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Graphs

Let S = ⟨A⟩ be a semigroup.

.
Definition
..

.

We define the (right-)Cayley
graph of S , Cay(S ,A) to be:

a set of vertices V = S

a set of edges E

a map ι : E → V

a map τ : E → V

a labelling map l : E → A

where (e)ι = s, (e)τ = s.a and
(e)l = a.

.
Definition
..

.

We define the skeleton †(S ,A) of
S to be:

a set of vertices V

a set of undirected edges F =
{(ι(e), τ(e)), (τ(e), ι(e))|e ∈
E , ι(e) ̸= τ(e)}
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Graphs
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Semigroup Properties

N ∪ {0} = ⟨0, 1⟩
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which is the skeleton for N = ⟨1⟩ as well
..1.......
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Semigroup Properties

smallsemi [5,113]
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A Theorem from Groups

.
Theorem
..

.

Let G = ⟨A⟩ and H = ⟨B⟩ be groups such that †(G ,A) ∼= †(H,B).
Then G is finitely presented if and only if H is.

Questions:

How does this extend to semigroups?

Does there exist a counterexample for semigroups?

Are there any classes of semigroups where this property does
hold?

Given a particular †(S), can we determine which semigroup it
represents?
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An easy example

.
Definition
..

.

Let S be a semigroup and l ∈ S . Then l is called a left zero if for
all s ∈ S , l .s = l . If all elements of a semigroup of size n are left
zeros, we call this a left zero semigroup of size n, and denote it Ln.
Right zero semigroups are defined analogously.

.
Theorem
..

.

Let S = G × Ln = ⟨A⟩ and T = H × Lm = ⟨B⟩, and
†(S ,A) ∼= †(T ,B). Then S is finitely presented if and only if T is.

†(S ,A) is n disjoint copies of †(G , πG (A))

n = m

†(T ,B) is n disjoint copies of †(H, πH(B))
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A not-so-easy example

An obvious counterpart to the previous theorem would be
semigroups of the type G × Rn.

Ideas/Problems:

It would suffice to show that the groups are finitely presented.

Considering the subgraph of Cay(S ,A) with only vertices in
{(g , r1)|g ∈ G}, it is not necessarily true that this gives a
copy of †(G , πG (A)).

It is difficult to determine the set of vertices corresponding to
{(g , r1)|g ∈ G} in †(S ,A)
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Geometric Group Theory to the rescue!

The Švarc-Milnor Lemma (sometimes called the Fundamental
Theorem of Geometric Group Theory), roughly states that if a
group acts nicely on a nice metric space, then the group looks
simillar to the metric space.

.
Theorem (Švarc-Milnor Lemma)
..

.

Let G be a group and X a proper geodesic metric space. Let G act
properly and co-compactly by isometries on X . Then G is finitely
generated and quasi-isometric to X . Moreover, for any x ∈ X, the
mapping G → X given by g 7→ gx is a quasi-isometry.
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Geometric Group Theory to the rescue!

Let S = G × Rn and T = H × Rm, and †(S) ∼= †(T )

Transform †(S) and and †(T ) into sensible metric spaces.

Act with G on †(S) by ”left multiplication”

Švarc-Milnor tells us G is quasi-isomteric to †(S)
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Geometric Group Theory to the rescue!

..G. H.

†(S)
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Completely Simple Semigroups

A finitely generated completely simple semigroup S can be thought
of as a direct product Ln × G × Rm with multiplication given by
(i , g , λ)(j , h, µ) = (i , gpλjh, µ).

†(S) has n disjoint components

An action can be defined on †(S):

x(i , g , λ) = (i , xg , λ)

Apply Švarc-Milnor
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Clifford Semigroups

.
Definition
..

.

Let S be a semigroup. Then S is Clifford if and only if it is a
strong semilattice of groups.

..................................

This can represent a Clifford semigroup with lattice size two: two
copies of Z with the identity homomorphism. Or a Clifford
semigroup with lattice size one: a single copy of Z× C2.
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Clifford Semigroups

.
A Small Example
..

.

Let S = ⟨A⟩ be a Clifford semigroup composed of two groups
G1

∼= G2 with ϕ1,2 given by the isomorphism. Suppose that A is
closed under inverses, and A = A1 ∪ A2 where A1 ⊆ G1 and
A2 ⊆ G2.
Then any vertex v1 ∈ G1 has degree |A|+ |A1|, and any vertex
v2 ∈ G2 has degree |A|+ |A2| − |A1ϕ1,2 ∩ A2|.
Thus if |A1| ̸= |A1ϕ1,2 ∩A2|, we can distinguish between vertices in
G1 and those in G2.
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Spectrum of †(S)

Given a graph †(S), we might ask which S it could represent.
.
Definition
..

.

The spectrum of a semigroup S = ⟨A⟩ is the set of all semigroups
T where †(S ,A) ∼= †(T ,B) for some generating set B of T . We
denote this by σ(S ,A).

.
Theorem (A,M. Quick,N. Ruškuc)
..

.

Let A+ be the free semigroup on one generator. Then the
spectrum of A+ = ⟨1⟩ is σ(A+, 1) = {A+,A⋆}.

.
Lemma
..

.

Let A+ be the free semigroup on one generator and S = ⟨a, b⟩ be
a semigroup such that †(S , {a, b}) ∼= †(A+, 1). Then S ∼= A⋆ or
S ∼= A+.
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Spectrum of †(S)

.
Theorem
..
.The spectrum of the integers is σ(Z, {−1, 1}) = {Z,C2 ⋆ C2}.

.
Theorem
..

.

Let A⋆ be the free monoid on n generators for n > 1 then
σ(A⋆, {a1, . . . , an}) = {A⋆}.
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