On multipalindromic sequences

Bojan Bašić

Department of Mathematics and Informatics
University of Novi Sad Serbia

June 7, 2013

Paving the road

Paving the road

Definition

We call a number a palindrome in base b if for its expansion in base b, say $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle_{b}, c_{d-1} \neq 0$, the equality $c_{j}=c_{d-1-j}$ holds for every $0 \leqslant j \leqslant d-1$.

Paving the road

Definition

We call a number a palindrome in base b if for its expansion in base b, say $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle_{b}, c_{d-1} \neq 0$, the equality $c_{j}=c_{d-1-j}$ holds for every $0 \leqslant j \leqslant d-1$.

- We are interested in numbers that are (roughly said) palindromes simultaneously in more different bases.

Paving the road

Paving the road

- Motivated by a question from J. Ernest Wilkins from 2004, E. H . Goins enumerated all the numbers that are d-digit palindrome in base 10 and d-digit palindrome in another base (where d is fixed, and $d \geqslant 2$).

Paving the road

- Motivated by a question from J. Ernest Wilkins from 2004, E. H . Goins enumerated all the numbers that are d-digit palindrome in base 10 and d-digit palindrome in another base (where d is fixed, and $d \geqslant 2$).

Theorem (Goins, 2009)

There are exactly 203 positive integers that are d-digit palindrome in base 10 and d-digit palindrome in another base, ranging from 22 to $9986831781362631871386899(d=2$ to $d=25)$.

Paving the road

- Motivated by a question from J. Ernest Wilkins from 2004, E. H . Goins enumerated all the numbers that are d-digit palindrome in base 10 and d-digit palindrome in another base (where d is fixed, and $d \geqslant 2$).

Theorem (Goins, 2009)

There are exactly 203 positive integers that are d-digit palindrome in base 10 and d-digit palindrome in another base, ranging from 22 to $9986831781362631871386899(d=2$ to $d=25)$.

- $\langle 6,6\rangle_{10}=\langle 3,3\rangle_{21}=\langle 2,2\rangle_{32}=\langle 1,1\rangle_{65} ;$

Paving the road

- Motivated by a question from J. Ernest Wilkins from 2004, E. H . Goins enumerated all the numbers that are d-digit palindrome in base 10 and d-digit palindrome in another base (where d is fixed, and $d \geqslant 2$).

Theorem (Goins, 2009)

There are exactly 203 positive integers that are d-digit palindrome in base 10 and d-digit palindrome in another base, ranging from 22 to $9986831781362631871386899(d=2$ to $d=25)$.

- $\langle 6,6\rangle_{10}=\langle 3,3\rangle_{21}=\langle 2,2\rangle_{32}=\langle 1,1\rangle_{65}$;
$\langle 8,8\rangle_{10}=\langle 4,4\rangle_{21}=\langle 2,2\rangle_{43}=\langle 1,1\rangle_{87} ;$

Paving the road

- Motivated by a question from J. Ernest Wilkins from 2004, E. H . Goins enumerated all the numbers that are d-digit palindrome in base 10 and d-digit palindrome in another base (where d is fixed, and $d \geqslant 2$).

Theorem (Goins, 2009)

There are exactly 203 positive integers that are d-digit palindrome in base 10 and d-digit palindrome in another base, ranging from 22 to $9986831781362631871386899(d=2$ to $d=25)$.

- $\langle 6,6\rangle_{10}=\langle 3,3\rangle_{21}=\langle 2,2\rangle_{32}=\langle 1,1\rangle_{65}$;
$\langle 8,8\rangle_{10}=\langle 4,4\rangle_{21}=\langle 2,2\rangle_{43}=\langle 1,1\rangle_{87}$;
$\langle 6,7,6\rangle_{10}=\langle 5,6,5\rangle_{11}=\langle 4,8,4\rangle_{12}=\langle 1,2,1\rangle_{25} ;$

Paving the road

- Motivated by a question from J. Ernest Wilkins from 2004, E. H . Goins enumerated all the numbers that are d-digit palindrome in base 10 and d-digit palindrome in another base (where d is fixed, and $d \geqslant 2$).

Theorem (Goins, 2009)

There are exactly 203 positive integers that are d-digit palindrome in base 10 and d-digit palindrome in another base, ranging from 22 to $9986831781362631871386899(d=2$ to $d=25)$.

- $\langle 6,6\rangle_{10}=\langle 3,3\rangle_{21}=\langle 2,2\rangle_{32}=\langle 1,1\rangle_{65} ;$
$\langle 8,8\rangle_{10}=\langle 4,4\rangle_{21}=\langle 2,2\rangle_{43}=\langle 1,1\rangle_{87}$;
$\langle 6,7,6\rangle_{10}=\langle 5,6,5\rangle_{11}=\langle 4,8,4\rangle_{12}=\langle 1,2,1\rangle_{25}$;
$\langle 9,8,9\rangle_{10}=\langle 3,7,3\rangle_{17}=\langle 2,5,2\rangle_{21}=\langle 1,12,1\rangle_{26}$.

Paving the road

Paving the road

Question (Goins, 2009; also Di Scala \& Sombra, 2001)
Is it possible to find more than four different bases such that there is a number that is a d-digit palindrome simultaneously in all those bases?

Paving the road

Question (Goins, 2009; also Di Scala \& Sombra, 2001)

Is it possible to find more than four different bases such that there is a number that is a d-digit palindrome simultaneously in all those bases? If possible, then what is the largest such list?

The number of bases is unbounded

The number of bases is unbounded

Theorem

Given any $K \in \mathbb{N}$ and $d \geqslant 2$, there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each $1 \leqslant i \leqslant K, n$ is a d-digit palindrome in base b_{i}.

The number of bases is unbounded

Theorem

Given any $K \in \mathbb{N}$ and $d \geqslant 2$, there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each $1 \leqslant i \leqslant K, n$ is a d-digit palindrome in base b_{i}.

Proof (sketch).

The number of bases is unbounded

Theorem

Given any $K \in \mathbb{N}$ and $d \geqslant 2$, there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each $1 \leqslant i \leqslant K, n$ is a d-digit palindrome in base b_{i}.

Proof (sketch).

- $m \in \mathbb{N}$

The number of bases is unbounded

Theorem

Given any $K \in \mathbb{N}$ and $d \geqslant 2$, there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each $1 \leqslant i \leqslant K, n$ is a d-digit palindrome in base b_{i}.

Proof (sketch).

- $m \in \mathbb{N}, \tau(m) \geqslant 2 K+1$;

The number of bases is unbounded

Theorem

Given any $K \in \mathbb{N}$ and $d \geqslant 2$, there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each $1 \leqslant i \leqslant K, n$ is a d-digit palindrome in base b_{i}.

Proof (sketch).

- $m \in \mathbb{N}, \tau(m) \geqslant 2 K+1$;
- $a_{1}^{\prime}=1<\cdots<a_{K}^{\prime}$ - the smallest K divisors of m

The number of bases is unbounded

Theorem

Given any $K \in \mathbb{N}$ and $d \geqslant 2$, there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each $1 \leqslant i \leqslant K, n$ is a d-digit palindrome in base b_{i}.

Proof (sketch).

- $m \in \mathbb{N}, \tau(m) \geqslant 2 K+1$;
- $a_{1}^{\prime}=1<\cdots<a_{K}^{\prime}$ - the smallest K divisors of $m ; a_{i}=\left(a_{i}^{\prime}\right)^{d-1}$

The number of bases is unbounded

Theorem

Given any $K \in \mathbb{N}$ and $d \geqslant 2$, there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each $1 \leqslant i \leqslant K, n$ is a d-digit palindrome in base b_{i}.

Proof (sketch).

- $m \in \mathbb{N}, \tau(m) \geqslant 2 K+1$;
- $a_{1}^{\prime}=1<\cdots<a_{K}^{\prime}$ - the smallest K divisors of $m ; a_{i}=\left(a_{i}^{\prime}\right)^{d-1}$
- $n=\binom{d-1}{\left\lfloor\frac{d-1}{2}\right\rfloor}^{d-1} m^{(d-1)^{2}}$

The number of bases is unbounded

Theorem

Given any $K \in \mathbb{N}$ and $d \geqslant 2$, there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each $1 \leqslant i \leqslant K, n$ is a d-digit palindrome in base b_{i}.

Proof (sketch).

- $m \in \mathbb{N}, \tau(m) \geqslant 2 K+1$;
- $a_{1}^{\prime}=1<\cdots<a_{K}^{\prime}$ - the smallest K divisors of $m ; a_{i}=\left(a_{i}^{\prime}\right)^{d-1}$
- $n=\binom{d-1}{\left\lfloor\frac{d-1}{2}\right\rfloor}^{d-1} m^{(d-1)^{2}}, b_{i}=\sqrt[d-1]{\frac{n}{a_{i}}}-1(\in \mathbb{N})$

The number of bases is unbounded

Theorem

Given any $K \in \mathbb{N}$ and $d \geqslant 2$, there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each $1 \leqslant i \leqslant K, n$ is a d-digit palindrome in base b_{i}.

Proof (sketch).

- $m \in \mathbb{N}, \tau(m) \geqslant 2 K+1$;
- $a_{1}^{\prime}=1<\cdots<a_{K}^{\prime}$ - the smallest K divisors of $m ; a_{i}=\left(a_{i}^{\prime}\right)^{d-1}$
- $n=\binom{d-1}{\left\lfloor\frac{d-1}{2}\right\rfloor}^{d-1} m^{(d-1)^{2}}, b_{i}=\sqrt[d-1]{\frac{n}{a_{i}}}-1(\in \mathbb{N})$
- $n=\left\langle\binom{ d-1}{d-1} a_{i},\binom{d-1}{d-2} a_{i}, \ldots,\binom{d-1}{1} a_{i},\binom{d-1}{0} a_{i}\right\rangle_{b_{i}}$

A further research direction

A further research direction

Question

Which palindromic sequences $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle, c_{d-1} \neq 0$, have the property that for any $K \in \mathbb{N}$ there exists a number that is a d-digit palindrome simultaneously in K different bases, with $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$ being its digit sequence in one of those bases?

A further research direction

Question

Which palindromic sequences $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle, c_{d-1} \neq 0$, have the property that for any $K \in \mathbb{N}$ there exists a number that is a d-digit palindrome simultaneously in K different bases, with $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$ being its digit sequence in one of those bases?

- We shall refer to the sequences satisfying this condition as "very palindromic" sequences.

A further research direction

Question

Which palindromic sequences $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle, c_{d-1} \neq 0$, have the property that for any $K \in \mathbb{N}$ there exists a number that is a d-digit palindrome simultaneously in K different bases, with $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$ being its digit sequence in one of those bases?

- We shall refer to the sequences satisfying this condition as "very palindromic" sequences.
- All the sequences $\left\langle\binom{ d-1}{d-1},\binom{d-1}{d-2},\binom{d-1}{d-3}, \ldots,\binom{d-1}{1},\binom{d-1}{0}\right\rangle$, as well as their multiples by a factor of form t^{d-1}, are "very palindromic".

A further research direction

Question

Which palindromic sequences $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle, c_{d-1} \neq 0$, have the property that for any $K \in \mathbb{N}$ there exists a number that is a d-digit palindrome simultaneously in K different bases, with $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$ being its digit sequence in one of those bases?

- We shall refer to the sequences satisfying this condition as "very palindromic" sequences.
- All the sequences $\left\langle\binom{ d-1}{d-1},\binom{d-1}{d-2},\binom{d-1}{d-3}, \ldots,\binom{d-1}{1},\binom{d-1}{0}\right\rangle$, as well as their multiples by a factor of form t^{d-1}, are "very palindromic". These are the only ones known so far; we shall refer to them as "binomial sequences".

A further research direction

Question

Which palindromic sequences $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle, c_{d-1} \neq 0$, have the property that for any $K \in \mathbb{N}$ there exists a number that is a d-digit palindrome simultaneously in K different bases, with $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$ being its digit sequence in one of those bases?

- We shall refer to the sequences satisfying this condition as "very palindromic" sequences.
- All the sequences $\left\langle\binom{ d-1}{d-1},\binom{d-1}{d-2},\binom{d-1}{d-3}, \ldots,\binom{d-1}{1},\binom{d-1}{0}\right\rangle$, as well as their multiples by a factor of form t^{d-1}, are "very palindromic". These are the only ones known so far; we shall refer to them as "binomial sequences".
- For $d=2$, these are precisely all the palindromic sequences of length 2.

Easy comes first: palindromes of variable length

Theorem

Let $d \geqslant 2$ and a palindromic sequence $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$, $c_{d-1} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a palindrome with at least d digits in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle_{b_{i_{0}}}=n$.

Easy comes first: palindromes of variable length

Theorem

Let $d \geqslant 2$ and a palindromic sequence $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$,
$c_{d-1} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a palindrome with at least d digits in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle_{b_{i_{0}}}=n$.

Proof (sketch).

Easy comes first: palindromes of variable length

Theorem

Let $d \geqslant 2$ and a palindromic sequence $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$,
$c_{d-1} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a palindrome with at least d digits in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle_{b_{i_{0}}}=n$.

Proof (sketch).

- $m>\max \left\{c_{0}, c_{1}, \ldots, c_{d-1}\right\}$

Easy comes first: palindromes of variable length

Theorem

Let $d \geqslant 2$ and a palindromic sequence $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$,
$c_{d-1} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a palindrome with at least d digits in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle_{b_{i_{0}}}=n$.

Proof (sketch).

- $m>\max \left\{c_{0}, c_{1}, \ldots, c_{d-1}\right\}$
- $s \in \mathbb{N}$

Easy comes first: palindromes of variable length

Theorem

Let $d \geqslant 2$ and a palindromic sequence $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$,
$c_{d-1} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a palindrome with at least d digits in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle_{b_{i_{0}}}=n$.

Proof (sketch).

- $m>\max \left\{c_{0}, c_{1}, \ldots, c_{d-1}\right\}$
- $s \in \mathbb{N}, \tau(s) \geqslant K$

Easy comes first: palindromes of variable length

Theorem

Let $d \geqslant 2$ and a palindromic sequence $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$,
$c_{d-1} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a palindrome with at least d digits in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle_{b_{i_{0}}}=n$.

Proof (sketch).

- $m>\max \left\{c_{0}, c_{1}, \ldots, c_{d-1}\right\}$
- $s \in \mathbb{N}, \tau(s) \geqslant K, a_{1}=1, a_{2}, \ldots, a_{K}$ - divisors of s

Easy comes first: palindromes of variable length

Theorem

Let $d \geqslant 2$ and a palindromic sequence $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$,
$c_{d-1} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a palindrome with at least d digits in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle_{b_{i_{0}}}=n$.

Proof (sketch).

- $m>\max \left\{c_{0}, c_{1}, \ldots, c_{d-1}\right\}$
- $s \in \mathbb{N}, \tau(s) \geqslant K, a_{1}=1, a_{2}, \ldots, a_{K}$ - divisors of s
- $n=\sum_{j=0}^{d-1} c_{j} m^{s j}$

Easy comes first: palindromes of variable length

Theorem

Let $d \geqslant 2$ and a palindromic sequence $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$,
$c_{d-1} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a palindrome with at least d digits in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle_{b_{i_{0}}}=n$.

Proof (sketch).

- $m>\max \left\{c_{0}, c_{1}, \ldots, c_{d-1}\right\}$
- $s \in \mathbb{N}, \tau(s) \geqslant K, a_{1}=1, a_{2}, \ldots, a_{K}$ - divisors of s
- $n=\sum_{j=0}^{d-1} c_{j} m^{s j}, b_{i}=m^{\frac{s}{a_{i}}}$

Easy comes first: palindromes of variable length

Theorem

Let $d \geqslant 2$ and a palindromic sequence $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle$,
$c_{d-1} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a palindrome with at least d digits in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{d-1}, c_{d-2}, \ldots, c_{0}\right\rangle_{b_{i_{0}}}=n$.

Proof (sketch).

- $m>\max \left\{c_{0}, c_{1}, \ldots, c_{d-1}\right\}$
- $s \in \mathbb{N}, \tau(s) \geqslant K, a_{1}=1, a_{2}, \ldots, a_{K}$ - divisors of s
- $n=\sum_{j=0}^{d-1} c_{j} m^{s j}, b_{i}=m^{\frac{s}{a_{i}}}$
- $n=\langle c_{d-1}, \underbrace{0, \ldots, 0}_{a_{i}-1 \text { zeros }}, c_{d-2}, \underbrace{0, \ldots, 0}_{a_{i}-1 \text { zeros }}, c_{d-3}, 0,0, \ldots, 0,0, c_{1}, \underbrace{0, \ldots, 0}_{a_{i}-1 \text { zeros }}, c_{0}\rangle_{b_{i}}$

Three digits - the main result

Three digits - the main result

Theorem

Let a palindromic sequence $\left\langle c_{0}, c_{1}, c_{0}\right\rangle, c_{0} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a 3 -digit palindrome in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{0}, c_{1}, c_{0}\right\rangle_{b_{i 0}}=n$.

Three digits - the main result

Theorem

Let a palindromic sequence $\left\langle c_{0}, c_{1}, c_{0}\right\rangle, c_{0} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a 3 -digit palindrome in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{0}, c_{1}, c_{0}\right\rangle_{b_{i 0}}=n$.

Proof (sketch).

Three digits - the main result

Theorem

Let a palindromic sequence $\left\langle c_{0}, c_{1}, c_{0}\right\rangle, c_{0} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a 3 -digit palindrome in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{0}, c_{1}, c_{0}\right\rangle_{b_{i 0}}=n$.

Proof (sketch). First construction.

Three digits - the main result

Theorem

Let a palindromic sequence $\left\langle c_{0}, c_{1}, c_{0}\right\rangle, c_{0} \neq 0$, be given. Then for any $K \in \mathbb{N}$ there exists $n \in \mathbb{N}$ and a list of bases $\left\{b_{1}, b_{2}, \ldots, b_{K}\right\}$ such that, for each i such that $1 \leqslant i \leqslant K, n$ is a 3 -digit palindrome in base b_{i}, and that, for some i_{0} such that $1 \leqslant i_{0} \leqslant K$, we have $\left\langle c_{0}, c_{1}, c_{0}\right\rangle_{b_{i 0}}=n$.

Proof (sketch). First construction.

- s - large enough, coprime to $1,2, \ldots, K-1, c_{0}$

Three digits - the main result

Proof (sketch). First construction.

- s - large enough, coprime to $1,2, \ldots, K-1, c_{0}$

Three digits - the main result

Proof (sketch). First construction.

- s - large enough, coprime to $1,2, \ldots, K-1, c_{0}$

$$
\begin{aligned}
m & \equiv-\frac{c_{1}}{c_{0}^{2}(K-2)!} \\
m \equiv-\frac{c_{1}}{2 c_{0}^{2}(K-2)!} & \left(\bmod s-c_{0}(K-2)!\right) \\
& \vdots \\
m & \equiv-\frac{c_{1}}{(K-1) c_{0}^{2}(K-2)!}\left(\bmod s-2 c_{0}(K-2)!\right)
\end{aligned}
$$

Three digits - the main result

Proof (sketch). First construction.

- s - large enough, coprime to $1,2, \ldots, K-1, c_{0}$
- $m \equiv-\frac{c_{1}}{c_{0}^{2}(K-2)!} \quad\left(\bmod s-c_{0}(K-2)!\right)$

$$
m \equiv-\frac{c_{1}}{2 c_{0}^{2}(K-2)!} \quad\left(\bmod s-2 c_{0}(K-2)!\right)
$$

$$
m \equiv-\frac{c_{1}}{(K-1) c_{0}^{2}(K-2)!}\left(\bmod s-(K-1) c_{0}(K-2)!\right)
$$

- $n=c_{0}(m s)^{2}+c_{1} m s+c_{0}$

Three digits - the main result

Proof (sketch). First construction.

- s - large enough, coprime to $1,2, \ldots, K-1, c_{0}$

$$
\begin{aligned}
& m \equiv-\frac{c_{1}}{c_{0}^{2}(K-2)!} \\
& m \equiv-\frac{c_{1}}{2 c_{0}^{2}(K-2)!}\left(\bmod s-c_{0}(K-2)!\right) \\
& m \vdots \\
& \equiv-\frac{c_{1}}{(K-1) c_{0}^{2}(K-2)!}\left(\bmod s-2 c_{0}(K-2)!\right) \\
&\left.m-(K-1) c_{0}(K-2)!\right)
\end{aligned}
$$

- $n=c_{0}(m s)^{2}+c_{1} m s+c_{0}, b_{i}=m\left(s-(i-1) c_{0}(K-2)!\right)$

Three digits - the main result

Second construction.

Three digits - the main result

Second construction. The case $c_{1} \neq 0$.

Three digits - the main result

Second construction. The case $c_{1} \neq 0$.

- $p, q \in \mathbb{N}$ such that

Three digits - the main result

Second construction. The case $c_{1} \neq 0$.

- $p, q \in \mathbb{N}$ such that
- $\frac{\ln p}{\ln q} \notin \mathbb{Q}$

Three digits - the main result

Second construction. The case $c_{1} \neq 0$.

- $p, q \in \mathbb{N}$ such that
- $\frac{\ln p}{\ln q} \notin \mathbb{Q}$
- $c_{0} \mid p q$

Three digits - the main result

Second construction. The case $c_{1} \neq 0$.

- $p, q \in \mathbb{N}$ such that
- $\frac{\ln p}{\ln q} \notin \mathbb{Q}$
- $c_{0} \mid p q$
- $p q$ is even

Three digits - the main result

Second construction. The case $c_{1} \neq 0$.

- $p, q \in \mathbb{N}$ such that
- $\frac{\ln p}{\ln q} \notin \mathbb{Q}$
- $c_{0} \mid p q$
- $p q$ is even
- $p q \geqslant c_{1}$

Three digits - the main result

Second construction. The case $c_{1} \neq 0$.

- $p, q \in \mathbb{N}$ such that
- $\frac{\ln p}{\ln q} \notin \mathbb{Q}$
- $c_{0} \mid p q$
- $p q$ is even
- $p q \geqslant c_{1}$
- $1<\frac{q}{p}<\sqrt{\frac{c_{0}+1}{c_{0}}}$

Three digits - the main result

Second construction. The case $c_{1} \neq 0$.

- $p, q \in \mathbb{N}$ such that
- $\frac{\ln p}{\ln q} \notin \mathbb{Q}$
- $c_{0} \mid p q$
- $p q$ is even
- $p q \geqslant c_{1}$
- $1<\frac{q}{p}<\sqrt{\frac{c_{0}+1}{c_{0}}}$
- $g, h \in \mathbb{N}, 1<\frac{p^{g}}{q^{h}}<\sqrt{\frac{c_{0}+1}{c_{0}}}$

Three digits - the main result

Second construction. The case $c_{1} \neq 0$.

- $p, q \in \mathbb{N}$ such that
- $\frac{\ln p}{\ln q} \notin \mathbb{Q}$
- $c_{0} \mid p q$
- $p q$ is even
- $p q \geqslant c_{1}$
- $1<\frac{q}{p}<\sqrt{\frac{c_{0}+1}{c_{0}}}$
- $g, h \in \mathbb{N}, 1<\frac{p^{g}}{q^{h}}<\sqrt{\frac{c_{0}+1}{c_{0}}}$
- $n=c_{0} a^{2}+c_{1} a+c_{0}$ for $a=\frac{c_{1}(p q)^{(p q+1)^{M}}}{c_{0}}$

Three digits - the main result

Second construction. The case $c_{1} \neq 0$.

- $p, q \in \mathbb{N}$ such that
- $\frac{\ln p}{\ln q} \notin \mathbb{Q}$
- $c_{0} \mid p q$
- $p q$ is even
- $p q \geqslant c_{1}$
- $1<\frac{q}{p}<\sqrt{\frac{c_{0}+1}{c_{0}}}$
- $g, h \in \mathbb{N}, 1<\frac{p^{g}}{q^{h}}<\sqrt{\frac{c_{0}+1}{c_{0}}}$
- $n=c_{0} a^{2}+c_{1} a+c_{0}$ for $a=\frac{c_{1}(p q)^{(p q+1)^{M}}}{c_{0}}$
- n is a 3-digit palindrome in base a and $p^{u_{i}} q^{v_{i}}(p q+1)^{i}$ for $\left\lceil\frac{g+5}{2}\right\rceil \leqslant i \leqslant\left\lceil\frac{g+1}{2}\right\rceil+K$

Three digits - the main result

Second construction.

Three digits - the main result

Second construction. The case $c_{1}=0$.

Three digits - the main result

Second construction. The case $c_{1}=0$.

- $p, q \in \mathbb{N}$ such that $1<\frac{q}{p}<\left(\frac{c_{0}+1}{c_{0}}\right)^{\frac{1}{2 K-2}}$

Three digits - the main result

Second construction. The case $c_{1}=0$.

- $p, q \in \mathbb{N}$ such that $1<\frac{q}{p}<\left(\frac{c_{0}+1}{c_{0}}\right)^{\frac{1}{2 K-2}}$
- $n=c_{0} a^{2}+c_{0}$ for $a=(p q)^{K-1}$

Three digits - the main result

Second construction. The case $c_{1}=0$.

- $p, q \in \mathbb{N}$ such that $1<\frac{q}{p}<\left(\frac{c_{0}+1}{c_{0}}\right)^{\frac{1}{2 K-2}}$
- $n=c_{0} a^{2}+c_{0}$ for $a=(p q)^{K-1}$
- n is a 3-digit palindrome in base $p^{K+i-2} q^{K-i}$ for $1 \leqslant i \leqslant K$

Three digits - examples

Three digits - examples

- $\langle 1,5,1\rangle$

Three digits - examples

- $\langle 1,5,1\rangle, K=4$

Three digits - examples

- $\langle 1,5,1\rangle, K=4$
- The first construction gives

Three digits - examples

- $\langle 1,5,1\rangle, K=4$
- The first construction gives $n=3726430975$,

Three digits - examples

- $\langle 1,5,1\rangle, K=4$
- The first construction gives $n=3726430975$,

$$
\begin{aligned}
n & =\langle 1,5,1\rangle_{61042}=\langle 1,11127,1\rangle_{55734} \\
& =\langle 1,23473,1\rangle_{50426}=\langle 1,37475,1\rangle_{45118} .
\end{aligned}
$$

Three digits - examples

- $\langle 1,5,1\rangle, K=4$
- The first construction gives $n=3726430975$,

$$
\begin{aligned}
n & =\langle 1,5,1\rangle_{61042}=\langle 1,11127,1\rangle_{55734} \\
& =\langle 1,23473,1\rangle_{50426}=\langle 1,37475,1\rangle_{45118} .
\end{aligned}
$$

- The second construction gives

Three digits - examples

- $\langle 1,5,1\rangle, K=4$
- The first construction gives $n=3726430975$,

$$
\begin{aligned}
n & =\langle 1,5,1\rangle_{61042}=\langle 1,11127,1\rangle_{55734} \\
& =\langle 1,23473,1\rangle_{50426}=\langle 1,37475,1\rangle_{45118} .
\end{aligned}
$$

- The second construction gives $n=\underbrace{79441 \ldots 06401}_{10418005 \text { digits }}$,

Three digits - examples

- $\langle 1,5,1\rangle, K=4$
- The first construction gives $n=3726430975$,

$$
\begin{aligned}
n & =\langle 1,5,1\rangle_{61042}=\langle 1,11127,1\rangle_{55734} \\
& =\langle 1,23473,1\rangle_{50426}=\langle 1,37475,1\rangle_{45118} .
\end{aligned}
$$

- The second construction gives $n=\underbrace{79441 \ldots 06401}_{10418005 \text { digits }}$,

$$
\begin{aligned}
n & =\langle 1,5,1\rangle_{2^{9653618} \cdot 3^{4826} 809.5} \\
& =\langle 1, \underbrace{19906 \ldots 06864}_{5209003 \text { digits }}, 1\rangle_{2^{9653614.3^{4826801} \cdot 13^{5}}} \\
& =\langle 1, \underbrace{15179 \ldots 59936}_{5209003 \text { digits }}, 1\rangle_{2^{9653612.3^{4826800} \cdot 13^{6}}} \\
& =\langle 1, \underbrace{10550 \ldots 83264}_{5209003 \text { digits }}, 1\rangle_{2^{9653610.3^{4826} 799 \cdot 13^{7}}}
\end{aligned}
$$

Three digits - examples

Three digits - examples

- $\langle 2,0,2\rangle$

Three digits - examples

- $\langle 2,0,2\rangle, K=4$

Three digits - examples

- $\langle 2,0,2\rangle, K=4$
- The first construction gives

Three digits - examples

- $\langle 2,0,2\rangle, K=4$
- The first construction gives $n=375223562302052$,

Three digits - examples

- $\langle 2,0,2\rangle, K=4$
- The first construction gives $n=375223562302052$,

$$
\begin{aligned}
n & =\langle 2,0,2\rangle_{13697145}=\langle 2,3374800,2\rangle_{12879405} \\
& =\langle 2,6985440,2\rangle_{12} 061665=\langle 2,10883376,2\rangle_{11243925} .
\end{aligned}
$$

Three digits - examples

- $\langle 2,0,2\rangle, K=4$
- The first construction gives $n=375223562302052$,

$$
\begin{aligned}
n & =\langle 2,0,2\rangle_{13697145}=\langle 2,3374800,2\rangle_{12879405} \\
& =\langle 2,6985440,2\rangle_{12} 061665=\langle 2,10883376,2\rangle_{11243925} .
\end{aligned}
$$

- The second construction gives

Three digits - examples

- $\langle 2,0,2\rangle, K=4$
- The first construction gives $n=375223562302052$,

$$
\begin{aligned}
n & =\langle 2,0,2\rangle_{13697145}=\langle 2,3374800,2\rangle_{12879405} \\
& =\langle 2,6985440,2\rangle_{12} 061665=\langle 2,10883376,2\rangle_{11243925} .
\end{aligned}
$$

- The second construction gives $n=382205952000002$,

Three digits - examples

- $\langle 2,0,2\rangle, K=4$
- The first construction gives $n=375223562302052$,

$$
\begin{aligned}
n & =\langle 2,0,2\rangle_{13697145}=\langle 2,3374800,2\rangle_{12879405} \\
& =\langle 2,6985440,2\rangle_{12} 061665=\langle 2,10883376,2\rangle_{11243925}
\end{aligned}
$$

- The second construction gives $n=382205952000002$,

$$
\begin{aligned}
n & =\langle 2,0,2\rangle_{13824000}=\langle 2,3571200,2\rangle_{12} 960000 \\
& =\langle 2,7157280,2\rangle_{12} 150000=\langle 2,10773182,2\rangle_{11390625} .
\end{aligned}
$$

Three digits - comparison of the two constructions

- The second construction seems much "worse" at the first glance
- The second construction seems much "worse" at the first glance, but it is not necessarily so:

Three digits - comparison of the two constructions

- The second construction seems much "worse" at the first glance, but it is not necessarily so:
- For $c_{1}=0$ the second construction produces much smaller values on n than the first one as K becomes larger (for $\langle 2,0,2\rangle$ and $K=20$, we get a 151 -digit number vs. a 724 -digit number; for $K=100$ we get a 1066 -digit number vs. 31394-digit number).

Three digits - comparison of the two constructions

- The second construction seems much "worse" at the first glance, but it is not necessarily so:
- For $c_{1}=0$ the second construction produces much smaller values on n than the first one as K becomes larger (for $\langle 2,0,2\rangle$ and $K=20$, we get a 151 -digit number vs. a 724-digit number; for $K=100$ we get a 1066 -digit number vs. 31394-digit number).
- The core of the second construction seems to provide some space for optimization in order to get a smaller number a (and thus a smaller number n).

Three digits - comparison of the two constructions

- The second construction seems much "worse" at the first glance, but it is not necessarily so:
- For $c_{1}=0$ the second construction produces much smaller values on n than the first one as K becomes larger (for $\langle 2,0,2\rangle$ and $K=20$, we get a 151 -digit number vs. a 724 -digit number; for $K=100$ we get a 1066 -digit number vs. 31394-digit number).
- The core of the second construction seems to provide some space for optimization in order to get a smaller number a (and thus a smaller number n).
- There are some arguments that suggest that for $d>3$ the numbers we are looking for become much rarer; thus, it is not at all impossible that a construction that produces large values in the case $d=3$ can be adapted to be of some use also for $d>3$, while the one that produces small values in the case $d=3$ actually only picks some exceptions whose existence essentially relies on the assumption $d=3$.

More digits

More digits

- What is known for $d>3$?

More digits

- What is known for $d>3$? Almost nothing.

More digits

- What is known for $d>3$? Almost nothing.
- We present some heuristic arguments. For the sake of simplicity, we consider the sequence $\langle 1,0,0, \ldots, 0,1\rangle$.

More digits

- What is known for $d>3$? Almost nothing.
- We present some heuristic arguments. For the sake of simplicity, we consider the sequence $\langle 1,0,0, \ldots, 0,1\rangle$.
- The number of integers that are written as $\langle 1,0,0, \ldots, 0,1\rangle_{a}$, for $a \leqslant A$, and that are palindromes with the same number of digits also in some other base, could be heuristically bounded above by

$$
\sum_{b=2}^{A-1} \frac{1}{b^{\left\lfloor\frac{d}{2}\right\rfloor-\frac{d}{d-1}}}-\sum_{b=2}^{A-1} \frac{1}{b^{\left\lfloor\frac{d}{2}\right\rfloor-1}}
$$

More digits

- What is known for $d>3$? Almost nothing.
- We present some heuristic arguments. For the sake of simplicity, we consider the sequence $\langle 1,0,0, \ldots, 0,1\rangle$.
- The number of integers that are written as $\langle 1,0,0, \ldots, 0,1\rangle_{a}$, for $a \leqslant A$, and that are palindromes with the same number of digits also in some other base, could be heuristically bounded above by

$$
\sum_{b=2}^{A-1} \frac{1}{b^{\left\lfloor\frac{d}{2}\right\rfloor-\frac{d}{d-1}}}-\sum_{b=2}^{A-1} \frac{1}{b^{\left\lfloor\frac{d}{2}\right\rfloor-1}} .
$$

- If $d \geqslant 6$, then for $A \rightarrow \infty$ the above value converges to

$$
\zeta\left(\left\lfloor\frac{d}{2}\right\rfloor-\frac{d}{d-1}\right)-\zeta\left(\left\lfloor\frac{d}{2}\right\rfloor-1\right)
$$

More digits

- What is known for $d>3$? Almost nothing.
- We present some heuristic arguments. For the sake of simplicity, we consider the sequence $\langle 1,0,0, \ldots, 0,1\rangle$.
- The number of integers that are written as $\langle 1,0,0, \ldots, 0,1\rangle_{a}$, for $a \leqslant A$, and that are palindromes with the same number of digits also in some other base, could be heuristically bounded above by

$$
\sum_{b=2}^{A-1} \frac{1}{b^{\left\lfloor\frac{d}{2}\right\rfloor-\frac{d}{d-1}}}-\sum_{b=2}^{A-1} \frac{1}{b^{\left\lfloor\frac{d}{2}\right\rfloor-1}} .
$$

- If $d \geqslant 6$, then for $A \rightarrow \infty$ the above value converges to

$$
\zeta\left(\left\lfloor\frac{d}{2}\right\rfloor-\frac{d}{d-1}\right)-\zeta\left(\left\lfloor\frac{d}{2}\right\rfloor-1\right)
$$

which is finite!

A selection of open problems

A selection of open problems

- Characterize all the "very palindromic" sequences for $d>3$.

A selection of open problems

- Characterize all the "very palindromic" sequences for $d>3$.
- If this is too much to ask for, the following questions might be easier:

A selection of open problems

- Characterize all the "very palindromic" sequences for $d>3$.
- If this is too much to ask for, the following questions might be easier:
- Are sequences $\langle 1,1, \ldots, 1\rangle$ and $\langle 1,0,0, \ldots, 0,1\rangle$ "very palindromic" (for any d, or for each d)?

A selection of open problems

- Characterize all the "very palindromic" sequences for $d>3$.
- If this is too much to ask for, the following questions might be easier:
- Are sequences $\langle 1,1, \ldots, 1\rangle$ and $\langle 1,0,0, \ldots, 0,1\rangle$ "very palindromic" (for any d, or for each d)?
- Provide at least a single example of a "very palindromic" sequence, other than the "binomial sequences" (for $d>3$), or prove that there are not any.

A selection of open problems

- Characterize all the "very palindromic" sequences for $d>3$.
- If this is too much to ask for, the following questions might be easier:
- Are sequences $\langle 1,1, \ldots, 1\rangle$ and $\langle 1,0,0, \ldots, 0,1\rangle$ "very palindromic" (for any d, or for each d)?
- Provide at least a single example of a "very palindromic" sequence, other than the "binomial sequences" (for $d>3$), or prove that there are not any.
- Provide at least a single example of a sequence that is not "very palindromic" (for $d>3$), or prove that there are not any.

A selection of open problems

- Characterize all the "very palindromic" sequences for $d>3$.
- If this is too much to ask for, the following questions might be easier:
- Are sequences $\langle 1,1, \ldots, 1\rangle$ and $\langle 1,0,0, \ldots, 0,1\rangle$ "very palindromic" (for any d, or for each d)?
- Provide at least a single example of a "very palindromic" sequence, other than the "binomial sequences" (for $d>3$), or prove that there are not any.
- Provide at least a single example of a sequence that is not "very palindromic" (for $d>3$), or prove that there are not any.
- If sequences that are not "very palindromic" were found, a further research direction could be to check, for a given such sequences, what the largest $K \in \mathbb{N}$ is such that there exists a number that is a d-digit palindrome simultaneously in K different bases, with the given sequence being its digit sequence in one of those bases.

A selection of open problems

- Characterize all the "very palindromic" sequences for $d>3$.
- If this is too much to ask for, the following questions might be easier:
- Are sequences $\langle 1,1, \ldots, 1\rangle$ and $\langle 1,0,0, \ldots, 0,1\rangle$ "very palindromic" (for any d, or for each d)?
- Provide at least a single example of a "very palindromic" sequence, other than the "binomial sequences" (for $d>3$), or prove that there are not any.
- Provide at least a single example of a sequence that is not "very palindromic" (for $d>3$), or prove that there are not any.
- If sequences that are not "very palindromic" were found, a further research direction could be to check, for a given such sequences, what the largest $K \in \mathbb{N}$ is such that there exists a number that is a d-digit palindrome simultaneously in K different bases, with the given sequence being its digit sequence in one of those bases.
- Could the number K from the previous question be equal to 1 for some sequence?

