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Jakub Buĺın (Charles Univ., Prague) Algebraic approach to coloring by trees NSAC 2013 1 / 16



19% of definitions in this talk

a relational structure: A = 〈A; R1, . . . ,Rn〉, where Ri ⊆ Aki

a di(rected )graph: G = 〈G ;→〉, where → is binary

an algebra: A = 〈A;F〉, F is a clone of operations on A

a subuniverse (C ≤ A): a subset closed under all operations

an idempotent algebra: every f ∈ F satisfies f (x , x , . . . , x) ≈ x
(equivalently, {a} ≤ A for every a ∈ A)

All domains in this talk are finite!
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Fixed template CSPs

fix a finite relational structure A
the Constraint satisfaction problem over A = membership problem for
the set

CSP(A) = {X | X→ A}

goal: characterize relational structures wrt. complexity of the CSP

and related algorithmic properties

Conjecture (The CSP dichotomy conjecture – Feder, Vardi ’93)

For every A, CSP(A) is in P or NP-complete.
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Algebra of polymorphisms

polymorphisms of A = operations preserving all relations

f (a1 a2 . . . an) = a
↓ ↓ ↓ =⇒ ↓

f (b1 b2 . . . bn) = b

〈A;Pol(A)〉 = the algebra of polymorphisms of A
a primitive positive (pp-) formula: ∃, ∧, =

relations pp-definable from A = SPfin(A)

Relational structures are algebras, too!
(See Ross Willard’s talk.)
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The algebraic approach to CSP & Maltsev conditions

Bulatov, Jeavons, Krokhin ’00-’05: complexity of CSP(A) is controlled
by the equational theory of HSP(A)

a strong Maltsev condition = finite set of equations in some operation
symbols

a weak near-unanimity (WNU) = n-ary operation (n ≥ 2) satisfying

f (x , . . . , x , y) ≈ f (x , . . . , x , y , x) ≈ · · · ≈ f (y , x , . . . , x)

a near-unanimity (NU) = a WNU such that f (x , . . . , x , y) ≈ x

a majority = ternary NU (eg. (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z))

a semilattice operation
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Cores & constants

a core structure = every endomorphism is an automorphism

every structure has a unique (up to isomorphism) core
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the algebraic approach works only for cores

but CSP(A) = CSP(core of A)

also, we can add all singleton unary relations (i.e., we can prescribe
values to variables) ⇒ idempotent algebras
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Two important classes of algebras

Taylor algebra = satisfies any nontrivial strong Maltsev condition

Maróti, McKenzie ’06: Taylor iff has some WNU

Bulatov, Jeavons, Krokhin ’00-05:
If a core A is not Taylor, then CSP(A) is NP-complete.

Algebraic dichotomy conjecture
If a core A is Taylor, then CSP(A) is in P.

A has bounded width (BW) = CSP(A) solvable by local consistency
checking (in P), “Can’t encode linear equations.”

SD(∧) algebra = HSP(A) has ∧-semidistributive congruence lattices

Maróti, McKenzie ’06: SD(∧) iff has WNUs of almost all arities

Barto, Kozik ’08: Bounded width theorem
A core A has BW iff it is SD(∧).
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Absorption & always absorbing algebras

an absorbing subuniverse (C E A) = there exists an idempotent
t ∈ F such that

t(A,C , . . . ,C ,C ) ⊆ C ,

t(C ,A, . . . ,C ,C ) ⊆ C ,

...

t(C ,C , . . . ,C ,A) ⊆ C .

an absorption-free (AF) algebra = no proper absorbing subuniverse

an always absorbing (AA) algebra = every C ≤ A has a proper
absorbing subuniverse (equivalently, no AF algebra in HSPfin(A))

example: NU, semilattice

AA algebras are SD(∧)
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Not every slide needs a title

near-unanimity
strict width

greedy algorithm

""
always absorbing
no AF algebras

//
SD(∧)

bounded width
almost all WNUs

// Taylor
WNU

semilattice
implies width 1

;;
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CSP over digraphs aka H-coloring problem

Feder, Vardi ’93: for every A there exists a digraph H such that

CSP(A)
P∼ CSP(H)

JB, Delić, Jackson, Niven ’11: a simple construction,
al(most al)l interesting Maltsev conditions are preserved,
conjectures characterizing CSPs in P, NL, L reduce to digraphs

news! actually, CSP(A)
L∼ CSP(H) (talk to Marcel)

why digraphs? fieldtest & inspiration for the algebraic approach,
possibly interesting combinatorial facts

Hell, Nešeťril ’90: CSP dichotomy for undirected graphs

Barto, Kozik, Niven ’06: dichotomy for smooth digraphs
in fact, core smooth Taylor digraph = disjoint union of directed
cycles, thus has a majority ⇒ is AA
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Oriented trees

oriented paths have both majority and semilattice ⇒ are AA

oriented triads (join 3 paths in one vertex) are already hard
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Special oriented trees
oriented trees have levels; maximum level = height
a minimal path = initial vertex has level 0, terminal vertex level k ,
and for all other vertices 0 < level(v) < k

Definition

Let T be an oriented tree of height 1. A T-special tree is an oriented tree
obtained from T by replacing all edges by minimal paths of the same
height (preserving orientation).

a special triad = T-special tree where

T =
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Example of a special triad
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Barto, Kozik, Maróti, Niven: Is this the smallest NP-complete oriented
tree? (38 vertices)
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The history of special trees

Gutjahr, Welzl, Woeginger ’92: an NP-complete oriented tree (81
vertices)

Hell, Nešeťril, Zhu ’95: invented the special triads, constructed an
NP-complete one (45 vertices) and more

Barto, Kozik, Maróti, Niven ’08: CSP dichotomy for special triads,
Taylor implies either majority or width 1

Barto, JB ’10: CSP dichotomy for special polyads, Taylor implies
SD(∧), a rather complicated proof

Theorem (JB ’13)

The CSP (algebraic) dichotomy holds for all special trees. Taylor special
trees are SD(∧). (Maybe even AA, work in progress. . . )

an easy(-ish) proof, “localization”, uses very recent algebraic tools
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(I have no time for) sketch of the proof

H – a T-special tree, Taylor
T = 〈A ∪ B; E 〉, E ⊆ A× B – an oriented tree of height 1

A, B and E are pp-definable from H
H is SD(∧) iff both A and B are SD(∧) (this is “special”)

A or B has a singleton absorbing subuniverse (Absorption theorem!)

WLOG {o}E A, partial ordering of A ∪ B by distance from o

closer elements absorb more distant ones

E -neighbourhoods of singletons are AA (this is
the only technical bit; we construct nice binary
polymorphisms)

A and B are AA
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Open problems & Thanks

Conjecture

Every Taylor oriented tree is already SD(∧).
“Taylor trees cannot encode linear equations.”

Problem

Is there a homotopy-like notion for oriented trees (cf. homotopy for
reflexive digraphs of Larose and Tardif)?

Problem

Characterize (finite, idempotent) AA algebras.

Thank you for your attention!
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