Pseudovarieties generated by Brauer type monoids

K. Auinger

NSAC 2013

Brauer type monoids
Pseudovarieties
Main result
Context
Opposite view
Strategy of proof
Wreath product and labelled product

- all monoids (semigroups) in this talk are finite
- all monoids (semigroups) in this talk are finite
- $\mathfrak{B}_{n}=$ all partitions of

$$
\left\{1, \ldots, n, 1^{\prime}, \ldots, n^{\prime}\right\}
$$

into blocks of size 2

- all monoids (semigroups) in this talk are finite
- $\mathfrak{B}_{n}=$ all partitions of

$$
\left\{1, \ldots, n, 1^{\prime}, \ldots, n^{\prime}\right\}
$$

into blocks of size 2

- members of \mathfrak{B}_{n} are diagrams like this:

Brauer type monoids
Pseudovarieties
Main result
Context
Opposite view
Strategy of proof
Wreath product and labelled product

Composition of diagrams

Brauer type monoids
Pseudovarieties
Main result
Context
Opposite view
Strategy of proof
Wreath product and labelled product

Composition of diagrams

Brauer type monoids
Pseudovarieties
Main result
Context
Opposite view
Strategy of proof
Wreath product and labelled product

Composition of diagrams

Brauer type monoids
Pseudovarieties
Main result
Context
Opposite view
Strategy of proof

Composition of diagrams

Brauer type monoids
Pseudovarieties
Main result
Context
Opposite view
Strategy of proof

Composition of diagrams

Composition of diagrams

Composition of diagrams

composition of diagrams defines a monoid structure on \mathfrak{B}_{n}, the Brauer monoid
$\mathfrak{J}_{n}=$ all elements of \mathfrak{B}_{n} whose diagrams can be drawn without intersecting lines:
$\mathfrak{J}_{n}=$ all elements of \mathfrak{B}_{n} whose diagrams can be drawn without intersecting lines:

$\mathfrak{J}_{n}=$ all elements of \mathfrak{B}_{n} whose diagrams can be drawn without intersecting lines:

\mathfrak{J}_{n} is closed under composition of diagrams, is called the Jones monoid or the Temperley-Lieb monoid

Brauer type monoids
Pseudovarieties
Main result Context
Opposite view Strategy of proof Wreath product and labelled product

Question

Brauer type monoids
Pseudovarieties
Main result
Context
Opposite view

Strategy of proof

Wreath product and labelled product

Question

- What is $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$?

Question

- What is $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$?
- What is $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}$?

Question

- What is $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$?
- What is $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}$?

Question

- What is $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$?
- What is $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}$?

Clearly,

Question

- What is $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$?
- What is $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}$?

Clearly,

- $\mathfrak{J}_{n} \times \mathfrak{J}_{m} \hookrightarrow \mathfrak{J}_{n+m}$

Question

- What is $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$?
- What is $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}$?

Clearly,

- $\mathfrak{J}_{n} \times \mathfrak{J}_{m} \hookrightarrow \mathfrak{J}_{n+m}$
- $\mathfrak{B}_{n} \times \mathfrak{B}_{m} \hookrightarrow \mathfrak{B}_{n+m}$.

Question

- What is $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$?
- What is $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}$?

Clearly,

- $\mathfrak{J}_{n} \times \mathfrak{J}_{m} \hookrightarrow \mathfrak{J}_{n+m}$
- $\mathfrak{B}_{n} \times \mathfrak{B}_{m} \hookrightarrow \mathfrak{B}_{n+m}$.

Question

- What is $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$?
- What is $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}$?

Clearly,

- $\mathfrak{J}_{n} \times \mathfrak{J}_{m} \hookrightarrow \mathfrak{J}_{n+m}$
- $\mathfrak{B}_{n} \times \mathfrak{B}_{m} \hookrightarrow \mathfrak{B}_{n+m}$.

Hence,

Question

- What is $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$?
- What is $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}$?

Clearly,

- $\mathfrak{J}_{n} \times \mathfrak{J}_{m} \hookrightarrow \mathfrak{J}_{n+m}$
- $\mathfrak{B}_{n} \times \mathfrak{B}_{m} \hookrightarrow \mathfrak{B}_{n+m}$.

Hence,

- $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}=$ the divisors of all \mathfrak{J}_{n}

Question

- What is $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$?
- What is $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}$?

Clearly,

- $\mathfrak{J}_{n} \times \mathfrak{J}_{m} \hookrightarrow \mathfrak{J}_{n+m}$
- $\mathfrak{B}_{n} \times \mathfrak{B}_{m} \hookrightarrow \mathfrak{B}_{n+m}$.

Hence,

- $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}=$ the divisors of all \mathfrak{J}_{n}
- $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}=$ the divisors of all \mathfrak{B}_{n}.

Brauer type monoids
Pseudovarieties
Main result Context Opposite view

- $\mathbf{A}=$ all aperiodic monoids
- $\mathbf{A}=$ all aperiodic monoids
- $\mathbf{M}=$ all monoids.
- $\mathbf{A}=$ all aperiodic monoids
- $\mathbf{M}=$ all monoids.

Theorem

- $\mathbf{A}=$ all aperiodic monoids
- $\mathbf{M}=$ all monoids.

Theorem

- $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{A}$
- $\mathbf{A}=$ all aperiodic monoids
- $\mathbf{M}=$ all monoids.

Theorem

- $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{A}$
- $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{M}$.
- $\mathbf{A}=$ all aperiodic monoids
- $\mathbf{M}=$ all monoids.

Theorem

- $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{A}$
- $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{M}$.
- $\mathbf{A}=$ all aperiodic monoids
- $\mathbf{M}=$ all monoids.

Theorem

- $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{A}$
- $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{M}$.

In other words,

- $\mathbf{A}=$ all aperiodic monoids
- $\mathbf{M}=$ all monoids.

Theorem

- $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{A}$
- $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{M}$.

In other words,

- each aperiodic monoid divides some \mathfrak{J}_{n},
- $\mathbf{A}=$ all aperiodic monoids
- $\mathbf{M}=$ all monoids.

Theorem

- $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{A}$
- $\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{M}$.

In other words,

- each aperiodic monoid divides some \mathfrak{J}_{n},
- each monoid divides some \mathfrak{B}_{n}.

Definition

$\mathscr{O}_{n}=$ all order preserving mappings of the chain $1<2<\cdots<n$

Definition

$\mathscr{O}_{n}=$ all order preserving mappings of the chain $1<2<\cdots<n$

Problem

J.-É. Pin (1987): Is it true that $\operatorname{pvar}\left\{\mathscr{O}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{A}$?

Definition

$\mathscr{O}_{n}=$ all order preserving mappings of the chain $1<2<\cdots<n$

Problem

J.-É. Pin (1987): Is it true that $\operatorname{pvar}\left\{\mathscr{O}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{A}$?

- Higgins (1995): No, there exist aperiodic monoids that do not divide any \mathscr{O}_{n}.

Definition

$\mathscr{O}_{n}=$ all order preserving mappings of the chain $1<2<\cdots<n$

Problem

J.-É. Pin (1987): Is it true that $\operatorname{pvar}\left\{\mathscr{O}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{A}$?

- Higgins (1995): No, there exist aperiodic monoids that do not divide any \mathscr{O}_{n}.
- Almeida, Volkov (1998): $\left\{\mathscr{O}_{n} \mid n \in \mathbb{N}\right\}$ is far away from a generating series of \mathbf{A}

Definition

$\mathscr{O}_{n}=$ all order preserving mappings of the chain $1<2<\cdots<n$

Problem

J.-É. Pin (1987): Is it true that $\operatorname{pvar}\left\{\mathscr{O}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{A}$?

- Higgins (1995): No, there exist aperiodic monoids that do not divide any \mathscr{O}_{n}.
- Almeida, Volkov (1998): $\left\{\mathscr{O}_{n} \mid n \in \mathbb{N}\right\}$ is far away from a generating series of \mathbf{A}

Definition

$\mathscr{O}_{n}=$ all order preserving mappings of the chain $1<2<\cdots<n$

Problem

J.-É. Pin (1987): Is it true that $\operatorname{pvar}\left\{\mathscr{O}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{A}$?

- Higgins (1995): No, there exist aperiodic monoids that do not divide any \mathscr{O}_{n}.
- Almeida, Volkov (1998): $\left\{\mathscr{O}_{n} \mid n \in \mathbb{N}\right\}$ is far away from a generating series of \mathbf{A} : the interval $[\mathbf{O}, \mathbf{A}]$ where

$$
\mathbf{O}:=\operatorname{pvar}\left\{\mathscr{O}_{n} \mid n \in \mathbb{N}\right\}
$$

is very big.

Brauer type monoids
Pseudovarieties
Main result
Context
Opposite view
Strategy of proof
Wreath product and labelled product

\mathscr{O}_{n} can be viewed as a submonoid of $\mathfrak{J}_{2 n}$:

\mathscr{O}_{n} can be viewed as a submonoid of $\mathfrak{J}_{2 n}$:

\mathscr{O}_{n} can be viewed as a submonoid of $\mathfrak{J}_{2 n}$:

\mathscr{O}_{n} can be viewed as a submonoid of $\mathfrak{J}_{2 n}$:

\mathscr{O}_{n} can be viewed as a submonoid of $\mathfrak{J}_{2 n}$:

$\mathfrak{J}_{2 n}=\left\langle\mathscr{O}_{n}\right\rangle$, the involutory monoid generated by \mathscr{O}_{n} (w.r.t. reflection of diagrams along the vertical axis as involution)
\mathscr{O}_{n} can be viewed as a submonoid of $\mathfrak{J}_{2 n}$:

$\mathfrak{J}_{2 n}=\left\langle\mathscr{O}_{n}\right\rangle$, the involutory monoid generated by \mathscr{O}_{n} (w.r.t. reflection of diagrams along the vertical axis as involution) $\left\{\mathscr{O}_{n} \mid n \in \mathbb{N}\right\}$ is not so far from a generating series of \mathbf{A} since $\left\{\left\langle\mathscr{O}_{n}\right\rangle \mid n \in \mathbb{N}\right\}$ is one
\mathscr{O}_{n} can be viewed as a submonoid of $\mathfrak{J}_{2 n}$:

$\mathfrak{J}_{2 n}=\left\langle\mathscr{O}_{n}\right\rangle$, the involutory monoid generated by \mathscr{O}_{n} (w.r.t. reflection of diagrams along the vertical axis as involution) $\left\{\mathscr{O}_{n} \mid n \in \mathbb{N}\right\}$ is not so far from a generating series of \mathbf{A} since $\left\{\left\langle\mathscr{O}_{n}\right\rangle \mid n \in \mathbb{N}\right\}$ is one: Jean-Éric pointed in the right direction!

Brauer type monoids
Pseudovarieties
Main result Context Opposite view
Strategy of proof
Wreath product and labelled product

Strategy of proof

Strategy of proof

Definition

$$
\mathfrak{U}_{2}:=\{::: \bullet:\}
$$

(transformation monoid on [2] :=\{1,2\})

Strategy of proof

Definition

$$
\mathfrak{U}_{2}:=\{::: \bullet:\}
$$

(transformation monoid on [2] :=\{1,2\})

Strategy of proof

Definition

$$
\begin{gathered}
\mathfrak{U}_{2}:=\{:::: \mathbf{:}\} \\
\text { (transformation monoid on }[2]:=\{1,2\} \text {) }
\end{gathered}
$$

The proof shows that $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$ is closed under the operation

$$
S \mapsto S \geq\left([2], \mathfrak{U}_{2}\right),
$$

Strategy of proof

Definition

$$
\begin{gathered}
\mathfrak{U}_{2}:=\{:\} \\
\text { (transformation monoid on }[2]:=\{1,2\} \text {) }
\end{gathered}
$$

The proof shows that $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$ is closed under the operation

$$
S \mapsto S \geq\left([2], \mathfrak{U}_{2}\right),
$$

or, more precisely:

Strategy of proof

Definition

$$
\mathfrak{U}_{2}:=\{::: \bullet:\}
$$

(transformation monoid on [2] :=\{1,2\})

The proof shows that $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$ is closed under the operation

$$
S \mapsto S \geqslant\left([2], \mathfrak{U}_{2}\right),
$$

or, more precisely:

$$
S \prec \mathfrak{J}_{n} \Longrightarrow S \imath\left([2], \mathfrak{U}_{2}\right) \prec \mathfrak{J}_{5(n+2)} .
$$

Strategy of proof

Definition

$$
\mathfrak{U}_{2}:=\{::: \bullet\}
$$

(transformation monoid on [2] :=\{1,2\})

The proof shows that $\operatorname{pvar}\left\{\mathfrak{J}_{n} \mid n \in \mathbb{N}\right\}$ is closed under the operation

$$
S \mapsto S \geqslant\left([2], \mathfrak{U}_{2}\right),
$$

or, more precisely:

$$
S \prec \mathfrak{J}_{n} \Longrightarrow S \imath\left([2], \mathfrak{U}_{2}\right) \prec \mathfrak{J}_{5(n+2)} .
$$

The claim then follows from the Krohn-Rhodes Theorem.

Definition

$\mathfrak{T}_{m}=$ all transformations of $[m]:=\{1, \ldots, m\}$ (acting on the right)

Definition

$\mathfrak{T}_{m}=$ all transformations of $[m]:=\{1, \ldots, m\}$ (acting on the right)

The elements of \mathfrak{T}_{m} can be seen as diagrams like this:

Definition

$\mathfrak{T}_{m}=$ all transformations of $[m]:=\{1, \ldots, m\}$ (acting on the right)

The elements of \mathfrak{T}_{m} can be seen as diagrams like this:

Definition

$\mathfrak{T}_{m}=$ all transformations of $[m]:=\{1, \ldots, m\}$ (acting on the right)

The elements of \mathfrak{T}_{m} can be seen as diagrams like this:

which are composed in the obvious way.

Brauer type monoids
Pseudovarieties
Main result
Context
Opposite view
Strategy of proof
Wreath product and labelled product
Take any monoid S and $\mathfrak{T} \leq \mathfrak{T}_{m}$.

Take any monoid S and $\mathfrak{T} \leq \mathfrak{T}_{m}$. The elements of $S \geqslant([m], \mathfrak{T})$ are labelled diagrams like these:

Take any monoid S and $\mathfrak{T} \leq \mathfrak{T}_{m}$. The elements of $S \geqslant([m], \mathfrak{T})$ are labelled diagrams like these:

$$
\left(a_{i} \in S\right)
$$

Take any monoid S and $\mathfrak{T} \leq \mathfrak{T}_{m}$. The elements of $S \geqslant([m], \mathfrak{T})$ are labelled diagrams like these:

$$
\left(a_{i} \in S\right) \quad\left(b_{i} \in S\right)
$$

Take any monoid S and $\mathfrak{T} \leq \mathfrak{T}_{m}$. The elements of $S \geqslant([m], \mathfrak{T})$ are labelled diagrams like these:

$$
\left(a_{i} \in S\right) \quad\left(b_{i} \in S\right)
$$

Why don't we do the same for diagrams in \mathfrak{J}_{m} and/or \mathfrak{B}_{m} ?

Why don't we do the same for diagrams in \mathfrak{J}_{m} and/or \mathfrak{B}_{m} ?

Why don't we do the same for diagrams in \mathfrak{J}_{m} and/or \mathfrak{B}_{m} ?

Why don't we do the same for diagrams in \mathfrak{J}_{m} and/or \mathfrak{B}_{m} ?

Why don't we do the same for diagrams in \mathfrak{J}_{m} and/or \mathfrak{B}_{m} ?

Why don't we do the same for diagrams in \mathfrak{J}_{m} and/or \mathfrak{B}_{m} ?

Solution:

Why don't we do the same for diagrams in \mathfrak{J}_{m} and/or \mathfrak{B}_{m} ?

Solution: orient the arcs and label them by elements of a monoid with involution $x \mapsto x^{R}$!

Why don't we do the same for diagrams in \mathfrak{J}_{m} and/or \mathfrak{B}_{m} ?

Solution: orient the arcs and label them by elements of a monoid with involution $x \mapsto x^{R}$!

\rightsquigarrow labelled product S (L) \mathfrak{J} of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_{m}$
\rightsquigarrow labelled product S (L) \mathfrak{J} of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_{m}$

Essential properties:

$$
\mathfrak{J}_{n}(\mathbb{L}) \mathfrak{J}_{m} \hookrightarrow \mathfrak{J}_{(n+2) m}
$$

\rightsquigarrow labelled product S (L) \mathfrak{J} of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_{m}$

Essential properties:

$$
\mathfrak{T}_{n} 2\left([m], \mathfrak{T}_{m}\right) \hookrightarrow \mathfrak{T}_{n m}
$$

\rightsquigarrow labelled product S (L) \mathfrak{J} of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_{m}$

Essential properties:

$$
\mathfrak{J}_{n}(\mathbb{L}) \mathfrak{J}_{m} \hookrightarrow \mathfrak{J}_{(n+2) m}
$$

\rightsquigarrow labelled product S (L) \mathfrak{J} of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_{m}$

Essential properties:

$$
\mathfrak{J}_{n}(\mathbb{L}) \mathfrak{J}_{m} \hookrightarrow \mathfrak{J}_{(n+2) m}
$$

and

$$
S \prec \tilde{S} \Longrightarrow S \imath\left([2], \mathfrak{U}_{2}\right) \prec \tilde{S}(\mathbb{L}) \mathfrak{J}_{5} .
$$

\rightsquigarrow labelled product S (L) \mathfrak{J} of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_{m}$

Essential properties:

$$
\mathfrak{J}_{n}(\mathbb{L}) \mathfrak{J}_{m} \hookrightarrow \mathfrak{J}_{(n+2) m}
$$

and

$$
S \prec \tilde{S} \Longrightarrow S \imath\left([2], \mathfrak{U}_{2}\right) \prec \tilde{S}(\mathbb{L}) \mathfrak{J}_{5} .
$$

Therefore,

$$
S \prec \mathfrak{J}_{n} \Longrightarrow S \imath\left([2], \mathfrak{U}_{2}\right) \prec \mathfrak{J}_{n}(L) \mathfrak{J}_{5} \hookrightarrow \mathfrak{J}_{5(n+2)} .
$$

For the the claim

$$
\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{M}
$$

one shows:

For the the claim

$$
\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{M}
$$

one shows:

$$
S \prec \mathfrak{B}_{n} \Longrightarrow S \imath\left([2], \mathfrak{U}_{2}\right) \prec \mathfrak{B}_{5(n+2)}
$$

For the the claim

$$
\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{M}
$$

one shows:

$$
\left.S \prec \mathfrak{B}_{n} \Longrightarrow S\right\}\left([2], \mathfrak{U}_{2}\right) \prec \mathfrak{B}_{5(n+2)}
$$

and

$$
S \prec \mathfrak{B}_{n} \Longrightarrow S \imath\left([m], \mathfrak{S}_{m}\right) \prec \mathfrak{B}_{m(n+2)} .
$$

For the the claim

$$
\operatorname{pvar}\left\{\mathfrak{B}_{n} \mid n \in \mathbb{N}\right\}=\mathbf{M}
$$

one shows:

$$
\left.S \prec \mathfrak{B}_{n} \Longrightarrow S\right\}\left([2], \mathfrak{U}_{2}\right) \prec \mathfrak{B}_{5(n+2)}
$$

and

$$
S \prec \mathfrak{B}_{n} \Longrightarrow S \imath\left([m], \mathfrak{S}_{m}\right) \prec \mathfrak{B}_{m(n+2)} .
$$

Thanks!

