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Abstract

Seismic monitoring is used to study the behavior and composition of the un-
derground floor. For earthquake prediction and underground works precise timing
and positioning information is needed. Drilling companies use equipments that
are linked in a network and are generally connected to a global positioning system
for synchronization. However, instruments are not continuously synchronized
and their internal clocks may deviate in time. Hence, the periods to which the
vibration of the underground floor are caught are inherently inaccurate due to
inaccuracies in timing of the event. Consequently, the precise localisation of the
events becomes impossible. In this study, we have time delay measurements and
distance data of a seismic monitor network and we use it to investigate the time
drift in each of the seismic monitor station clocks.
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1 Introduction

In operation of seismic networks high quality of data is required for accurate prediction
of seismic events. Precise timing is crucial but continuous GPS synchronization of the
stations’ internal clocks is not possible due to high energy consumption. This is why we
need to detect time drifts differently in times of disconnection from the GPS in order
to continuously guarantee reliable data.

The purpose of this work is to analyze noise in a large network of seismic monitors and
to extract clock drift from the delay. This work suggests a way to determine clock drift
based on the data only. For that, we use the information contained in the distance data
to clear the delay data from clock drifts.

2 Problem Statement

2.1 Definitions

∆i clock drift at station i
δij Measured delay between station i and station j
δ̂ij Actual delay between station i and station j
εij Noise between two stations i and j, including clock drift and

ambient noise
rij Distance between stations
wij Adjacency matrix element, weight between two nodes

2.2 Modelling time delay between seismic monitors

The network of monitors can be modelled as a complete graph. The signal of each
monitor is cross-correlated with other monitor signals, finally yielding time-delay data
δ̂ij between each monitor. The time delay between the monitors comprise information
on the real time the seismic wave travels between the monitors δij, the inaccuracies of
the clock (time drift), and other noise affecting the measurement. The position of each
seismic monitor in the network is available that can be used to compute the distances
rij between all stations.

3 Data

The data is collected from a network of 73 seismic monitor stations recording ground
vibrations in the Southeast region of France. The average distance between two monitors
in the network is 166 km. The GPS coordinate position of each station in the network
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is known (Figure 1) and they each contain a clock which is synchronized to the GPS
once a month. The seismic monitor sensor records compression and decompression as
discrete values -1 and 1, respectively, every second. The sensor responds to any event in
the area, be it an earthquake, tremor from road traffic, airplane or any other pressure
wave which travels in the ground.

Figure 1: The network of seismic monitors are located in the
Southeast France, mostly in the regions of Provence-Alpes-Côte
d’Azur and Rhône-Alpes. The eight stations chosen as the small
test set is shown as green in the southeast part of the area.

The stations work independent of each other and are occasionally shut down for some
time frame for maintenance, repair or just random events. Just as occasionally they
are brought back up to continue measuring. Therefore, the number of active stations
varies over time. The Figure 2(a) shows the number of working stations, and the Figure
2(b) the number of working connections between the monitor stations over one year of
measurements.

(a) The number of working seismic monitor sta-
tions.

(b) The number of working connections between
the stations.

Figure 2: Working stations and connections over one year time
period.

The compression and decompression data recorded by the stations is retrieved and run
through initial data cleaning and filtering procedures. The data is then cross-correlated
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(a) Time Signal. (b) Histogram.

Figure 3: The time-delay signal recorded between one station pair
over a year. The time delay is computed in one-hour windows,
yielding 24 time-delay values over a day.

in one-hour time windows to yield time-delay data of signals between all monitors
(Figure 3).

Figure 4: Comparison of the delay of the furthest and closest
station pairs over 10 days.

The time delays between monitors are assumed to depend on the distance between the
those same monitors. The further away the monitors are from each other, the longer
the time a seismic wave travels from one station to another. The time the wave travels
corresponds to the actual delay and is the lion share of the measured delay between
stations. Noise and clock drift are of a lower in order of magnitude. Figure 4 shows the
time signal of the station pairs that are closest and furthest apart over a time frame
of 10 days supporting this assumption. One can see that the variance of the delays
is much higher for the stations that are far apart. However the seismic events occur
randamly.
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Figure 5: Histograms of time delays of all active stations recorded
over 24 hours. The histogram shows how many connections have
a particular delay at the instant.

The Figure 5 shows an example of time-delay evolution of all monitors over 24 hours.
The distributions are symmetric with zero mean which implies that the delays at an
instant cancel out over the whole area the 73 stations are mounted in. The interesting
feature of the histograms is how the shape of the distribution changes slowly over time.
However, the mean remains zero.

3.1 The most influential stations

The stations playing a key role in the global deviation of the total graph will be evaluated
by the singular value decomposition of the global delays matrix δ̂ ∈ Rn×m, where n is
the number of edges and m the number of time steps.

In order to find the index of the eigenvector with the most relative importance by the
number of connections (regardless of the observed time delays) the time delay matrix δ̂
was turned binary.

The Figure 6(a) shows the relative weight of the connections for each of the eigenvalue’s
index, the first one being the largest one. With that, the next step was to find the
connections with the largest relative weight and the limit at which the connections do
not have any more influence in the overall time delay, which will be shown in Figure
6(b) as a plot of the relative weight of each of the connections using the matrix δ̂ with
the measured time delays.
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(a) Singular values for the binary connection matrix. (b) Influences of connections.

Figure 6: Determining the influences of connections.

In order to select the group of connections with the largest weight a threshold of |0.05|
was taken, which resulted in 74 connections among 52 active stations. Finally, three
stations with the largest numbers of connections (34, 21, and 13) were identified. The
remaining stations had only two connections or less.

These three stations were identified as the most influential stations, along with another
group of five nearby these three stations stations, were taken as a small test set of
stations to evaluate the methods developed in this work.

4 Methods

Let δ̂ ∈ Rn×n be the measured pairwise time delays of the system, δ the actual pairwise
time delays, and ε an error term including clock drift of the station’s clock and other
errors

δ̂ = δ + ε. (1)

Each of the monitors are equipped with a clock which runs independent of others.
It is synchronized via GPS system once a month and then runs independently. The
inaccuracy in timing events at a station is caused by variations in the clocks’ oscillators
which oscillation may not be idea, they might respond to outside events and the
oscillations are also affected by earthquakes.

The position of each seismic monitor in the network is known. As the monitors are
spread across a large area, it is assumed that local tremors are detected by stations
that are close by, and therefore the correlations found in the pairwise cross-correlations
and time delay data between them have higher likelihood to be linked.
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4.1 The graph denoising model

4.1.1 Definitions

The computational denoising model developed in this work involves weighted network
estimation by the use of topological graph metrics, described in detail in Spyrou and
Escudero 2017.

The monitor network constitutes a weighted graph Gδ = (V , E , δ̂t) defined by a finite
set of nodes V with |V| = n, a set of edges E = {(vi, vj) ∈ V}, with max |E| = n2 − n
and the weighted adjacency matrix δ̂ with δ̂ii = 0 for all i based on the measured time
delays between stations. The matrix δ̂ is symmetric and describes the time delays
between events in the graph, and is normalized, i.e. δ̂ij ∈ [0, 1]. The weighted adjacency
matrix indicates the strength of connection between nodes.

The network also specifies another weighted graph Gr = (V , E ,W ), which sets of nodes
and edges are the same as those of Gδ, but the adjacency weight matrix W is based
on the physical distances between the station pairs. Also these weights are normalized
between [0, 1].
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w23
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w34
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Figure 7: Minimal example to help understand the computation
of graph metrics.

4.1.2 Graph metrics

Graph metrics are scalar functions of the weight matrix X of a graph

fi(X) = Ki (2)

They quantify a property of the network. In this work, the metrics involve time delays
(δij) or the physical distances (rij) between stations. The connection strength of a node
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i that is the row sum of the normalized weighted adjacency matrix:

fi(δ̂) =
∑
j

δ̂ij for Gδ = (V , E , δ̂t) (3)

Ki = fi(W ) =
∑
j

wij for Gr = (V , E ,W). (4)

The connection strength can be interpreted as the sum of all normalized delays of all of
the connections to node i.

Figure 7 shows a minimal example of how the metric is computed. The node 1 has
three connections yielding a connection strength w12 +w13 +w14 = 0.1 + 0.3 + 0.6 = 1.0.
The other nodes and their connection strengths are computed similarly.

Next, we look at the Ki. Since we have the distance measurements available and expect
a correlation between the delays and distances, we want to use this information to
denoise the delay measurements and define

Ki = fi(W). (5)

It is the connection strength as well. But here we plug in the distance matrix W. The
distances are constants and yield constant Ki. The weight matrix W is a function of
the distance between node i and node j.

1. First, we choose the function to be the reciprocal of the distances of the node to
all other nodes, wij = 1/rij, normalized between [0, 1]. Higher values correspond
to nodes with short distances to all other nodes.

2. Second, we try a metric with weights proportional to the distances (wij ∝ rij),
normailzed between [0, 1] accordingly. Here, high values correspond to long
distances between two stations.

Other possible metrics are average neighbor degrees (resilience), transitivity, or a
clustering coefficient. The analysis based on these metrics is beyond the scope of this
work.

4.1.3 Cost function

We assume to have estimates of M differentiable graph metrics, one for each node i, of
the original matrix δ̂, i.e. fi(δ̂) = Ki, where i ∈ {1, . . . ,M}, then we can formulate a
cost function that measures the deviation of the observed weight matrix’s metrics fi(δ̂)
to the estimates Ki as:

c(δ̂) =
∑
i

e2
i (δ̂) =

∑
i

(fi(δ̂)−Ki)2 (6)
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The error is minimized with gradient descent updates on δ̂:

δ̂(k+1) = δ̂k − µ
∑
i

ei(δ̂k)
dfi(δ̂k)
dδ̂k

, (7)

where k is the iteration index and µ the learning rate. We find the derivative for the
gradient descent update step. For i = 2 it is

df2

dδ
=

∑
j δ̂2j

dδ̂
=



0 1 0 . . . 0
1 0 1 . . . 1
0 1 0 . . . 0
... ... ... . . . ...
0 1 0 . . . 0

 . (8)

It is a symmetric matrix with ones in the ith row and ith column. The diagonal entries
remain zero.

4.2 Clock drift estimate

The denoising model in section 4.1 computes the denoised estimate δ of the measurement
data δ̂. The algorithm is run over a series of time points and an estimate for the clock
drift ∆ij between each station pair is obtained.

The noise, εij , between each pair between two stations in the system is caused by clock
drifts ∆i and ∆j, and other ambient errors Eij

εij = ∆i −∆j + Eij. (9)

The unwanted ambient noise Eij is assumed to be white noise that can be cancelled
out by interpolation of the total noise.

The clock errors of individual stations can be written in matrix form



1 −1 0 0 . . . 0
1 0 −1 0 . . . 0
1 0 0 −1 . . . 0
... ... ... ... . . . ...
1 0 0 0 . . . −1
0 1 −1 0 . . . 0
0 1 0 −1 . . . 0
0 1 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 1 −1





∆1
∆2
∆3
∆4
...

∆k
...

∆n−1
∆n



=



∆1 −∆2
∆1 −∆3
∆1 −∆4

...
∆1 −∆n

∆2 −∆3
∆2 −∆4

...
∆2 −∆k

...
∆n−1 −∆n



=



∆12
∆13
∆14
...

∆1n
∆23
∆24
...

∆2k
...

∆(n−1)n



,
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which can be written more compactly as

Gs = m (10)

where s is the unknown model vector and m the known data Sens-Schonfelder 2008.
The matrix G has rank n− 1, meaning that it is lacking full rank.

This represents a classical overdetermined inversion problem which can be solved by
ordinary least squares regression after Tikhonov reqularization. The ordinary least
squares seeks to minimize the sum of squared residuals

‖Gs−m‖2
2. (11)

When Tikhonov regularisation is added to the Equation 11, we obtain

‖Gs−m‖2
2 + ‖Γs‖2

2, (12)

for some suitable Tikhonov matrix Γ. We choose this matrix as a multiple of the
identity matrix Γ = αI, giving preference to smaller norms.

The explicit solution is hence given by

ŝ = (GTG + ΓTΓ)−1GTm. (13)
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4.3 Algorithm

The graph denoising algorithm by Spyrou and Escudero 2017 is described in algorithm
1.

Data: Noisy data We,
calculated estimates for graph metrics Km,
learning rate µ,
maximum error ε
Result: Denoised data Ŵ
initialization: t = 0, W0 = We, E = ∑

m(fm(W0)−Km)2

while E > ε do
W(t+1) = Wt − µ

∑
m(fm(Wt)−Km)dfm(Wt)

dWt

if wi,j < 0 then
wi,j = 0

end
if wi,j > 1 then

wi,j = 1
end
E = ∑

m(fm(Wt+1)−Km)2

t = t+ 1
end
Ŵ = Wt

Algorithm 1: Graph denoising algorithm.

The algorithm for obtaining the time delays for the measuring stations during time t is
described in algorithm 2.

Data: Results from algorithm 1, δ,
measured time delays, δ̂, and
Tikhonov regularisation constant, α.
Result: Clock drifts ∆i

get the error matrix ε between the stations by δ̂ − δ.
arrange the error matrix ε to match m from equation 10 and call it m.
∆ = (GTG+ α2IT I)−1GTm, where G comes from equation 10, and I is identity
matrix of the size of GTG.

Algorithm 2: Clock drift calculation.

5 Results

The noisy time delay signal was analyzed by the graph denoising algorithm (Algorithm
1) and the clock drift was further processed by the Algorithm 2. The denoising of a
signal between one station pair is depicted in the Figure 8. For simplicity and readibility,
the figure includes the signal for 10 days. The Figure 8(a) shows how the time delays
between events between the pair of stations varies between roughly [−3, 3] seconds. The
Figure 8(b) shows the denoised signal which, based on the assumptions introduced in
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the denoising algorithm, is the true time delay between observed events. The signal
noise which includes also the clock drifts affecting this particular station pair is depicted
in the Figure 8(c). The figure 8 clearly shows how the signal and noise appear quite
random and lacking trend by nature.

(a) Delay signal δ̂ of one connection for 10 days. (b) Denoised signal δ of the connection.

(c) Signal noise ε

Figure 8: Denoising of the time delay signal at between two
stations.

The clock drifts were obtained from the denoised signals such as the one depicted in
the Figure 8(c) and computed for each of the stations by using the Algorithm 2. The
obtained clock drifts for each of the analyzed eight stations are shown in the Figure 9.
It is evident in the figure that each of the station clocks tick at a different pace and
that the pace varies. The scale of the axes are important. It shows that although an
individual clock drift may account for up to 6 percent inaccuracy in timing at each
time point, it may also tick at a roughly constant binary pace producing also binary
deviation in the measurements, such as the clocks in the top and botton left in the
Figure 9.
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Figure 9: Clock drifts of the eight stations obtained by the signal
denoising model. The rough maximum scale of the individual
clock drift is marked in the low right corner of each figure.

6 Conclusions and Outlook

By analyzing the delay data we clearly showed that it changes over time showing
patterns other than only white noise. This is due to clock drift. We used a method
of weighted network estimation by the use of topological graph metrics exploiting the
relation between delay and distances to denoise the data. The method is robust to
temporarily disconnected stations that are only included as they are only included in
the calculations when they are active. Hence, the algorithm can be run for on larger
networks. The clock drifts are derived from the denoised time delay signals computed
by the denoising algorithm developed in this work.

The analysis provided in this report cannot produce conclusive evidence on the quality
of the clock drift estimates due to missing validation data. This could be overcome by
producing a synthetic dataset to first validate the methodology and then evaluate the
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obtained estimates. The methodology could be further augmented by developing other
graph metrics in addition to the distance metric, or apply a combination of multiple
metrics. As this work only included a subset of stations, the further work would also
consist of including the complete network of stations in the analysis.

7 Group work dynamics

Christophe gave us a more detailed presentation of the problem in the first group work
session. After this, we asked questions and started a first discussion. From then on
Christophe left the work and work distribution to us. We started by all absorbing the
problem individually reading papers. The same afternoon we used the blackboard to
discuss our ideas and find a feasible starting point for our work. Christophe had given
us some assumptions and questions.

The second day we decided to sit closer together in a circle and be closer to the
blackboard that we kept using throughout the whole week to brainstorm ideas. We
let everyone individually decide what they wanted to work on and sometimes asked
around what everyone was currently working on to have a good overview and avoid that
anything was left aside or the same thing was done twice. One subteam worked on the
methods and developed the applied metrics, others analyzed the data and performed
single value decomposition. This mode of working continued for the rest of the week.

Some team members had more experience in group work than others and everyone had
different backgrounds. This was an advantage in terms of the various view points and
abilities we had as a group. However, communication was sometimes difficult as we
didn’t know what to expect from each other.

We started to write the report already during the week so we only needed to finalize
details and write up results after the modelling week in Novi Sad. We stored our data,
results, presentation and report in a GitHub project allowing for easy access and version
control to all the team members.

8 Instructor’s assessment

The subject proposed was dealing with modelling the effect of time delay for large
network of seismic monitor. At first, only a presentation of the problem was offered,
without any supporting data. The first day of the modelling week was disconcerting for
the group and they studied possible theoretical approaches in group. After the data
were given to the group, they felt more confident and proposed even more ideas on
how to approach the problem. They organised themselves given the time constraint,
to explore various line of thoughts. They were efficient in doing so and proposed a
real nice solution that could combined their different finding. The final solution given
by the group was completely unexpected, and different from what I first envision. It
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provided new ideas that we are currently exploring with the team that provided that
seismical data. They were also able to produce the almost final report by the end of
the modelling week.

I would really like to thanks Liisa-Ida, Patricia, Dimitar, Jordi, Leevi and Stefan for
their good work. It was really nice to see them interact and freely exchange ideas during
this week.
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