On Semifields of order q^{4}, q an odd prime, $q>3$, admitting a Klein 4 -group of automorphisms

Mashhour Bani-Ata

Department of Mathematics
PAAET - Kuwait
The 4th Novi Sad Algebraic Conference
\& Semigroups and Applications 2013
Novi Sad, Serbia, June 5-9, 2013.

Hering's Question:

This talk was inspired by a question of Hering, that is:
Given a finite group G, is it possible to find a vector space V and a spread \mathcal{K} on V [\mathcal{K} is a set of subspaces U of V with $\operatorname{dim}(U)=\frac{1}{2} \operatorname{dim}(V)$ and any non-zero element of V is contained in exactly one member of \mathcal{K}] such that $G \leq G L(V)$ and preserves \mathcal{K} (i.e. $G \leq$ translation complement of \mathcal{K})?

So our concern is about finding triples $(V, G, \mathcal{K})_{\mathbb{F}_{q}}$, where V is an even dimensional vector space over $\mathbb{F}_{q}, \mathcal{K}$ is a spread of $V, G \leq G L(V), G$ preserves \mathcal{K} and acts freely on V.

Hering's Question:

The most elementary example is:
The triple $\left(V, \Gamma, \mathcal{K}_{d}\right)$, where V is a 2-dimensional subspace over \mathbb{F}_{q}, $\Gamma=\operatorname{Aut}\left(\mathbb{F}_{q}\right), \mathcal{K}_{d}$ is the spread corresponding to the desarguesian plane.

One might ask whether it is possible to construct a less trivial example. The answer is yes. Hence, it is worthwhile to study as a first step cases where G is an elementary abelian 2-group and a semifield A over \mathbb{F}_{q} (non-associative division algebra) with $G \leq \operatorname{Aut}(A) \leq$ translation complement).

Background

Let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. It is not a good choice to start with a finite field $G F\left(q^{4}\right)$ as Aut $\left(G F\left(q^{4}\right)\right)$ is cyclic by G is not.

We will show now that there is a semifield of order $q^{4}, q>3, q$ an odd prime, admitting $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ as an automorphism subgroup.

In [Bani-Ata: Semifields as free modules, Quartely Journal of Maths 62 (2011), 1-6], it has been proved that: If S is a finite semifield over a finite field admitting an elementary abelian 2-group of automorphisms, then E acts freely on S. If E acts freely of rank 1 on S, and S is even, then $|E| \leq 4$.

In [Bani-Ata and Al-Shemas, Forum Mathematicum, to appear], it is proved that there is no semifield of order q^{8}, q is odd prime, $q>3$, admitting an elementary abelian group of automorphisms of order 8.

The Semifield and The 9-structure constants

Lemma 1. Let A be a semifield with unite of order $q^{4}, q>3$ (q an odd prime) admitting an automorphism group $E \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then there are 9 -constants $t_{i}, \lambda_{i}, \mu_{i} \in \mathbb{F}_{q}^{*}, i=1,2,3$ which determine A completely.

Sketch of the proof:
As E acts freely of rank $1, A \cong \mathbb{F}_{q}[E] \leftrightarrow \exists b \in A$ such that $\left\{b^{g} \mid g \in E\right\}$ is a base of A. So, let $E=\left\{1, \sigma_{1}, \sigma_{2}, \sigma 3\right\}, A=\left\{e=e_{0}, e_{1}, e_{2}, e_{3}\right\}$. Thus,

$$
e_{i}^{\sigma_{j}}=\left\{\begin{array}{ll}
e_{i} & \text { if } i=j, \\
-e_{i} & \text { if } i \neq j .
\end{array} \quad \rightarrow \quad e_{i}^{2}=t_{i} e, \quad i=1,2,3 .\right.
$$

Thus

$$
\begin{array}{ll}
\lambda_{3} e_{3}=e_{1} e_{2} & e_{1} e_{3}=\mu_{2} e_{2} \\
\lambda_{1} e_{1}=e_{2} e_{3} & e_{3} e_{2}=\mu_{1} e_{1} \\
\lambda_{2} e_{2}=e_{3} e_{1} & e_{2} e_{1}=\mu_{3} e_{3}
\end{array}
$$

A matrix form of the semifield

Remark 1. $\forall a \in A, \alpha_{a}: A \rightarrow A$
$\alpha_{a} x=a x \Rightarrow$ if $x=x_{0} e+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}$ for $x \in A$, then

$$
\bar{R}_{x}=\left[\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & x_{3} \\
t_{1} x_{1} & x_{0} & \mu_{2} x_{3} & \lambda_{3} x_{2} \\
t_{2} x_{2} & \lambda_{1} x_{3} & x_{0} & \mu_{3} x_{1} \\
t_{3} x_{3} & \mu_{1} x_{2} & \lambda_{2} x_{1} & x_{0}
\end{array}\right] .
$$

\bar{R}_{x} is non-singular if $\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \neq(0,0,0,0)$.

Remark 2. This process is reversible in the sense that if the constants $t_{i}, \lambda_{i}, \mu_{i}$ are given such that the matrices R_{x} as constructed above are non-singular for all $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \neq(0,0,0,0)$, then we can construct a semifield of order q^{4} admitting a free automorphism group $E \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ as follows:

The 9-constants afford the semifield

Take $A=\mathbb{F}_{q}^{4}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mid x_{i} \in \mathbb{F}_{q}\right\}$ define multiplication $x \cdot y=x R_{y}$ for $x, y \in \mathbb{F}_{q}^{4}$ and

$$
\sigma_{1}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & -1 & -1
\end{array}\right], \sigma_{2}=\left[\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & 1 & \\
& & & -1
\end{array}\right], \sigma_{3}=\left[\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & -1 & \\
& & & 1
\end{array}\right]
$$

are automorphisms of A.

Lemma 2. For any non-square $t \in \mathbb{F}_{q}^{*}$ one can choose a basis for A such that $t_{1}=t_{2}=t_{3}=t$ so that all λ_{i} 's are squares and μ_{i} 's are non-squares or the other way around.

The main result

Theorem 1. Let q be an odd prime power, $q>3$, then there exist non-squares $\lambda, t \in \mathbb{F}_{q}^{*}$ such that $\lambda^{2}+t \neq 0$. Then, the constants $t_{1}=t_{2}=t_{3}=t, \lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda$, $\mu_{1}=\mu_{2}=t / \lambda, \mu_{3}=\lambda^{3} / t$ define A with the above properties.

Proof.

$$
\bar{R}_{x}=\left[\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & x_{3} \\
t x_{1} & x_{0} & \frac{t}{\lambda} x_{3} & \lambda x_{2} \\
t x_{2} & \lambda x_{3} & x_{0} & \frac{\lambda^{3}}{t} x_{1} \\
t x_{3} & \frac{t}{\lambda} x_{2} & \lambda x_{1} & x_{0}
\end{array}\right]
$$

To show that \bar{R}_{x} is non-singular if $\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \neq(0,0,0,0)$, we conjugate \bar{R}_{x} with $g=\left[\begin{array}{lll}1 & & \\ & 1 & \\ & & \lambda\end{array}\right]$ and obtain

The main result

$$
R_{x}^{g}=\left[\begin{array}{cc|cc}
x_{0} & x_{1} & \lambda x_{2} & x_{3} \\
t x_{1} & x_{0} & t x_{3} & \lambda x_{2} \\
\hline \frac{t}{\lambda} x_{2} & x_{3} & x_{0} & \frac{\lambda^{2}}{t} x_{1} \\
t x_{3} & \frac{t}{\lambda} x_{2} & \lambda^{2} x_{1} & x_{0}
\end{array}\right]=\left[\begin{array}{c|c}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right]
$$

Hence, $\operatorname{det}\left(R_{x}\right)=\operatorname{det}\left(R_{x}^{g}\right)=\operatorname{det}\left(A_{11} A_{22}-A_{12} A_{21}\right)=$
$\operatorname{det}\left[\begin{array}{ll}x_{0}^{2}+\lambda^{2} x_{1}^{2}-t\left(x_{2}^{2}+x_{3}^{2}\right) & \left(\lambda^{2}+t\right)\left[\frac{x_{0} x_{1}}{t}-\frac{x_{2} x_{3}}{\lambda}\right] \\ t\left(\lambda^{2}+t\right)\left[\frac{x_{0} x_{1}}{t}-\frac{x_{2} x_{3}}{\lambda}\right] & x_{0}^{2}+\lambda^{2} x_{1}^{2}-t\left(x_{2}^{2}+x_{3}^{2}\right)\end{array}\right]=\left|\begin{array}{cc}Y & Z \\ t Z & Y\end{array}\right|=0$
if and only if $Y=Z=0$ as t is non-square and $\lambda^{2}+t \neq 0$, then $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=(0,0,0,0)$. Hence, the claim.

Thank You

The End

