Expressibility of digraph homomorphisms in the logic LFP+Rank (joint work with C. Heggerud and F. McInerney)

Dejan Delic Department of Mathematics Ryerson University Toronto, Canada

June 5, 2013

Outline

Introduction

- 2 Bulin-D.-Jackson-Niven Construction
 - Graph Canonization Problem
- 4 Logic LFP
- 5 Expressibilty in LFP
- 6 Logic LFP+Rank
 - From Digraphs To Matrices

- Fixed template constraint satisfaction problem: essentially a homomorphism problem for finite relational structures.
- We are interested in membership in the class CSP(A), a computational problem that obviously lies in the complexity class NP.
- Dichotomy Conjecture (Feder and Vardi): either *CSP*(A) has polynomial time membership or it has **NP**-complete membership problem.

Particular cases already known to exhibit the dichotomy:

- Schaefer's dichotomy for 2-element templates;
- dichotomy for undirected graph templates due to Hell and Nešetřil
- 3-element templates (Bulatov);
- digraphs with no sources and sinks (Barto, Kozik and Niven); also some special classes of oriented trees (Barto, Bulin)
- templates in which every subset is a fundamental unary relation (list homomorphism problems; Bulatov, also Barto).

- Feder and Vardi reduced the problem of proving the dichotomy conjecture to the particular case of digraph CSPs, and even to digraph CSPs whose template is a balanced digraph (a digraph on which there is a level function).
- Specifically, for every template A there is a balanced digraph D such that CSP(A) is polynomial time equivalent to CSP(D).
- Some of the precise structure of CSP(A) is necessarily altered in the transformation to CSP(D).

- Algebraic approach to the CSP dichotomy conjecture: associate polynomial time algorithms to *Pol*(A)
- complexity of CSP(A) is precisely (up to logspace reductions) determined by the polymorphisms of A.

- Atserias (2006) revisited a construction from Feder and Vardi's original article to construct a tractable digraph CSP that is provably not solvable by the bounded width (local consistency check) algorithm.
- This construction relies heavily on finite model-theoretic machinery: quantifier preservation, cops-and-robber games (games that characterize width k), etc.

Theorem

Let \mathbb{A} be a relational structure. There exists a digraph $\mathbb{D}_{\mathbb{A}}$ such that the following holds: let Σ be any linear idempotent set of identities such that each identity in Σ is either balanced or contains at most two variables. If the digraph \mathbb{N} satisfies Σ , then $\mathbb{D}_{\mathbb{A}}$ satisfies Σ if and only if \mathbb{A} satisfies Σ .

The digraph $\mathbb{D}_{\mathbb{A}}$ can be constructed in logspace with respect to the size of A.

Corollary

Let \mathbb{A} be a CSP template. Then each of the following hold equivalently on \mathbb{A} and $\mathbb{D}_{\mathbb{A}}$.

- Taylor polymorphism or equivalently weak near-unanimity (WNU) polymorphism or equivalently cyclic polymorphism (conjectured to be equivalent to being tractable if A is a core);
- Polymorphisms witnessing SD(\land) (equivalent to bounded width);
- (for k ≥ 4) k-ary edge polymorphism (equivalent to few subpowers);
- k-ary near-unanimity polymorphism (equivalent to strict width);

< □ > < □ > < □ > < □ >

Corollary

(Continued)

- totally symmetric idempotent (TSI) polymorphisms of all arities (equivalent to width 1);
- Hobby-McKenzie polymorphisms (equivalent to the corresponding variety satisfying a non-trivial congruence lattice identity);
- Gumm polymorphisms witnessing congruence modularity;
- Jónsson polymorphisms witnessing congruence distributivity;
- polymorphisms witnessing SD(∨);
- (for $n \ge 3$) polymorphisms witnessing congruence *n*-permutability.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- Consider all *finite* structures in a fixed finite relational vocabulary (may assume that the vocabulary is {*E*}, *E*-binary.)
- For a logic (i.e., a description or query language) *L*, we ask for which properties *P*, there is a sentence φ of the language such that

$$\mathbb{A} \in \boldsymbol{P} \Longleftrightarrow \boldsymbol{A} \models \varphi.$$

 Of particular interest is the case when P ∈ P, the class of all properties decidable in polynomial time (Canonization Problem) Clearly, the first-order logic cannot capture P on digraphs (e.g. weak/strong connectedness)

- LFP: logic obtained from the first-order logic by closing it under formulas computing the least fixed points of monotone operators defined by positive formulas.
- On structures that come equipped with a linear order, LFP expresses precisely those properties that are in **P**.
- LFP cannot express evenness of a digraph (pebble games.)

- Immermann: proposed LFP+C, a two sorted extension of LFP with a mechanism that allows counting.
- There are existential quantifiers that count the number of elements of the structure which satisfy a formula φ. Also, we have a linear order built into one of the sort (essentially, positive integers.)
- FO quantifiers are bounded over the integer sort.
- There are polynomial time properties of digraphs not definable in LFP+C (Cai-Fürer-Immermann graphs; Bijection games)
- Atserias, Bulatov, Dawar (2007): LFP+C cannot express solvability of linear equations over 𝔽₂.

- Problem: Is there an extension of first-order logic L which is poly-time testable on finite structures such that ¬HOM(D) can be expressed in L if and only if HOM(D) is in P (D - a finite digraph)?
- LFP+C is not such a logic, by the Atserias-Bulatov-Dawar result.
- What is lacking?

- What can be expressed in LFP+C?
- Over a finite field 𝔽_p, we can express matrix multiplication, non-singularity of matrices, the inverse of a matrix, determinants, the characteristic polynomial... (Dawar, Grohe, Holm, Laubner, 2010)
- What cannot be expressed?

- What can be expressed in LFP+C?
- Over a finite field 𝔽_p, we can express matrix multiplication, non-singularity of matrices, the inverse of a matrix, determinants, the characteristic polynomial... (Dawar, Grohe, Holm, Laubner, 2010)

June 5, 2013

16/20

• What cannot be expressed? The rank of the matrix.

- LFP+Rank is the logic obtained from LFP by adding the ability to compute the rank of a matrix over a finite field 𝔽_q. It is a proper extension of LFP+C.
- Integer sort is equipped with the usual operations and relations (+, ×, <); Quantifiers ∀, ∃ are still bounded over this sort.
- LFP+Rank is poly-time testable on finite structures.
- All known examples of non-expressible properties in LFP+C can be handled in this logic. (Dawar, Grohe, Holm, Laubner)
- There is a back-and-forth game that captures this logic.

- x_1, x_2, \ldots, x_n vertices of a finite digraph \mathbb{D} ;
- ϕ a first-order formula

- *x*₁, *x*₂,..., *x_n* vertices of a finite digraph D;
- ϕ a first-order formula

 $M(\phi; x_1, \ldots, x_n)$ - the $n \times n$ -matrix over \mathbb{F}_p defined by:

 $M(\phi; x_1, \ldots, x_n)[i, j] = 1 \quad \Leftrightarrow \quad \phi(x_i, x_j) \text{ holds in } \mathbb{D};$

otherwise, the entry is 0.

- x_1, x_2, \ldots, x_n vertices of a finite digraph \mathbb{D} ;
- ϕ a first-order formula

 $M(\phi; x_1, \ldots, x_n)$ - the $n \times n$ -matrix over \mathbb{F}_p defined by:

 $M(\phi; x_1, \ldots, x_n)[i, j] = 1 \quad \Leftrightarrow \quad \phi(x_i, x_j) \text{ holds in } \mathbb{D};$

otherwise, the entry is 0.

We will restrict ourselves to the matrices when ϕ 's are positive-primitive formulas.

- x_1, x_2, \ldots, x_n vertices of a finite digraph \mathbb{D} ;
- ϕ a first-order formula

 $M(\phi; x_1, \ldots, x_n)$ - the $n \times n$ -matrix over \mathbb{F}_p defined by:

 $M(\phi; x_1, \ldots, x_n)[i, j] = 1 \quad \Leftrightarrow \quad \phi(x_i, x_j) \text{ holds in } \mathbb{D};$

otherwise, the entry is 0.

We will restrict ourselves to the matrices when ϕ 's are positive-primitive formulas.

This can be generalized in several ways: we can use tuples of any fixed lenth instead of individual variables x_i 's (consequently, we may end up with non-square matrices) or, we can work with any finite number of formulas instead of a single formula ϕ (consequently, we no longer get {0, 1}-valued matrices only.)

Theorem

(D., Heggerud, McInerney, 2013) Let \mathbb{A} be a finite relational structure and \mathbb{D}_A the balanced digraph obtained by Bulin-D.-Jackson-Niven construction. Then, \neg HOM(\mathbb{A}) is expressible in LFP+Rank if and only if \neg HOM(\mathbb{D}_A) is expressible in LFP+Rank. If a finite digraph admits a weak near unanimity polymorphism, is \neg HOM(\mathbb{D}) expressible in LFP+Rank?

- **→ → →**

If a finite digraph admits a weak near unanimity polymorphism, is \neg HOM(\mathbb{D}) expressible in LFP+Rank?

If the answer to this question is affirmative, the Dichotomy Conjecture for digraphs is true.

If a finite digraph admits a weak near unanimity polymorphism, is \neg HOM(\mathbb{D}) expressible in LFP+Rank?

If the answer to this question is affirmative, the Dichotomy Conjecture for digraphs is true.

Problem: If a digraph \mathbb{D} admits a *k*-ary edge polymorphism (for some *k*), is \neg HOM(\mathbb{D}) expressible in LFP+Rank?