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1 Introduction

At the present time, people are interested in artificially freezing the soil in certain areas,
whether for recreational purposes on ice rinks or as a necessity in the economy. In
times of global warming, especially people have to struggle with additional problems
living in permafrost regions. The soil in such areas is permanently frozen due to the low
temperatures, thus providing additional stability for buildings and roads constructed
thereon. However, as temperatures rise, the thawing of the earth threatens, resulting in
the loss of this additional stability. Collapses of buildings or tunnels can be the result.
Also, the volume of the substrate decreases with increasing temperatures, as the water
in the earth continues to contract below 4 ◦C. As a result, paved roads are ruptured
and so impassable for vehicles. In such situations one is therefore interested in keeping
the soil artificially frozen. By using cooling pipes in the soil, through which cooling
liquid flows, this effect can be effected. The mathematical modeling leads to the so
called "Bernoulli’s free boundary problem". This report is about the derivation of an
iterative formula to calculate the null level set of the temperature u.

2 Physical Setting

Cooling
Liquid

Frozen Soil
Soil

Σ

Γ

Ω

Figure 1: Schematic illustration of our problem

We consider our problem in two dimensions. Precisely, the cross section of our cooling
pipe and the surrounding soil should be a part of R2. We denote the boundary of
our cooling pipe by Σ. We assume, the temperature on Σ is known and given by a
function g : Σ→ R. After a long time of cooling process, the temperature u has reached
a stationary state. In this state, there is a subset of the soil around the cooling pipe
where the soil is frozen. Let us denote this part by Ω. And also there is a part of
the soil, where the temperature u is 0 ◦C, which is denoted by Γ. Figure 1 gives an
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illustration of our problem. In this setting, u is satisfying the following properties:
∆u = 0 in Ω
u = g on Σ
u = 0 on Γ
∂u
∂n

= h on Γ,

(1)

where ∂u
∂n

= ∇u · n is the normal derivative of u and n is the outer unit normal of Γ.
Finally, the function h > 0 depends on various properties of soil, for example its specific
thermal conductivity.

The last line of equation (1) is the so called "Stefan condition". This condition is
motivated by the fact that we have no source of heat in the soil around the pipe, so the
energy in form of temperature flowing into the ice is the energy which flows out from
the surrounding soil.

3 Finding Γ - Gradient Descent

For the numerical calculation of our quantity of interest Γ we will construct an iterative
procedure. Let us consider a procedure in the following form:

Γk+1 = Γk + z dk, k ∈ N0 (2)

where

• Γk ⊂ R2,

• z : Γk → R2 is a vector field on the actual Γk, (we interpret it as pointwise search
direction for our new Γk+1),

• dk : Γk → R is the pointwise stepsize for every search direction.

In this case we can not handle our formula in a good way, so we replace Γk by a
parametrization γk : [0, 1]→ Γk. We are getting this new formula:

γk+1(s) = γk(s) + z(s) dk(s), k ∈ N0, s ∈ [0, 1]. (3)

We read (3) pointwise for every s ∈ [0, 1]. We have z and dk replaced by new functions
on [0, 1] and still the same range but we do not have relabeled them. In Figure 2 we
see an illustration, how we calculate our new Γk+1. For our iterative formula, z and dk
are still unknown. So, for z we will choose simply the outer unit normal vector field of
the actual Γk and for dk we need to do some calculations.

We are interested of the level set Γ where u is zero. So let us look at an arbitrary but
fixed s ∈ [0, 1]. At the point γk(s) ∈ Γk we are searching for a root of u or in other
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Γk

Γk+1

γk(s0)

γk+1(s0)
z(s0) dk(s0)

Figure 2: Scheme, how we calculate our new Γk+1

terms: we want to find a value dk(s) such that u(γk(s) + z(s)dk(s)) = 0. Regrettably
we do not know much about our function u except ∆u = 0 in Ω. Furthermore Ω is also
unknown, because of Ω = conv{Σ,Γ}, where

conv{Σ,Γ} =
{
x ∈ R2 | ∃xΣ ∈ Σ, ∃xΓ ∈ Γ: ∃α ∈ [0, 1] : x = αxΣ + (1− α)xΓ

}
is the convex hull of Σ and Γ. So for the actual iteration k we are computing u on a
discrete Ωk and we are trying to compute dk by a Taylor expansion of u, because it
allows us to relate values of u on Γk+1 to values of u on Γk. We calculate the Taylor
expansion until the first order and omit higher order terms.

0 != u(γk+1(s)) (3)=u(γk(s) + z(s) dk(s))
Taylor
≈

at dk=0
u( γk(s)) +∇u(γk(s)) ) · z(s) dk(s)

⇒ dk(s) = u(γk(s))
∇u(γk(s))) · z(s) s ∈ [0, 1]. (4)

4 Computing u

We know from Section 2 u is satisfying (1). Since we do not know Γ exactly, we can
not solve this PDE. We have to replace (1) by the following, semi-discretized problem:

∆u = 0 in Ωk

u = g on Σ
u = 0 on Γk
∂u
∂n

= h on Γk,

(5)
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where Ωk = conv{Σ,Γk}. By [Harbrecht 2012] we will see that u can be computed in
the following way:

u(x) = − 1
2π

∫
Σ∪Γ

log‖x− y‖ ∂u
∂n

(y) dσy −
1

2π

∫
Σ∪Γ

〈x− y,ny〉
‖x− y‖2 u(y) dσy, x ∈ Ω. (6)

In the next Section we will discuss two different approaches to discretize this formula.
With their help we will get a formula to calculate the discretized u on Γ.

5 Discretization

5.1 Linear Equality Systems for u

The following two Sections are about the discretization of equation (6). Every approach
discretize one of the occuring integrals in (6) and will produce a SLE. To solve the
discrete version of (6), we solve the sum of both SLE.

5.1.1 Single Layer Approach

For a domain D with diameter diam(D) < 1 and compact Lipschitz boundary Γ let u
satisfy ∆u = 0 in D

u = g on Γ.

There exists a function w, such that

u(x) = − 1
2π

∫
Γ

log ||x− y||w(y) dσy, x ∈ D. (7)

Taking traces on both sides, we are solving:

Vw = g on ∂D,

to obtain w. Setting x = γ(s) ∈ Γ, gives us from (7):

(Vw)(x) = − 1
2π

∫
Γ

log ||x− y||w(y)dσy

= − 1
4π

1∫
0

k(s, t)w̃(t)dt

=: (Ṽw̃)(s), x ∈ D,
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where k and w̃ are suitable short notations, i.e.

k(s, t) := log ||γ(s)− γ(t)||2, w̃(t) := ||γ′(t)||w(γ(t)).

Now, we will use another trick. We split k in the following form k(s, t) = k1(s, t)+k2(s, t),
where 

k1(s, t) := log
(
||γ(s)−γ(t)||2
4 sin2(π(s−t))

)
,

k2(s, t) := log ( 4 sin2(π(s− t)) ) ,
(8)

with

lim
s→t

k1(s, t) = log
∥∥∥∥∥γ′(t)2π

∥∥∥∥∥
2
 . (9)

This is necessary to calculate the diagonal elements in the discretization matrix. For
trigonometric Lagrange polynomials Li(t), we assume w̃(t) = ∑n−1

i=0 w̃iLi(t). For n = 2m
this yields

1∫
0

k2(si, t)Lj(t)dt = − 1
m

(
m−1∑
l=1

1
l

cos(2πl(si − tj)) + 1
n

cos(2πm(si − tj))
)

:= Rj(si).

For

V 0 = 1
n

(
k1(sj, ti)

)n−1

i,j=0
, V 1 =

(
Rj(si)

)n−1

i,j=0
, w =

(
w̃i

)n−1

i=0
,

g =
(
g̃(si)

)n−1

i=0

we will get a SLE

− 1
4π (V 0 + V 1)w = g.

Having solved for w allows to compute:

u(x) = − 1
4πn

n−1∑
i=0

log ||x− γ(ti)||2w̃(ti) (10)

5.1.2 Double Layer Approach

For a domain D with compact Lipschitz boundary Γ, a function u which is satisfying∆u = 0 in D
u = g on Γ,
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there exists a function w, such that

u(x) = 1
2π

∫
Γ

〈x− y,ny〉
||x− y||2

w(y)dσy, x ∈ D. (11)

We are solving:

(
K − 1

2

)
w = g on Γ,

to obtain w. Setting x = γ(s) ∈ Γ, gives us from (11):

(Kw)(x) = 1
2π

∫
Γ

〈x− y,ny〉
||x− y||2

w(y)dσy

= 1
2π

1∫
0

k(s, t)w̃(t)dt

=: (K̃w̃)(s), x ∈ D,

where k and w̃ are practical short notations, i.e.

k(s, t) := 〈γ(s)− γ(t),n(t)〉
||γ(s)− γ(t)||2 ||γ

′(t)|| w̃(t) := w(γ(t)). (12)

We are using a Nyström-Scheme and

lim
s→t

k(s, t) = 〈γ
′′(t),n(t)〉
2||γ′(t)|| . (13)

for the diagonal elements of the LES-matrix to obtain a linear system of equations(
K− 1

2I
)

w = g,

with

K = 1
2πn

(
k(si, tj)

)n−1

i,j=0
, w =

(
w̃(si)

)n−1

i=0
, g =

(
g̃(si)

)n−1

i=0
.

Having solved for w allows to compute:

u(x) = 1
2πn

n−1∑
i=0

〈x− γ(ti),n(ti)〉
||x− γ(ti)||2

||γ′(ti)|| w̃(ti). (14)
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5.1.3 Mixed Boundary Value Problems

Let Ω, Σ, Γ be as above. Look at

∆u = 0 in Ω, u = g on Σ, ∂u

∂n
= h on Γ.

We know a representation formula of u by (6). For using this formula, we require u
and ∂u/∂n on both, Σ and Γ. By the boundary conditions we have u = g on Σ and
∂u/∂n = h on Γ. So the values of u on Γ and the values of ∂u/∂n on Σ are missing.
To calculate it, we solve a SLE with block matrices:(

VΣΣ −KΓΣ
−VΣΓ KΓΓ + I/2

)(
uN,Σ
uD,Γ

)
=
(

KΣΣ + I/2 −VΓΣ
−KΣΓ VΓΓ

)(
gΣ
hΓ

)
(15)

where uD,Γ are the values of u on Γ and uN,Σ are the values of ∂u/∂n on Σ.

The matrices on the diagonals can be obtain from the previous approaches, the off-
diagonal blocks are given by

VΣΓ = − 1
4π

(
log ‖γΣ(si)− γΓ(ti)‖2

)n−1

i,j=0
,

KΣΓ = 1
2π

(〈γΣ(si)− γΓ(tj),nΓ(tj)〉
‖γΣ(si)− γΓ(tj)‖2 ‖γ′Γ(tj)‖

)n−1

i,j=0
,

VΓΣ and KΓΣ are given similarly, and

uD,Γ =
(
u
(
γΓ(si)

))n−1

i=0
, uN,Σ =

(
∂u

∂n
(
γΣ(si)

)
‖γ′Σ(si)‖

)n−1

i=0
,

with γΓ the parametrization of Γ and γΣ the parametrization of Σ. gΣ and hΓ are
the vectors of the given Dirichlet and Neumann data on the discretization points
s0, s1, . . . , sn−1.

5.2 Discretization of Γ

We want to construct a discretization of Γ or in other terms of γ : [0, 1]→ Γ. We assume
there exists a function r : [0, 1]→ R+ such that

γ(s) = r(s)
(

cos(2πs)
sin(2πs)

)
, s ∈ [0, 1]. (16)

For our formulas (9), (12) and (13) we will need γ′ and γ′′ respectively. With formula
(16) we will need the first and second derivative of r. Further, the outer unit normal
n of Γ is also necessary. For the derivatives of r it is useful to approximating r by a
trigonometric polynomial in the following form

r(s) = a0

2 +
M−1∑
l=1

(αl cos(2πls) + βl sin(2πls)) + αM
2 cos(2πMs), M ∈ N, (17)
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because then the differentiability is guaranteed. M is chosen skillfully (for example
M = n

2 + 1, where n is the number of discretization points of [0, 1] if n is even). The
outer unit normal n is calculated in the following way:

n(s) = 1
‖γ′(s)‖R γ′(s) (s ∈ [0, 1]), where (18)

R =
(

0 1
−1 0

)
.

This formula is motivated by the fact, γ′ is the tangent vector on Γ, so if we rotate it
and scale by its length, we will get our outer unit normal vector field. The derivatives
of r can calculated by differentiating formula (17). Our final discretizing is to discretize
[0, 1] by a finite set {0 = s0, s1, ..., sn−1 < 1}.

6 Implementation

We already have collected all the tools to compute Γ. Figure 3 illustrates the schematic
procedure of the algorithm. In the following steps we see which files solve the specific
subtasks:

1. First of all we solve equation (5) with an initial γ0 using the numerical method
presented in Section 5.1.3. This is implemented in the files SLA.m, DLA.m and
DLA2Boundaries.m. The first file computes the Single Layer Problem and its
corresponding matrix. The second file computes the Double Layer Problem and
its corresponding matrix. The last file builds on the previous approaches to solve
the mixed problem. After that the matrices in (15) are assembled and the SLE is
solved to get the values of u on Γk.

2. We apply the gradient descent method, which is implemented in newGamma.m, in
order to obtain γk+1, precisely we calculate the coefficients (αj)n−1

j=0 and (βj)n−1
j=0 of

the trigonometric polynomial for the radius function of γk+1.

3. Finally, we check the stopping condition ‖u(γk+1)‖ ≤ ε (for a chosen ε > 0), where
u(γk+1) means the Dirichlet values of u on Γk+1. If the condition is not satisfied,
then we start at step 1 again, now with γk+1 instead of γ0. If the condition is
satisfied, then we have found our approximation of Γ.
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Start

End

solve
PDE (5)

Gradient
descent

‖u(γk+1)‖ ≤ ε get γk+1

get γ0

extract γk

Yes

No

Figure 3: Workflow

7 Numerical Examples

Here we can see some examples of calculation. Every Dirichlet data and every Neumann
data was assumed to be constant on the respective sets. In the following Figures we see
some illustrations of our iterative formula. The boundary Σ is colored in red and the
initial guess Γ0 is colored in magenta. Every fourth iteration of the iterative process
was plotted and colored in blue. In Table 1 we can see, what parameters and boundary
data were chosen, to get this examples. Each calculation falls below the maximum
permissible error ε. The final Γk, which is our approximation for Γ, is also plotted and
colored in green.
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Table 1: Data for the different examples, illustrated in the Figures

Figure #discretization
points

max.
Iterations

error
tolerance

ε

Dirichlet data
on Σ

Neumann data
on Γk, ∀k

4(a) 100 100 0.5 −20.0 5.0

4(b) 100 100 0.5 −20.0 5.0

5 100 30 0.5 −5.0 30.0

In Figure 4 we can see two different choices for Γ0. The remaining parameters were
chosen equally. We see the iteration (blue) converge against a set (approximated by
green).

Figure 4: Circular pipe with different initial guess Γ0
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Figure 5: Star shaped pipe

A suggestion for further research is to obtain the optimal settings as well as creating a
model which uses data for the soil and pipe specifications. Furthermore it is useful to
construct higher order iterative processes, to get faster convergence.

8 Group Work Dynamics

The first day of ECMI Modelling Week we were introduced to the Modelling of Ice
Around Cooling Pipes theme. We discussed about physical model (Figure 1) which
gives an illustration of our problem and ’Stefan condition’ that the temperature, u is
satisfying. After that, we discussed about different methods to compute Γ.

Next day, we were splitted in two groups and discussed about the two different ap-
proaches of formula (6) discretization. One group worked on the Single Layer Approach
while the other group worked on the Double Layer Approach. For the practical im-
plementation of the theory above we used Octave. Later we mixed the groups such
that anybody could tell everything to the other students about his/her approach. We
also made sure that there was at least one student in every group with programming
knowledge of Octave.

After this process the phase was starting to program all discretization functions in
Octave and testing them. Each group programmed their special approach. After
two days we could combine our programs to get the final version. Friday evening we
visualized our results and prepared the presentation for Saturday, July 21st.

After the Modeling Week, we stayed in contact through social networks to work
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together on the report. Everyone wrote on the section he/she worked most during the
week.

9 Instructor’s Assessment

Although the phenomena of ice around cooling pipes is rather familiar nowadays, its
modelling and formulation in mathematical terms is no easy task. I thought that the
students did a very good job in splitting up the modelling problem into smaller tasks
which they distributed among each other. Despite their very different backgrounds
there was a constant collaboration and communication to put achieved results together
to simulate a challenging problem. I find it in particular mentionable that all students
were involved at all times during the modelling week, such that their results can be
considered as the result of a true group work. The fact that the final simulations were
done in two dimensions is especially mentionable.
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