Pseudovarieties generated by Brauer type monoids

K. Auinger

NSAC 2013

K. Auinger Pseudovarieties generated by Brauer type monoids

• all monoids (semigroups) in this talk are finite

- all monoids (semigroups) in this talk are finite
- $\mathfrak{B}_n =$ all partitions of

$$\{1,\ldots,n,1',\ldots,n'\}$$

into blocks of size 2

- all monoids (semigroups) in this talk are finite
- $\mathfrak{B}_n =$ all partitions of

$$\{1,\ldots,n,1',\ldots,n'\}$$

into blocks of size 2

• members of \mathfrak{B}_n are *diagrams* like this:

Composition of diagrams

composition of diagrams defines a monoid structure on $\mathfrak{B}_n,$ the Brauer monoid

 $\mathfrak{J}_n = \mathsf{all}$ elements of \mathfrak{B}_n whose diagrams can be drawn without intersecting lines:

 $\mathfrak{J}_n =$ all elements of \mathfrak{B}_n whose diagrams can be drawn without intersecting lines:

 $\mathfrak{J}_n = \mathsf{all}$ elements of \mathfrak{B}_n whose diagrams can be drawn without intersecting lines:

 \mathfrak{J}_n is closed under composition of diagrams, is called the Jones monoid or the Temperley–Lieb monoid

Question

Question

• What is $\operatorname{pvar}\{\mathfrak{J}_n \mid n \in \mathbb{N}\}$?

Question

- What is $pvar{\mathfrak{J}_n \mid n \in \mathbb{N}}$?
- What is $pvar\{\mathfrak{B}_n \mid n \in \mathbb{N}\}$?

Question

- What is $pvar{\mathfrak{J}_n \mid n \in \mathbb{N}}$?
- What is $pvar\{\mathfrak{B}_n \mid n \in \mathbb{N}\}$?

Question

- What is $pvar{\mathfrak{J}_n \mid n \in \mathbb{N}}$?
- What is $pvar\{\mathfrak{B}_n \mid n \in \mathbb{N}\}$?

Question

- What is $pvar{\mathfrak{J}_n \mid n \in \mathbb{N}}$?
- What is $pvar\{\mathfrak{B}_n \mid n \in \mathbb{N}\}$?

•
$$\mathfrak{J}_n \times \mathfrak{J}_m \hookrightarrow \mathfrak{J}_{n+m}$$

Question

- What is $pvar{\mathfrak{J}_n \mid n \in \mathbb{N}}$?
- What is $pvar\{\mathfrak{B}_n \mid n \in \mathbb{N}\}$?

- $\mathfrak{J}_n \times \mathfrak{J}_m \hookrightarrow \mathfrak{J}_{n+m}$
- $\mathfrak{B}_n \times \mathfrak{B}_m \hookrightarrow \mathfrak{B}_{n+m}$.

Question

- What is $pvar{\mathfrak{J}_n \mid n \in \mathbb{N}}$?
- What is $pvar\{\mathfrak{B}_n \mid n \in \mathbb{N}\}$?

- $\mathfrak{J}_n \times \mathfrak{J}_m \hookrightarrow \mathfrak{J}_{n+m}$
- $\mathfrak{B}_n \times \mathfrak{B}_m \hookrightarrow \mathfrak{B}_{n+m}$.

Question

- What is $pvar{\mathfrak{J}_n \mid n \in \mathbb{N}}$?
- What is $pvar\{\mathfrak{B}_n \mid n \in \mathbb{N}\}$?

Clearly,

- $\mathfrak{J}_n \times \mathfrak{J}_m \hookrightarrow \mathfrak{J}_{n+m}$
- $\mathfrak{B}_n \times \mathfrak{B}_m \hookrightarrow \mathfrak{B}_{n+m}$.

Hence,

Question

- What is $pvar{\mathfrak{J}_n \mid n \in \mathbb{N}}$?
- What is $pvar\{\mathfrak{B}_n \mid n \in \mathbb{N}\}$?

Clearly,

- $\mathfrak{J}_n \times \mathfrak{J}_m \hookrightarrow \mathfrak{J}_{n+m}$
- $\mathfrak{B}_n \times \mathfrak{B}_m \hookrightarrow \mathfrak{B}_{n+m}$.

Hence,

• $pvar{\mathfrak{J}_n \mid n \in \mathbb{N}}$ = the divisors of all \mathfrak{J}_n

Question

- What is $pvar{\mathfrak{J}_n \mid n \in \mathbb{N}}$?
- What is $pvar\{\mathfrak{B}_n \mid n \in \mathbb{N}\}$?

Clearly,

- $\mathfrak{J}_n \times \mathfrak{J}_m \hookrightarrow \mathfrak{J}_{n+m}$
- $\mathfrak{B}_n \times \mathfrak{B}_m \hookrightarrow \mathfrak{B}_{n+m}$.

Hence,

- $pvar{\mathfrak{J}_n \mid n \in \mathbb{N}}$ = the divisors of all \mathfrak{J}_n
- $pvar{\mathfrak{B}_n \mid n \in \mathbb{N}}$ = the divisors of all \mathfrak{B}_n .

• A = all aperiodic monoids

- A = all aperiodic monoids
- $\mathbf{M} =$ all monoids.

- A = all aperiodic monoids
- M = all monoids.

- A = all aperiodic monoids
- M = all monoids.

•
$$pvar{\mathfrak{J}_n \mid n \in \mathbb{N}} = \mathbf{A}$$

- A = all aperiodic monoids
- M = all monoids.

•
$$pvar{\mathfrak{J}_n \mid n \in \mathbb{N}} = \mathbf{A}$$

• pvar
$$\{\mathfrak{B}_n \mid n \in \mathbb{N}\} = \mathbf{M}$$
.

- A = all aperiodic monoids
- M = all monoids.

•
$$pvar{\mathfrak{J}_n \mid n \in \mathbb{N}} = \mathbf{A}$$

• pvar
$$\{\mathfrak{B}_n \mid n \in \mathbb{N}\} = \mathbf{M}$$
.

- A = all aperiodic monoids
- M = all monoids.

Theorem

•
$$pvar{\mathfrak{J}_n \mid n \in \mathbb{N}} = \mathbf{A}$$

•
$$\operatorname{pvar}\{\mathfrak{B}_n \mid n \in \mathbb{N}\} = \mathbf{M}.$$

In other words,

- A = all aperiodic monoids
- $\mathbf{M} =$ all monoids.

Theorem

•
$$pvar{\mathfrak{J}_n \mid n \in \mathbb{N}} = \mathbf{A}$$

•
$$pvar\{\mathfrak{B}_n \mid n \in \mathbb{N}\} = \mathbf{M}$$
.

In other words,

• each aperiodic monoid divides some \mathfrak{J}_n ,

- A = all aperiodic monoids
- M = all monoids.

Theorem

•
$$pvar{\mathfrak{J}_n \mid n \in \mathbb{N}} = \mathbf{A}$$

•
$$pvar\{\mathfrak{B}_n \mid n \in \mathbb{N}\} = \mathbf{M}$$
.

In other words,

- each aperiodic monoid divides some \mathfrak{J}_n ,
- each monoid divides some \mathfrak{B}_n .

Definition

 $\mathscr{O}_n =$ all order preserving mappings of the chain $1 < 2 < \cdots < n$

Definition

 $\mathscr{O}_n =$ all order preserving mappings of the chain $1 < 2 < \cdots < n$

Problem

J.-É. Pin (1987): Is it true that $pvar\{\mathcal{O}_n \mid n \in \mathbb{N}\} = \mathbf{A}$?
Definition

 $\mathscr{O}_n =$ all order preserving mappings of the chain $1 < 2 < \cdots < n$

Problem

J.-É. Pin (1987): Is it true that $pvar\{\mathscr{O}_n \mid n \in \mathbb{N}\} = \mathbf{A}$?

Higgins (1995): No, there exist aperiodic monoids that do not divide any 𝒪_n.

Definition

 $\mathscr{O}_n = \mathsf{all}$ order preserving mappings of the chain $1 < 2 < \cdots < n$

Problem

J.-É. Pin (1987): Is it true that $pvar\{\mathcal{O}_n \mid n \in \mathbb{N}\} = \mathbf{A}$?

- Higgins (1995): No, there exist aperiodic monoids that do not divide any 𝒪_n.
- Almeida, Volkov (1998): {𝒪_n | n ∈ ℕ} is far away from a generating series of A

Definition

 $\mathscr{O}_n = \mathsf{all}$ order preserving mappings of the chain $1 < 2 < \cdots < n$

Problem

J.-É. Pin (1987): Is it true that $pvar\{\mathcal{O}_n \mid n \in \mathbb{N}\} = \mathbf{A}$?

- Higgins (1995): No, there exist aperiodic monoids that do not divide any 𝒪_n.
- Almeida, Volkov (1998): {𝒪_n | n ∈ ℕ} is far away from a generating series of A

Definition

 $\mathscr{O}_n = \mathsf{all}$ order preserving mappings of the chain $1 < 2 < \cdots < n$

Problem

J.-É. Pin (1987): Is it true that $pvar\{\mathcal{O}_n \mid n \in \mathbb{N}\} = \mathbf{A}$?

- Higgins (1995): No, there exist aperiodic monoids that do not divide any 𝒪_n.
- Almeida, Volkov (1998): {𝒪_n | n ∈ ℕ} is far away from a generating series of A: the interval [O, A] where

$$\mathbf{O} := \mathsf{pvar}\{\mathscr{O}_n \mid n \in \mathbb{N}\}$$

is very big.

 \mathcal{O}_n can be viewed as a submonoid of \mathfrak{J}_{2n} :

 $\mathfrak{J}_{2n} = \langle \mathcal{O}_n \rangle$, the *involutory* monoid generated by \mathcal{O}_n (w.r.t. reflection of diagrams along the vertical axis as involution)

 \mathcal{O}_n can be viewed as a submonoid of \mathfrak{J}_{2n} :

 $\mathfrak{J}_{2n} = \langle \mathcal{O}_n \rangle$, the *involutory* monoid generated by \mathcal{O}_n (w.r.t. reflection of diagrams along the vertical axis as involution) $\{\mathcal{O}_n \mid n \in \mathbb{N}\}$ is not so far from a generating series of **A** since $\{\langle \mathcal{O}_n \rangle \mid n \in \mathbb{N}\}$ is one

 \mathcal{O}_n can be viewed as a submonoid of \mathfrak{J}_{2n} :

 $\mathfrak{J}_{2n} = \langle \mathcal{O}_n \rangle$, the *involutory* monoid generated by \mathcal{O}_n (w.r.t. reflection of diagrams along the vertical axis as involution) $\{\mathcal{O}_n \mid n \in \mathbb{N}\}$ is not so far from a generating series of **A** since $\{\langle \mathcal{O}_n \rangle \mid n \in \mathbb{N}\}$ is one: Jean-Éric pointed in the right direction!

Strategy of proof

Strategy of proof

Definition

$$\mathfrak{U}_2 := \left\{ \underbrace{\bullet}_{\bullet}, \underbrace{\bullet}_{\bullet}, \underbrace{\bullet}_{\bullet}, \underbrace{\bullet}_{\bullet} \right\}$$

(transformation monoid on $[2]:=\{1,2\})$

Strategy of proof

Definition

$$\mathfrak{U}_2 := \left\{ \underbrace{\bullet}_{\bullet}, \underbrace{\bullet}_{\bullet}, \underbrace{\bullet}_{\bullet}, \underbrace{\bullet}_{\bullet} \right\}$$

(transformation monoid on $[2]:=\{1,2\})$

Strategy of proof

Definition

$$\mathfrak{U}_2:=\left\{\underbrace{\bullet-\bullet}_{\bullet}, \underbrace{\bullet-\bullet}_{\bullet}, \underbrace{\bullet-\bullet}_{\bullet}, \underbrace{\bullet-\bullet}_{\bullet}\right\}$$

(transformation monoid on $[2]:=\{1,2\})$

The proof shows that $\operatorname{pvar}\{\mathfrak{J}_n\mid n\in\mathbb{N}\}\$ is closed under the operation

 $S \mapsto S \wr ([2], \mathfrak{U}_2),$

Strategy of proof

Definition

$$\mathfrak{U}_2:=\left\{\underbrace{\bullet-\bullet}_{\bullet}, \underbrace{\bullet-\bullet}_{\bullet}, \underbrace{\bullet-\bullet}_{\bullet}, \underbrace{\bullet-\bullet}_{\bullet}\right\}$$

(transformation monoid on $[2]:=\{1,2\})$

The proof shows that $\operatorname{pvar}\{\mathfrak{J}_n\mid n\in\mathbb{N}\}$ is closed under the operation

 $S \mapsto S \wr ([2], \mathfrak{U}_2),$

or, more precisely:

Strategy of proof

Definition

$$\mathfrak{U}_2:=\left\{ \overset{\bullet}{\overbrace{}},\overset{\bullet}{\overbrace{}},\overset{\bullet}{\overbrace{}},\overset{\bullet}{\overbrace{}}\right\}$$

(transformation monoid on $[2]:=\{1,2\})$

The proof shows that $\operatorname{pvar}\{\mathfrak{J}_n\mid n\in\mathbb{N}\}\$ is closed under the operation

 $S \mapsto S \wr ([2], \mathfrak{U}_2),$

or, more precisely:

$$S \prec \mathfrak{J}_n \Longrightarrow S \wr ([2], \mathfrak{U}_2) \prec \mathfrak{J}_{5(n+2)}.$$

Strategy of proof

Definition

$$\mathfrak{U}_2:=\left\{ \overset{\bullet}{\overbrace{}},\overset{\bullet}{\overbrace{}},\overset{\bullet}{\overbrace{}},\overset{\bullet}{\overbrace{}}\right\}$$

(transformation monoid on $[2]:=\{1,2\})$

The proof shows that $\operatorname{pvar}\{\mathfrak{J}_n\mid n\in\mathbb{N}\}\$ is closed under the operation

 $S \mapsto S \wr ([2], \mathfrak{U}_2),$

or, more precisely:

$$S \prec \mathfrak{J}_n \Longrightarrow S \wr ([2], \mathfrak{U}_2) \prec \mathfrak{J}_{5(n+2)}.$$

The claim then follows from the Krohn-Rhodes Theorem.

Definition

 $\mathfrak{T}_m=$ all transformations of $[m]:=\{1,\ldots,m\}$ (acting on the right)

Definition

$$\mathfrak{T}_m=$$
 all transformations of $[m]:=\{1,\ldots,m\}$ (acting on the right)

The elements of \mathfrak{T}_m can be seen as *diagrams* like this:

Definition

$$\mathfrak{T}_m=$$
 all transformations of $[m]:=\{1,\ldots,m\}$ (acting on the right)

The elements of \mathfrak{T}_m can be seen as *diagrams* like this:

Definition

$$\mathfrak{T}_m=$$
 all transformations of $[m]:=\{1,\ldots,m\}$ (acting on the right)

The elements of \mathfrak{T}_m can be seen as *diagrams* like this:

which are composed in the obvious way.

Brauer type monoids Beeudovariaties	
Main result	
Context	
Opposite view	
Strategy of proof	
Wreath product and labelled product	

Take any monoid S and $\mathfrak{T} \leq \mathfrak{T}_m$.

Take any monoid S and $\mathfrak{T} \leq \mathfrak{T}_m$. The elements of $S \wr ([m], \mathfrak{T})$ are *labelled* diagrams like these:

Take any monoid S and $\mathfrak{T} \leq \mathfrak{T}_m$. The elements of $S \wr ([m], \mathfrak{T})$ are *labelled* diagrams like these:

Take any monoid S and $\mathfrak{T} \leq \mathfrak{T}_m$. The elements of $S \wr ([m], \mathfrak{T})$ are *labelled* diagrams like these:

Take any monoid S and $\mathfrak{T} \leq \mathfrak{T}_m$. The elements of $S \wr ([m], \mathfrak{T})$ are *labelled* diagrams like these:

K. Auinger Pseudovarieties generated by Brauer type monoids

Why don't we do the same for diagrams in \mathfrak{J}_m and/or \mathfrak{B}_m ?

Solution:

Why don't we do the same for diagrams in \mathfrak{J}_m and/or \mathfrak{B}_m ?

Solution: orient the arcs and label them by elements of a monoid with involution $x \mapsto x^R$!

Why don't we do the same for diagrams in \mathfrak{J}_m and/or \mathfrak{B}_m ?

Solution: orient the arcs and label them by elements of a monoid with involution $x \mapsto x^R$!

 \rightsquigarrow labelled product S (L) \mathfrak{J} of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_m$
\rightsquigarrow labelled product S (L) \mathfrak{J} of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_m$

Essential properties:

 $\mathfrak{J}_n \oplus \mathfrak{J}_m \hookrightarrow \mathfrak{J}_{(n+2)m}$

 \rightsquigarrow labelled product S (L) \mathfrak{J} of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_m$

Essential properties:

 $\mathfrak{T}_n \wr ([m], \mathfrak{T}_m) \hookrightarrow \mathfrak{T}_{nm}$

 \rightsquigarrow labelled product $S \oplus \mathfrak{J}$ of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_m$

Essential properties:

 $\mathfrak{J}_n \oplus \mathfrak{J}_m \hookrightarrow \mathfrak{J}_{(n+2)m}$

 \rightsquigarrow labelled product S (L) \mathfrak{J} of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_m$

Essential properties:

$$\mathfrak{J}_n \oplus \mathfrak{J}_m \hookrightarrow \mathfrak{J}_{(n+2)m}$$

and

$$S \prec \tilde{S} \Longrightarrow S \wr ([2], \mathfrak{U}_2) \prec \tilde{S} \oplus \mathfrak{J}_5.$$

 \rightsquigarrow labelled product $S \oplus \mathfrak{J}$ of an involutory monoid S and $\mathfrak{J} \leq \mathfrak{B}_m$

Essential properties:

$$\mathfrak{J}_n \oplus \mathfrak{J}_m \hookrightarrow \mathfrak{J}_{(n+2)m}$$

and

$$S \prec \tilde{S} \Longrightarrow S \wr ([2], \mathfrak{U}_2) \prec \tilde{S} \oplus \mathfrak{J}_5.$$

Therefore,

$$S \prec \mathfrak{J}_n \Longrightarrow S \wr ([2], \mathfrak{U}_2) \prec \mathfrak{J}_n \oplus \mathfrak{J}_5 \hookrightarrow \mathfrak{J}_{5(n+2)}.$$

For the the claim

 $\operatorname{pvar}\{\mathfrak{B}_n \mid n \in \mathbb{N}\} = \mathbf{M}$

one shows:

For the the claim

$$\operatorname{pvar}\{\mathfrak{B}_n \mid n \in \mathbb{N}\} = \mathbf{M}$$

one shows:

$$S \prec \mathfrak{B}_n \Longrightarrow S \wr ([2], \mathfrak{U}_2) \prec \mathfrak{B}_{5(n+2)}$$

For the the claim

$$\operatorname{pvar}\{\mathfrak{B}_n \mid n \in \mathbb{N}\} = \mathbf{M}$$

one shows:

$$S \prec \mathfrak{B}_n \Longrightarrow S \wr ([2], \mathfrak{U}_2) \prec \mathfrak{B}_{5(n+2)}$$

 and

$$S \prec \mathfrak{B}_n \Longrightarrow S \wr ([m], \mathfrak{S}_m) \prec \mathfrak{B}_{m(n+2)}$$

For the the claim

$$\operatorname{pvar}\{\mathfrak{B}_n \mid n \in \mathbb{N}\} = \mathbf{M}$$

one shows:

$$S \prec \mathfrak{B}_n \Longrightarrow S \wr ([2], \mathfrak{U}_2) \prec \mathfrak{B}_{5(n+2)}$$

 and

$$S \prec \mathfrak{B}_n \Longrightarrow S \wr ([m], \mathfrak{S}_m) \prec \mathfrak{B}_{m(n+2)}.$$

Thanks!