
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Figure 8: An illustration of the boundary conditions used in the
simulation in Figure 7.

1. Use initial data for u and v to initialise ω and Ψ using Equations (10) and (11).

2. Compute ω at the next time using Equation (12).

3. Compute Ψ at the next time step by solving the linear algebraic system (10).

4. Compute u and v at the next time step using (11).

5. Return to step 2 and repeat procedure.

When we implemented this finite difference algorithm, we used initial wind speed data
taken from Sofia to initialise the wind velocity field in step 1. We ran simulations for
different values of t1, the results of which are displayed in Figure 7, where we imposed
the boundary conditions illustrated in Figure 8.

3.2.3 BTCS Configuration

A simple and intuitive approach is the direct substitution of partial derivatives with
some low-order finite difference formulas. But first, we propose a further simplification
of equations (4a), (4b) and (4c) by dropping the incompressibility condition (4c) and
excluding all terms that contain the pressure p. This leads to the inviscid Burgers’
equation in two dimensions

∂u(x, y, t)
∂t

+ u(x, y, t) · ∂u(x, y, t)
∂x

+ v(x, y, t) · ∂u(x, y, t)
∂y

− f · v(x, y, t) = 0, (13)

∂v(x, y, t)
∂t

+ u(x, y, t) · ∂v(x, y, t)
∂x

+ v(x, y, t) · ∂v(x, y, t)
∂y

+ f · u(x, y, t) = 0, (14)
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where f denotes the Coriolis force as a system parameter. Furthermore, we impose
initial conditions and Dirichlet boundary conditions. Our domain is taken to be of
rectangular shape, i.e. Ω = [xmin, xmax]× [ymin, ymax] with time line [tmin, tmax]. Next,
we discretize the domain Ω and introduce

• xmin =: x1 < . . . < xNx := xmax with equal width hx = (xmax − xmin)(Nx − 1)−1,

• ymin =: y1 < . . . < yNy := ymax with equal width hy = (ymax − ymin)(Ny − 1)−1,

• tmin =: t1 < . . . < tNt := tmax with equal width τ = (tmax − tmin)(Nt − 1)−1.

Let uni,j and vni,j denote the numerical approximation to u and v at the grid point (xi, yj)
at time t = tn, respectively.

We follow the approach as in [Bahadir 2002] and discretize spatial derivatives with
the well-known central difference stencil of second order. Since explicit time-stepping
methods for transport phenomena lead to stability issues and therefore restrictions to the
time step τ , we will use a simple first-order implicit method for the temporal derivative.
This yields the following fully implicit "Backward in Time-Central in Space"-scheme:

0 =
un+1
i,j − uni,j

τ
+ un+1

i,j ·
un+1
i+1,j − un+1

i−1,j

2 · hx
+ vn+1

i,j ·
un+1
i,j+1 − un+1

i,j−1

2 · hy
− f · vn+1

i,j , (15)

0 =
vn+1
i,j − vni,j

τ
+ un+1

i,j ·
vn+1
i+1,j − vn+1

i−1,j

2 · hx
+ vn+1

i,j ·
vn+1
i,j+1 − vn+1

i,j−1

2 · hy
+ f · un+1

i,j . (16)

We store the numerical solution at time step tn as Wn = (un1 , vn1 , un2 , vn2 , . . . , unN , vnN),
where N = Nx · Ny and the single subscript index is according to the index map
ind(i, j) = i + (j − 1)Nx, i = 1, . . . , Nx and j = 1, . . . , Ny. To get the solution
at tn+1 we need to solve the system F (Wn+1) = 0 of nonlinear equations, where
F : RN × RN → R2·N is a function containing the finite difference expressions for the
solution, i.e. F = (fu1 , fv1 , . . . , fuN

, fvN
). Fully expanding F , we have

F (Wn+1) =

u
n+1
i,j −un

i,j

τ
+ un+1

i,j ·
un+1

i+1,j−un+1
i−1,j

2·hx
+ vn+1

i,j ·
un+1

i,j+1−un+1
i,j−1

2·hy
− f · vn+1

i,j

vn+1
i,j −vn

i,j

τ
+ un+1

i,j ·
vn+1

i+1,j−vn+1
i−1,j

2·hx
+ vn+1

i,j ·
vn+1

i,j+1−vn+1
i,j−1

2·hy
+ f · un+1

i,j


i,j

!= 0.

As in [Bahadir 2002], we apply Newton’s Method to solve this system:

1. Choose an initial guess W (0)
n+1, e.g. the previous time step solution W (0)

n+1 = Wn.

2. For k = 0, 1, . . . until convergence:

• Solve the linear system DF (W (k)
n+1)∆W (k)

n+1 = −F (W (k)
n+1),

• Set W (k+1)
n+1 = W

(k)
n+1 + ∆W (k)

n+1.

To implement Newton’s Method, we need the Jacobian DF (W (k)
n+1) ∈ R2NxNy×2NxNy of

F or at least an approximation to it. In our case, we have the opportunity to write

16



down an analytic expression for the Jacobian. Exploiting the linearity of F with respect
to un+1

i,j , vn+1
i,j , we get

DF (W (k)
n+1)i,j =

 1
τ

+ un+1
i+1,j−un+1

i−1,j

2hx

un+1
i,j+1−un+1

i,j−1
2hy

− f
vn+1

i+1,j−vn+1
i−1,j

2hy
+ f 1

τ
+ vn+1

i,j+1−vn+1
i,j−1

2hy

 .
The full matrix is of size NxNy ×NxNy and its entries are themselves block matrices
of size 2 × 2. Note, that those finite difference expressions are only valid on interior
nodes. On boundary index positions, we add identity block matrices with zeros on the
right-hand-side. In doing so, we avoid undesirable corrections on the discrete boundary.

For illustrative purposes, we applied the BTCS scheme to the following test problem.
Consider the system of Burgers’ equations (13) and (14) on the unity square Ω = [0, 1]2.
The parameter representing the Coriolis force is set to f = 2. The initial condition is
a discontinuity in a sense, that for (x, y) ∈ [0.1, 0.6] × [0.2, 0.7], we have u(x, y) = 1
and v(x, y) = 0. Everywhere else, it is u(x, y) = 0 and v(x, y) = 1. Furthermore, we
impose homogeneous Dirichlet boundary conditions. To see a quiver plot of the initial
velocity profile, view Figure 9a. For the simulation, we set the time interval T = [0, 2.5],
the temporal step size τ = 0.1 and the spatial step sizes hx = 0.04 and hy = 0.04.
See Figure 9 for the evolution of the velocity field under a strong Coriolis effect. The
Reynolds number is set to 100.

As the last point, we point out a direction, where this simple simulation strategy leads
to. The computational domain will be chosen as a rectangle with its corners identical
to nodes in the GFS database. To obtain as much accuracy as we can, we will choose
the spatial resolution to be high. The temporal horizon of the simulation will be set
to 4 hours as it is in the posed problem and the temporal resolution can be chosen
quite low, due to the numerical method being implicit in time. This permits a big time
step size, compared to explicit methods, which we don’t use here. Furthermore, we
will use pure Dirichlet boundary conditions, that will be incorporated from the Global
Forecast System. Observations of wind speeds at the four corners of our domain will be
taken from the GFS database and be interpolated at our grid nodes. Our boundary
conditions will not evolve in time, but that will not bother us, as we are interested
in one specific location only, namely Sofia Airport. The last adjustment will be the
Coriolis force, which we then set to f = 2 · 7.2921 · 10−5 · sin(42.6952).
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(a) Velocity field at t = 0.0 (b) Velocity field at t = 0.5

(c) Velocity field at t = 1.0 (d) Velocity field at t = 1.5

(e) Velocity field at t = 2.0 (f) Velocity field at t = 2.5

Figure 9: Evolution of the velocity profile during the simulation.
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4 Discussion and Conclusion

First of all, the calculation of the desired wind power through a wind speed prediction
using the power curve with satisfying accuracy is shown in Chapter 2. To achieve a
wind speed prediction three methods are presented. In Chapter 3.1, the statistical
approach with time series is described. Since the wind speed observations failed the
normality check, a suitable power transformation is necessary. An auto-regressive
integrated moving average (ARIMA) model is proposed and the parameters are fitted
through analyzing the correlations of the time series. All in all, the wind speed forecast
corresponds to true time series quite sufficiently, although it shows some delays. One
way to improve the forecast is to find a more suitable model setting. In order to tune the
parameters you can find a more accurate model with an extensive grid search. Besides
more advanced methods could be implemented and compared in order find the most
suitable method for the wind speed prediction.

In Chapter 3.2, the physical approach is specified. Although using two simplified
methods based on the Navier-Stokes-Equations the implementation of the time and
spatial derivatives is still challenging. Different finite difference approximations and
their combinations are discussed to create a stable and robust algorithm. Both methods
were tested with dummy data. Furthermore the provided real data should be included
and the algorithm validated. Potentially the simplifications could lead to insufficient
accuracy which should be investigated. Additionally, the algorithm could be analyzed
regarding efficiency. In summary, the physical approach appears to be promising, but
needs to be further evaluated due to the missing integration of the data. Subsequently,
at this stage the physical approach cannot be compared to the other approach.

5 Group work dynamics

The problem of wind power prediction can be approached in a variety of ways, including
numerous methods from both statistics and physics. With a variety of backgrounds and
expertise within the Modelling Group, a decision was made to attempt a solution to
this problem by implementing several of the different methods. In order for this to be
achieved, the Modelling Group partitioned itself with the aim that each of its members
would work on separate methods of solution and communicate their progress to each
other throughout the Modelling Week.

This division of workload definitely has its advantages over simply focusing on one
method of solution; more avenues were able to be explored, and it allowed for a direct
comparison between the competence and efficiency of each method. However, it also
comes with its disadvantages, which, unfortunately, were strongly felt in this instance.
The division of group work also invoked a division in communication in the group.
Segregated expertise afforded members to only have an understanding of the foundation
and workings of their own method, rather than a shared knowledge of how all methods
worked. Furthermore, with a large variety of backgrounds and expertise amongst the
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members of the Modelling Group, an approach which encouraged a sharing of knowledge
and closer group work activity may have been preferable.

This division of group work had a further knock-on effect when focus was turned to
working together on this report. The job of relating all sections and aspects of this
report together was difficult for a single member to convey leading to an informative
but disjointed report. Moreover, in the instance that not all members could find time
to contribute to this report, an entire section would have to be omitted from the report,
due to the fact that no other members of the group understood it enough to explain
it, which unfortunately was experienced here with one of the more practised methods
from during the Modelling Week.

Whilst dividing the group into subgroups has its benefits, its drawbacks were more
largely felt here. Successful work is only produced from a group that has been split
up in such a way if a high level of communication can be maintained. In retrospect,
choosing a different approach, wherein members of the Modelling Group work together
on one method of solution may have delivered better results but, more importantly, it
may have encouraged a Modelling Group that had better communication and a more
energetic group dynamic.

6 Instructor’s assessment

The problem of predicting wind speed for the purposes of wind power production is of
high importance for the effective exploitation of the technology. There exist numerous
approaches, both physical and statistical, and, therefore, the problem, posed during the
ECMI Modelling Week, suggested many possible paths to be pursued.

The group worked effectively to outline a couple of possible approaches by doing some
research and went on to the implementation of those ideas. From my point of view, the
results, obtained during the Modelling Week were more than satisfactory, taking into
account that for only a week the general trend of the wind behaviour was captured in the
statistically-based forecasts. Even though the physically-based simulations include great
simplifications of the atmospheric processes, they give a general idea of the possible
paths to be further pursued.

Unfortunately, the results, obtained using artificial neural networks during the Modelling
Week, are not included by the group in this report, even though they looked quite
promising, due to the inability of a group member to write his part of the report.
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