A generalization of the Kaloujnine-Krasner Theorem

Tamás Dékány

Bolyai Institute, University of Szeged

June 08, 2013

1 / 11

Tamás Dékány (Szeged) A generalization of the Kaloujnine-Krasner Theorem

Motivating theorem from group theory:

Kaloujnine-Krasner Theroem

For any groups N and H every extension of N by H is embeddable in the wreath product of N by H.

Motivating theorem from group theory:

Kaloujnine-Krasner Theroem

For any groups N and H every extension of N by H is embeddable in the wreath product of N by H.

Is there any direct generalization for semigroups? If not, whether we can find "similar" theorem, which is still a generalization? completely simple semigroups \equiv

Rees-matrix semigroups with normalized sandwich matrices

- $S = \mathcal{M}(G; I, \Lambda; P), P$ normalized $\rho \subseteq S \times S$ congruence
- ρ is a group congruence of S iff $\exists N \lhd G$ s.t. every entry of P are from N

completely simple semigroups \equiv

Rees-matrix semigroups with normalized sandwich matrices

 $S = \mathcal{M}(G; I, \Lambda; P), P$ normalized $\rho \subseteq S \times S$ congruence ρ is a group congruence of S iff $\exists N \lhd G$ s.t. every entry of P are from N

moreover $S/\rho \cong G/N$ and Ker $\rho = \mathcal{M}(N; I, \Lambda; P)$

completely simple semigroups \equiv

Rees-matrix semigroups with normalized sandwich matrices

$$\begin{split} S &= \mathcal{M}(G; I, \Lambda; P), \ P \text{ normalized} \\ \rho &\subseteq S \times S \text{ congruence} \\ \rho \text{ is a group congruence of } S \text{ iff } \exists \ N \lhd G \text{ s.t. every entry of } P \text{ are from } N \end{split}$$

moreover $S/\rho \cong G/N$ and Ker $\rho = \mathcal{M}(N; I, \Lambda; P)$

We say that $S = \mathcal{M}(G; I, \Lambda; P)$ is an *extension* of $K = \mathcal{M}(N; I, \Lambda; P)$ by G/N.

S semigroup, H group, H acts on S multiplication on $S \times H$:

$$(s,A)(t,B) = (s \cdot {}^{A}t,AB)$$

this is $S \rtimes H$ — semidirect product of S by H, with respect to the given action of H on S

S semigroup, H group, H acts on S multiplication on $S \times H$:

$$(s,A)(t,B) = (s \cdot {}^{A}t,AB)$$

this is $S \rtimes H$ — semidirect product of S by H, with respect to the given action of H on S

Special construction: semidirect product $S^H \rtimes H$ with respect to the action H on S^H defined by, for $f \in S^H$, $A \in H$:

$$^{A}f: H \rightarrow S, B(^{A}f) = (BA)f$$

this is the wreath product of S by H, denoted by $S \wr H$

S semigroup, H group, H acts on S multiplication on $S \times H$:

$$(s,A)(t,B) = (s \cdot {}^{A}t,AB)$$

this is $S \rtimes H$ — semidirect product of S by H, with respect to the given action of H on S

Special construction: semidirect product $S^H \rtimes H$ with respect to the action H on S^H defined by, for $f \in S^H$, $A \in H$:

$$^{A}f: H \rightarrow S, B(^{A}f) = (BA)f$$

this is the wreath product of S by H, denoted by $S \wr H$

Important: S and H completely determines $S \wr H$.

Kaloujnine-Krasner Theroem

For any groups N and H every extension of N by H is embeddable in the wreath product of N by H.

Kaloujnine-Krasner Theroem

For any groups N and H every extension of N by H is embeddable in the wreath product of N by H.

Let G be an extension of N by H. $r_A \ (A \in H)$ — transversal of the cosets modulo N in G $f_g \in N^H \ (g \in G)$: An embedding:

$$arphi: \ G o N \wr H, \ g \mapsto (f_g, gN)$$

 $f_g: \ H o N, \ A \mapsto r_A g r_{A \cdot gN}^{-1}$

Let $S = \mathcal{M}(G; I, \Lambda; P)$ be an extension of the semigroup $\mathcal{K} = \mathcal{M}(N; I, \Lambda; P)$ by the group H.

Tamás Dékány (Szeged) A generalization of the Kaloujnine-Krasner Theorem

э

• • = • • = •

Let $S = \mathcal{M}(G; I, \Lambda; P)$ be an extension of the semigroup $\mathcal{K} = \mathcal{M}(N; I, \Lambda; P)$ by the group H. Does there exist an embedding

 $S \rightarrow K \wr H$?

∃ ► < ∃ ►

Let $S = \mathcal{M}(G; I, \Lambda; P)$ be an extension of the semigroup $\mathcal{K} = \mathcal{M}(N; I, \Lambda; P)$ by the group H. Does there exist an embedding

 $S \rightarrow K \wr H$?

If G is Abelian, mimic the proof of the Kaloujnine–Krasner Theorem:

$$\varphi \colon S \to K \wr H, \ (\mathbf{i}, \mathbf{g}, \boldsymbol{\lambda}) \mapsto (f_{\mathbf{g}}^{\mathbf{i}\boldsymbol{\lambda}}, \mathbf{g}N),$$

where

$$f_g^{i\lambda} \colon H \to K, \ A \mapsto (i, r_A g r_{A \cdot gN}^{-1}, \lambda).$$

Let $S = \mathcal{M}(G; I, \Lambda; P)$ be an extension of the semigroup $\mathcal{K} = \mathcal{M}(N; I, \Lambda; P)$ by the group H. Does there exist an embedding

 $S \rightarrow K \wr H$?

If G is Abelian, mimic the proof of the Kaloujnine–Krasner Theorem:

$$\varphi \colon S \to K \wr H, \ (\mathbf{i}, \mathbf{g}, \boldsymbol{\lambda}) \mapsto (f_{\mathbf{g}}^{\mathbf{i}\boldsymbol{\lambda}}, \mathbf{g}N),$$

where

$$f_g^{i\lambda} \colon H \to K, \ A \mapsto (i, r_A g r_{A \cdot gN}^{-1}, \lambda).$$

If $G = \mathbb{Z}_3 \rtimes \mathbb{Z}_2$ then an embedding exists, but it is not "natural."

conjecture: embedding does not exist in general \Rightarrow look for a counterexample

э

∃ ► < ∃ ►

conjecture: embedding does not exist in general \Rightarrow look for a counterexample first we would like to express the wreath product in a semidirect product form:

$$K \wr H = K^{H} \rtimes H \cong \mathcal{M}(N^{H}; I^{H}, \Lambda^{H}; P^{H}) \rtimes H,$$

where $P^{H} = (p_{\xi\eta}^{H})$ and for any $\xi \in \Lambda^{H}, \ \eta \in I^{H}$:

$$p_{\xi\eta}^{H}: H \to N, Ap_{\xi\eta}^{H} = p_{A\xi,A\eta} \ (A \in H)$$

 $\mathbb{Z}_n \rtimes \mathbb{Z}_2$ is not good because of \mathbb{Z}_2 is too "small" the source of the problem is in the sandwich matrix of $K \wr H$, where the entries are strongly related to each other it suffices to work a 2×2 sandwich matrix if \mathbb{Z}_2 is replaced by \mathbb{Z}_3

the proof uses that one entry of G has order 3, and the image of this element can be expressed by means of the entries of P^H so we do not have enough freedom to choose it appropriately

it suffices to work a 2×2 sandwich matrix if \mathbb{Z}_2 is replaced by \mathbb{Z}_3

the proof uses that one entry of G has order 3, and the image of this element can be expressed by means of the entries of P^H so we do not have enough freedom to choose it appropriately

$$h = p_{\xi_1\eta_1}^H (p_{\xi_2\eta_1}^H)^{-1} p_{\xi_2\eta_2}^H (p_{\xi_1\eta_2}^H)^{-1}$$

Theorem

Let $G = \mathbb{Z}_7 \rtimes \mathbb{Z}_3$, $I = \Lambda = \{1, 2\}$, P be the sandwich matrix for which $p_{11} = p_{12} = p_{21} = (\overline{0}, \overline{0})$ and $p_{22} = (\overline{1}, \overline{0})$, and $N = \{(a, \overline{0}) : a \in \mathbb{Z}_7\}$. Let $S = \mathcal{M}(G; I, \Lambda; P)$ and $K = \mathcal{M}(N; I, \Lambda; P)$. Then there exists no embedding

 $S \rightarrow K \wr H$.

Theorem

Let $G = \mathbb{Z}_7 \rtimes \mathbb{Z}_3$, $I = \Lambda = \{1, 2\}$, P be the sandwich matrix for which $p_{11} = p_{12} = p_{21} = (\overline{0}, \overline{0})$ and $p_{22} = (\overline{1}, \overline{0})$, and $N = \{(a, \overline{0}) : a \in \mathbb{Z}_7\}$. Let $S = \mathcal{M}(G; I, \Lambda; P)$ and $K = \mathcal{M}(N; I, \Lambda; P)$. Then there exists no embedding

$$S \to K \wr H.$$

Important: there is no embedding at all, not just a "nice" embeddings like in the Kaloujnine–Krasner Theorem

How can we obtain a positive result with a similar construction?

Tamás Dékány (Szeged) A generalization of the Kaloujnine-Krasner Theorem

3

▶ ∢ ∃ ▶

How can we obtain a positive result with a similar construction? Idea: wreath product \longrightarrow semidirect product

э

How can we obtain a positive result with a similar construction? Idea: wreath product \longrightarrow semidirect product

We are looking for an embedding

$$S = \mathcal{M}(G; I, \Lambda; P) \rightarrow \mathcal{M}(N'; I', \Lambda'; P') \rtimes H,$$

and we don't want to go far from the Kaloujnine-Krasner Theorem

let $N' = N^H$, I' = I, $\Lambda' = H \times \Lambda$, and the entries of P' are "nice" maps

Tamás Dékány (Szeged) A generalization of the Kaloujnine-Krasner Theorem

3

A B A A B A

let $N' = N^H$, I' = I, $\Lambda' = H \times \Lambda$, and the entries of P' are "nice" maps

Theorem

For any extension $S = \mathcal{M}(G; I, \Lambda; P)$ of $K = \mathcal{M}(N; I, \Lambda; P)$ by a group H, there exists an embedding

$$S \to \mathcal{M}(N^H; I, H \times \Lambda; Q) \rtimes H,$$

where the restriction of this embedding to maximal subgroups of S coincides with that in the proof of the Kaloujnine–Krasner Theorem, and the entries of Q can be expressed by means of the ingredients there, too.