Semigroups and Geometric Spaces

Jenni Awang

School of Mathematics and Statistics, University of St Andrews jenni@mcs.st-and.ac.uk

Semigroups and Applications 2013

・ロト ・四ト ・ヨト ・ヨト

æ

Graphs

Let $S = \langle A \rangle$ be a semigroup.

Definition

We define the (right-)*Cayley* graph of S, Cay(S, A) to be:

- a set of vertices V = S
- a set of edges E
- a map $\iota: E \to V$
- a map $\tau: E \to V$

• a labelling map $l: E \rightarrow A$ where $(e)\iota = s$, $(e)\tau = s.a$ and (e)l = a.

Graphs

Let $S = \langle A \rangle$ be a semigroup.

Definition

We define the (right-)*Cayley* graph of S, Cay(S, A) to be:

- a set of vertices V = S
- a set of edges E
- a map $\iota: E \to V$
- a map $\tau: E \to V$

• a labelling map $I : E \rightarrow A$ where $(e)\iota = s$, $(e)\tau = s.a$ and (e)I = a.

Definition

We define the skeleton $\dagger(S, A)$ of S to be:

- a set of vertices V
- a set of undirected edges $F = \{(\iota(e), \tau(e)), (\tau(e), \iota(e)) | e \in E, \iota(e) \neq \tau(e)\}$

Graphs

æ

A B M A B M

< 同 ▶

→ 3 → < 3</p>

э

< ∃ →

æ

Theorem

Let $G = \langle A \rangle$ and $H = \langle B \rangle$ be groups such that $\dagger(G, A) \cong \dagger(H, B)$. Then G is finitely presented if and only if H is.

Theorem

Let $G = \langle A \rangle$ and $H = \langle B \rangle$ be groups such that $\dagger(G, A) \cong \dagger(H, B)$. Then G is finitely presented if and only if H is.

Questions:

- How does this extend to semigroups?
- Does there exist a counterexample for semigroups?
- Are there any classes of semigroups where this property does hold?
- Given a particular $\dagger(S)$, can we determine which semigroup it represents?

Let S be a semigroup and $l \in S$. Then l is called a *left zero* if for all $s \in S$, l.s = l. If all elements of a semigroup of size n are left zeros, we call this a left zero semigroup of size n, and denote it L_n . Right zero semigroups are defined analogously.

Let S be a semigroup and $l \in S$. Then l is called a *left zero* if for all $s \in S$, l.s = l. If all elements of a semigroup of size n are left zeros, we call this a left zero semigroup of size n, and denote it L_n . Right zero semigroups are defined analogously.

Theorem

Let $S = G \times L_n = \langle A \rangle$ and $T = H \times L_m = \langle B \rangle$, and $\dagger(S, A) \cong \dagger(T, B)$. Then S is finitely presented if and only if T is.

Let S be a semigroup and $l \in S$. Then l is called a *left zero* if for all $s \in S$, l.s = l. If all elements of a semigroup of size n are left zeros, we call this a left zero semigroup of size n, and denote it L_n . Right zero semigroups are defined analogously.

Theorem

Let $S = G \times L_n = \langle A \rangle$ and $T = H \times L_m = \langle B \rangle$, and $\dagger(S, A) \cong \dagger(T, B)$. Then S is finitely presented if and only if T is.

- $\dagger(S, A)$ is *n* disjoint copies of $\dagger(G, \pi_G(A))$
- *n* = *m*
- $\dagger(T, B)$ is *n* disjoint copies of $\dagger(H, \pi_H(B))$

An obvious counterpart to the previous theorem would be semigroups of the type $G \times R_n$.

An obvious counterpart to the previous theorem would be semigroups of the type $G \times R_n$. Ideas/Problems:

- It would suffice to show that the groups are finitely presented.
- Considering the subgraph of Cay(S, A) with only vertices in $\{(g, r_1)|g \in G\}$, it is not necessarily true that this gives a copy of $\dagger(G, \pi_G(A))$.
- It is difficult to determine the set of vertices corresponding to $\{(g, r_1)|g \in G\}$ in $\dagger(S, A)$

The Švarc-Milnor Lemma (sometimes called the Fundamental Theorem of Geometric Group Theory), roughly states that if a group acts nicely on a nice metric space, then the group looks simillar to the metric space.

The Švarc-Milnor Lemma (sometimes called the Fundamental Theorem of Geometric Group Theory), roughly states that if a group acts nicely on a nice metric space, then the group looks simillar to the metric space.

Theorem (Švarc-Milnor Lemma)

Let G be a group and X a proper geodesic metric space. Let G act properly and co-compactly by isometries on X. Then G is finitely generated and quasi-isometric to X. Moreover, for any $x \in X$, the mapping $G \to X$ given by $g \mapsto {}^{g}x$ is a quasi-isometry. Let $S = G \times R_n$ and $T = H \times R_m$, and $\dagger(S) \cong \dagger(T)$

- Transform $\dagger(S)$ and and $\dagger(T)$ into sensible metric spaces.
- Act with G on $\dagger(S)$ by "left multiplication"
- Švarc-Milnor tells us G is quasi-isomteric to $\dagger(S)$

Geometric Group Theory to the rescue!

Geometric Group Theory to the rescue!

Geometric Group Theory to the rescue!

Finite presentability is preserved under quasi-isometries, so H and therefore T is finitely presented.

A finitely generated completely simple semigroup S can be thought of as a direct product $L_n \times G \times R_m$ with multiplication given by $(i, g, \lambda)(j, h, \mu) = (i, gp_{\lambda j}h, \mu).$

- †(S) has n disjoint components
- An action can be defined on $\dagger(S)$:

$$(i,g,\lambda) = (i,xg,\lambda)$$

• Apply Švarc-Milnor

Let S be a semigroup. Then S is Clifford if and only if it is a strong semilattice of groups.

Let S be a semigroup. Then S is Clifford if and only if it is a strong semilattice of groups.

Let S be a semigroup. Then S is Clifford if and only if it is a strong semilattice of groups.

This can represent a Clifford semigroup with lattice size two: two copies of \mathbb{Z} with the identity homomorphism. Or a Clifford semigroup with lattice size one: a single copy of $\mathbb{Z} \times C_2$.

A Small Example

Let $S = \langle A \rangle$ be a Clifford semigroup composed of two groups $G_1 \cong G_2$ with $\phi_{1,2}$ given by the isomorphism. Suppose that A is closed under inverses, and $A = A_1 \cup A_2$ where $A_1 \subseteq G_1$ and $A_2 \subseteq G_2$. Then any vertex $v_1 \in G_1$ has degree $|A| + |A_1|$, and any vertex $v_2 \in G_2$ has degree $|A| + |A_2| - |A_1\phi_{1,2} \cap A_2|$. Thus if $|A_1| \neq |A_1\phi_{1,2} \cap A_2|$, we can distinguish between vertices in G_1 and those in G_2 .

Spectrum of $\dagger(S)$

Given a graph $\dagger(S)$, we might ask which S it could represent.

Definition

The spectrum of a semigroup $S = \langle A \rangle$ is the set of all semigroups T where $\dagger(S, A) \cong \dagger(T, B)$ for some generating set B of T. We denote this by $\sigma(S, A)$.

Spectrum of $\dagger(S)$

Given a graph $\dagger(S)$, we might ask which S it could represent.

Definition

The spectrum of a semigroup $S = \langle A \rangle$ is the set of all semigroups T where $\dagger(S, A) \cong \dagger(T, B)$ for some generating set B of T. We denote this by $\sigma(S, A)$.

Theorem (A,M. Quick,N. Ruškuc)

Let A^+ be the free semigroup on one generator. Then the spectrum of $A^+ = \langle 1 \rangle$ is $\sigma(A^+, 1) = \{A^+, A^*\}$.

Spectrum of $\dagger(S)$

Given a graph $\dagger(S)$, we might ask which S it could represent.

Definition

The spectrum of a semigroup $S = \langle A \rangle$ is the set of all semigroups T where $\dagger(S, A) \cong \dagger(T, B)$ for some generating set B of T. We denote this by $\sigma(S, A)$.

Theorem (A,M. Quick,N. Ruškuc)

Let A^+ be the free semigroup on one generator. Then the spectrum of $A^+ = \langle 1 \rangle$ is $\sigma(A^+, 1) = \{A^+, A^*\}$.

Lemma

Let A^+ be the free semigroup on one generator and $S = \langle a, b \rangle$ be a semigroup such that $\dagger(S, \{a, b\}) \cong \dagger(A^+, 1)$. Then $S \cong A^*$ or $S \cong A^+$.

Theorem

The spectrum of the integers is $\sigma(\mathbb{Z}, \{-1, 1\}) = \{\mathbb{Z}, C_2 \star C_2\}.$

Theorem

Let A^* be the free monoid on n generators for n > 1 then $\sigma(A^*, \{a_1, \ldots, a_n\}) = \{A^*\}.$