Infinite partition monoids

University of Western Sydney

4th Novi Sad Algebraic Conference

University of Novi Sad 5–9 June 2013

James East Infinite partition monoids

Various results on infinite symmetric groups and transformation semigroups by:

- Sierpiński, Banach,
- Galvin, Bergman,
- Higgins, Howie, Maltcev, Mitchell, Péresse, Ruškuc, ...

Various results on infinite symmetric groups and transformation semigroups by:

- Sierpiński, Banach,
- Galvin, Bergman,
- Higgins, Howie, Maltcev, Mitchell, Péresse, Ruškuc,

What about other semigroups? Today: partition monoids.

Let:

- X be an infinite set,
- $S_X = \{ \text{permutations of } X \}$
 - = the symmetric group on X,
- $\mathcal{T}_X = \{ \text{transformations of } X \}$
 - = the (full) transformation semigroup on X.

Let:

• X be an infinite set,

•
$$S_X = \{ \text{permutations of } X \}$$

= the symmetric group on X,

•
$$T_X = \{ \text{transformations of } X \}$$

= the (full) transformation semigroup on X.

Theorem (Sierpiński, Banach, 1935)

Any countable subset of \mathcal{T}_X is contained in a 2-generated subsemigroup of \mathcal{T}_X .

Theorem (Galvin, 1995)

Any countable subset of \mathcal{S}_X is contained in a 2-generated subgroup of \mathcal{S}_X .

Any countable subset of S_X is contained in a 2-generated subgroup of S_X , where the orders of the generators are 53 and 4.

Any countable subset of S_X is contained in a 2-generated subgroup of S_X , where the orders of the generators are 53 and 4.

Proof: "We may assume that $X = \mathbb{Z}_{53} \times \mathbb{Z} \times T$ where $|T| = |X| \dots$ "

Any countable subset of S_X is contained in a 2-generated subgroup of S_X , where the orders of the generators are 53 and 4.

Proof: "We may assume that $X = \mathbb{Z}_{53} \times \mathbb{Z} \times T$ where |T| = |X|....."

• "Generating countable sets of permutations" - J of LMS

Any countable subset of S_X is contained in a 2-generated subgroup of S_X , where the orders of the generators are 53 and 4.

Proof: "We may assume that $X = \mathbb{Z}_{53} \times \mathbb{Z} \times T$ where |T| = |X|....."

- "Generating countable sets of permutations" J of LMS
- MathSciNet review by Dugald Macpherson:
 - "The proofs are elementary but ingenious..."

Any countable subset of S_X is contained in a 2-generated subgroup of S_X , where the orders of the generators are 53 and 4.

Proof: "We may assume that $X = \mathbb{Z}_{53} \times \mathbb{Z} \times T$ where $|T| = |X| \dots$ "

- "Generating countable sets of permutations" J of LMS
- MathSciNet review by Dugald Macpherson:
 - "The proofs are elementary but ingenious..."

Theorem (Galvin, 1995)

Any countable subset of S_X is contained in a 2-generated subsemigroup of S_X .

Theorem (Bergman, 2006)

If $S_X = \langle U \rangle$, then $S_X = U \cup U^2 \cup \cdots \cup U^n$ for some *n*.

Theorem (Bergman, 2006)

If $S_X = \langle U \rangle$, then $S_X = U \cup U^2 \cup \cdots \cup U^n$ for some *n*.

Theorem (Maltcev, Mitchell, Ruškuc, 2009)

If
$$\mathcal{T}_X = \langle U \rangle$$
, then $\mathcal{T}_X = U \cup U^2 \cup \cdots \cup U^n$ for some *n*.

御 と く ヨ と く

Theorem (Higgins, Howie, Ruškuc, 1998)

Theorem (Higgins, Howie, Ruškuc, 1998)

$$\mathcal{T}_{X} = \langle \mathcal{S}_{X}, \alpha, \beta \rangle$$
 where

Theorem (Higgins, Howie, Ruškuc, 1998)

- α is injective and $|X \setminus X\alpha| = |X|$, and
- β is surjective and $\{x \in X : |x\alpha^{-1}| = |X|\}$ has size |X|.

Theorem (Higgins, Howie, Ruškuc, 1998)

$$\mathcal{T}_{X} = \langle \mathcal{S}_{X}, \alpha, \beta \rangle$$
 where

Theorem (Higgins, Howie, Ruškuc, 1998)

- α is injective and $|X \setminus X\alpha| = |X|$, and
- β is surjective and $\{x \in X : |x\alpha^{-1}| = |X|\}$ has size |X|.

Theorem (Higgins, Howie, Ruškuc, 1998)

$$\mathcal{T}_{X} = \langle \mathcal{S}_{X}, \alpha, \beta \rangle$$
 where

Theorem (Higgins, Howie, Ruškuc, 1998)

- α is injective and $|X \setminus X\alpha| = |X|$, and
- β is surjective and $\{x \in X : |x\alpha^{-1}| = |X|\}$ has size |X|.

Theorem (Higgins, Howie, Ruškuc, 1998)

$$\mathcal{T}_{X} = \langle \mathcal{S}_{X}, \alpha, \beta \rangle$$
 where

Theorem (Higgins, Howie, Ruškuc, 1998)

- α is injective and $|X \setminus X\alpha| = |X|$, and
- β is surjective and $\{x \in X : |x\alpha^{-1}| = |X|\}$ has size |X|.

Theorem (Higgins, Howie, Ruškuc, 1998)

$$\mathcal{T}_{X} = \langle \mathcal{S}_{X}, \alpha, \beta \rangle$$
 where

Theorem (Higgins, Howie, Ruškuc, 1998)

- α is injective and $|X \setminus X\alpha| = |X|$, and
- β is surjective and $\{x \in X : |x\alpha^{-1}| = |X|\}$ has size |X|.

Theorem (Higgins, Howie, Ruškuc, 1998)

If |X| is regular, then $\mathcal{T}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$ iff:

- α is injective and $|X \setminus X\alpha| = |X|$, and
- β is surjective and $\{x \in X : |x\alpha^{-1}| = |X|\}$ has size |X|.

Theorem (Higgins, Howie, Ruškuc, 1998)

If |X| is regular, then $\mathcal{T}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$ iff:

- α is injective and $|X \setminus X\alpha| = |X|$, and
- β is surjective and $\{x \in X : |x\alpha^{-1}| = |X|\}$ has size |X|.

Theorem (Higgins, Howie, Ruškuc, 1998)

If |X| is regular, then $\mathcal{T}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$ iff:

- α is injective and $|X \setminus X\alpha| = |X|$, and
- β is surjective and $\{x \in X : |x\alpha^{-1}| = |X|\}$ has size |X|.

Theorem (Higgins, Howie, Ruškuc, 1998)

If |X| is regular, then $\mathcal{T}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$ iff:

- α is injective and $|X \setminus X\alpha| = |X|$, and
- β is surjective and $\{x \in X : |x\alpha^{-1}| = |X|\}$ has size |X|.

• |X| is singular if $X = \bigcup_{i \in I} X_i$ with |I| < |X| and $|X_i| < |X|$,

Theorem (Higgins, Howie, Ruškuc, 1998)

If |X| is regular, then $\mathcal{T}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$ iff:

- α is injective and $|X \setminus X\alpha| = |X|$, and
- β is surjective and $\{x \in X : |x\alpha^{-1}| = |X|\}$ has size |X|.

- |X| is singular if $X = \bigcup_{i \in I} X_i$ with |I| < |X| and $|X_i| < |X|$,
- |X| is regular otherwise.

Theorem (East, Mitchell, Péresse, 2013)

If |X| is singular, then $\mathcal{T}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$ iff:

- α is is surjective and $|X \setminus X\alpha| = |X|$, and
- β is surjective and $\{x \in X : |x\alpha^{-1}| \ge \mu\}$ has size |X| for all cardinals $\mu < |X|$.

@ ▶ ∢ ≣

æ

• Let X and X' be disjoint sets in bijection via $x \mapsto x'$.

• Let X and X' be disjoint sets in bijection via $x \mapsto x'$.

- Let X and X' be disjoint sets in bijection via $x \mapsto x'$.
- The *partition monoid* on X is

$$\mathcal{P}_X = \left\{ \text{set partitions of } X \cup X' \right\}$$

- Let X and X' be disjoint sets in bijection via $x \mapsto x'$.
- The *partition monoid* on X is

$$\mathcal{P}_X = \left\{ \text{set partitions of } X \cup X' \right\}$$

• Eg:
$$\alpha = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_{6}$$

• $\left\{ \begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ 1' & 2' & 3' & \bullet' & \bullet & \bullet \\ 1' & 2' & 3' & 4' & 5' & 6' \end{array} \right\} X$

- ∢ ≣ ≯

- Let X and X' be disjoint sets in bijection via $x \mapsto x'$.
- The *partition monoid* on X is

$$\mathcal{P}_{X} = \{ \text{set partitions of } X \cup X' \}$$

$$\equiv \{ \text{graphs on vertex set } X \cup X' \}.$$

• Eg: $\alpha = \{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \} \in \mathcal{P}_{6}$

$$\stackrel{1}{\bullet} \stackrel{2}{\bullet} \stackrel{3}{\bullet} \stackrel{4}{\bullet} \stackrel{5}{\bullet} \stackrel{6}{\bullet} \} X$$

$$\stackrel{1}{\bullet} \stackrel{2}{\bullet} \stackrel{3}{\bullet} \stackrel{4}{\bullet} \stackrel{5}{\bullet} \stackrel{6}{\bullet} \} X$$

- Let X and X' be disjoint sets in bijection via $x \mapsto x'$.
- The *partition monoid* on X is

- Let X and X' be disjoint sets in bijection via $x \mapsto x'$.
- The *partition monoid* on X is

$$\mathcal{P}_{X} = \{ \text{set partitions of } X \cup X' \}$$

$$\equiv \{ \text{graphs on vertex set } X \cup X' \}.$$

• Eg: $\alpha = \{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \} \in \mathcal{P}_{6}$

$$\overset{1}{\bullet} \overset{2}{\bullet} \overset{3}{\bullet} \overset{4}{\bullet} \overset{5}{\bullet} \overset{6}{\bullet} \} X$$

- Let X and X' be disjoint sets in bijection via $x \mapsto x'$.
- The *partition monoid* on X is

$$\mathcal{P}_{X} = \{ \text{set partitions of } X \cup X' \}$$

$$\equiv \{ \text{graphs on vertex set } X \cup X' \}.$$

• Eg: $\alpha = \{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \} \in \mathcal{P}_{6}$

- Let X and X' be disjoint sets in bijection via $x \mapsto x'$.
- The *partition monoid* on X is

$$\mathcal{P}_{X} = \{ \text{set partitions of } X \cup X' \}$$

$$\equiv \{ \text{graphs on vertex set } X \cup X' \}.$$

• Eg: $\alpha = \{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \} \in \mathcal{P}_{6}$

- Let X and X' be disjoint sets in bijection via $x \mapsto x'$.
- The *partition monoid* on X is

$$\mathcal{P}_{X} = \{ \text{set partitions of } X \cup X' \}$$

$$\equiv \{ \text{graphs on vertex set } X \cup X' \}.$$

• Eg: $\alpha = \{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \} \in \mathcal{P}_{6}$

- Let X and X' be disjoint sets in bijection via $x \mapsto x'$.
- The partition monoid on X is

$$\mathcal{P}_{X} = \{ \text{set partitions of } X \cup X' \}$$

$$\equiv \{ (\text{equiv. classes of}) \text{ graphs on vertex set } X \cup X' \}.$$

• Eg: $\alpha = \{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \} \in \mathcal{P}_{6}$

- Let X and X' be disjoint sets in bijection via $x \mapsto x'$.
- The partition monoid on X is

$$\mathcal{P}_{X} = \{ \text{set partitions of } X \cup X' \}$$

$$\equiv \{ (\text{equiv. classes of}) \text{ graphs on vertex set } X \cup X' \}.$$

• Eg: $\alpha = \{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \} \in \mathcal{P}_{6}$

- Let X and X' be disjoint sets in bijection via $x \mapsto x'$.
- The partition monoid on X is

$$\mathcal{P}_{X} = \{ \text{set partitions of } X \cup X' \}$$

$$\equiv \{ (\text{equiv. classes of}) \text{ graphs on vertex set } X \cup X' \}.$$

• Eg: $\alpha = \{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \} \in \mathcal{P}_{6}$

Let $\alpha, \beta \in \mathcal{P}_X$.

白 ト イヨト イ

Let $\alpha, \beta \in \mathcal{P}_X$. To calculate $\alpha\beta$:

(1) connect bottom of α to top of β ,

Let $\alpha, \beta \in \mathcal{P}_X$. To calculate $\alpha\beta$:

(1) connect bottom of α to top of β ,

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,
- (3) smooth out resulting graph to obtain $\alpha\beta$.

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,
- (3) smooth out resulting graph to obtain $\alpha\beta$.

Blocks of singular cardinality can be made from smaller blocks.

(Countably) infinite blocks can be made from finite blocks.

Theorem

æ

Proof: Let $\gamma \in \mathcal{P}_X$.

🗇 🕨 🔺 臣 🕨 🔺 臣

æ

Proof: Let $\gamma \in \mathcal{P}_X$.

Some notation

Let $\gamma \in \mathcal{P}_X$ and let $\mu \leq |X|$ be a cardinal.

Some notation

Let $\gamma \in \mathcal{P}_X$ and let $\mu \leq |X|$ be a cardinal.

Define:

• $c_u(\gamma, \mu)$ = number of connected upper blocks of size $\geq \mu$,

Some notation

Let $\gamma \in \mathcal{P}_X$ and let $\mu \leq |X|$ be a cardinal.

Define:

- $c_u(\gamma, \mu)$ = number of connected upper blocks of size $\geq \mu$,
- $c_l(\gamma, \mu)$ = number of connected lower blocks of size $\geq \mu$,

Some notation

Let $\gamma \in \mathcal{P}_X$ and let $\mu \leq |X|$ be a cardinal.

Define:

- $c_u(\gamma, \mu)$ = number of connected upper blocks of size $\geq \mu$,
- $c_l(\gamma, \mu)$ = number of connected lower blocks of size $\geq \mu$,
- $d_u(\gamma, \mu)$ = number of disconnected upper blocks of size $\geq \mu$,

Some notation

Let $\gamma \in \mathcal{P}_X$ and let $\mu \leq |X|$ be a cardinal.

Define:

- $c_u(\gamma, \mu)$ = number of connected upper blocks of size $\geq \mu$,
- $c_l(\gamma, \mu)$ = number of connected lower blocks of size $\geq \mu$,
- $d_u(\gamma, \mu)$ = number of disconnected upper blocks of size $\geq \mu$,
- $d_l(\gamma, \mu)$ = number of disconnected lower blocks of size $\geq \mu$.

From theorem:

・ロト ・回 ト ・ ヨト ・

æ

3

From theorem:

Here:

• $c_u(\alpha, 2) = 0$

・ロト ・回ト ・ヨト

From theorem:

Here:

•
$$c_u(\alpha, 2) = 0 = d_u(\alpha, 1)$$
,

・ロン ・回 と ・ ヨン

æ

From theorem:

Here:

- $c_u(\alpha, 2) = 0 = d_u(\alpha, 1)$,
- $c_l(\alpha, |X|) = |X|$

From theorem:

Here:

- $c_u(\alpha, 2) = 0 = d_u(\alpha, 1)$,
- $c_l(\alpha, |X|) = |X| = d_l(\alpha, |X|),$

From theorem:

Here:

- $c_{\mu}(\alpha, 2) = 0 = d_{\mu}(\alpha, 1),$
- $c_l(\beta, 2) = 0 = d_l(\beta, 1),$
- $c_l(\alpha, |X|) = |X| = d_l(\alpha, |X|),$ $c_u(\beta, |X|) = |X| = d_u(\beta, |X|),$

伺 ト く ヨ ト く ヨ

From theorem:

Here:

- $c_{\mu}(\alpha, 2) = 0 = d_{\mu}(\alpha, 1),$
- α is "injective",

- $c_l(\beta, 2) = 0 = d_l(\beta, 1),$
- $c_l(\alpha, |X|) = |X| = d_l(\alpha, |X|),$ $c_u(\beta, |X|) = |X| = d_u(\beta, |X|),$

From theorem:

Here:

- $c_{\mu}(\alpha, 2) = 0 = d_{\mu}(\alpha, 1),$
- α is "injective",

- $c_l(\beta, 2) = 0 = d_l(\beta, 1),$
- $c_l(\alpha, |X|) = |X| = d_l(\alpha, |X|),$ $c_u(\beta, |X|) = |X| = d_u(\beta, |X|),$
 - β is "co-injective",

From theorem:

Here:

- $c_{\mu}(\alpha, 2) = 0 = d_{\mu}(\alpha, 1),$
- α is "injective",
- α is NOT "co-injective",

- $c_l(\beta, 2) = 0 = d_l(\beta, 1),$
- $c_l(\alpha, |X|) = |X| = d_l(\alpha, |X|),$ $c_u(\beta, |X|) = |X| = d_u(\beta, |X|),$
 - β is "co-injective".

From theorem:

Here:

- $c_u(\alpha, 2) = 0 = d_u(\alpha, 1)$,
- $c_l(\alpha, |X|) = |X| = d_l(\alpha, |X|),$
- $\bullet \ \alpha$ is "injective",
- α is NOT "co-injective",

- $c_l(\beta, 2) = 0 = d_l(\beta, 1)$,
- $c_u(\beta, |X|) = |X| = d_u(\beta, |X|),$
 - β is "co-injective",
 - β is NOT "injective".

Theorem

$$\mathcal{P}_{\boldsymbol{X}} = \langle \mathcal{S}_{\boldsymbol{X}}, \alpha, \beta \rangle$$
 if

•
$$c_u(\alpha, 2) = d_u(\alpha, 1) = 0$$
,

•
$$c_l(\alpha, |X|) = d_l(\alpha, |X|) = |X|$$
,

•
$$c_l(\beta, 2) = d_l(\beta, 1) = 0$$
,

•
$$c_u(\beta, |X|) = d_u(\beta, |X|) = |X|.$$

Theorem

$$\mathcal{P}_{X} = \langle \mathcal{S}_{X}, \alpha, \beta \rangle$$
 if

- $c_u(\alpha, 2) = d_u(\alpha, 1) = 0$, $c_l(\beta, 2) = d_l(\beta, 1) = 0$,
- $c_l(\alpha, |X|) + d_l(\alpha, |X|) = |X|,$
- $d_l(\alpha, 1) = |X|,$

•
$$c_u(\beta, |X|) + d_u(\beta, |X|) = |X|,$$

• $d_{\mu}(\beta, 1) = |X|$.

Theorem

$$\mathcal{P}_{\boldsymbol{X}} = \langle \mathcal{S}_{\boldsymbol{X}}, \alpha, \beta \rangle$$
 if

- $c_u(\alpha, 2) = d_u(\alpha, 1) = 0$,
- $c_l(\alpha, 2) + d_l(\alpha, 2) = |X|$,
- $d_l(\alpha, 1) = |X|,$

- $c_l(\beta, 2) = d_l(\beta, 1) = 0$,
- $c_u(\beta, |X|) + d_u(\beta, |X|) = |X|,$
- $d_u(\beta, 1) = |X|.$

Theorem

$$\mathcal{P}_{X} = \langle \mathcal{S}_{X}, \alpha, \beta \rangle$$
 if

- $c_u(\alpha, 2) = d_u(\alpha, 1) = 0$, $c_l(\beta, 2) = d_l(\beta, 1) = 0$,
- $c_l(\alpha, |X|) + d_l(\alpha, |X|) = |X|,$
- $d_l(\alpha, 1) = |X|,$

•
$$c_u(\beta, 2) + d_u(\beta, 2) = |X|$$
,

• $d_{\mu}(\beta, 1) = |X|$.

Theorem

$$\mathcal{P}_{\boldsymbol{X}} = \langle \mathcal{S}_{\boldsymbol{X}}, \alpha, \beta \rangle$$
 if

- $c_u(\alpha, 2) = d_u(\alpha, 1) = 0$,
- $d_l(\alpha, 1) = |X|$,

and either

• $c_l(\alpha, 2) + d_l(\alpha, 2) = |X|$,

- $c_l(\beta, 2) = d_l(\beta, 1) = 0$,
- $d_{\mu}(\beta, 1) = |X|,$
- $c_u(\beta, |X|) + d_u(\beta, |X|) = |X|,$

I ≡ ▶ < </p>

- $c_l(\alpha, |X|) + d_l(\alpha, |X|) = |X|$, $c_u(\beta, 2) + d_u(\beta, 2) = |X|$.

Theorem

If X is uncountable and regular, then $\mathcal{P}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$ iff

- $c_{\mu}(\alpha, 2) = d_{\mu}(\alpha, 1) = 0$,
- $d_l(\alpha, 1) = |X|$,

and either

• $c_l(\alpha, 2) + d_l(\alpha, 2) = |X|$.

- $c_l(\beta, 2) = d_l(\beta, 1) = 0$,
- $d_{\mu}(\beta, 1) = |X|$.
- $c_{\mu}(\beta, |X|) + d_{\mu}(\beta, |X|) = |X|,$

- $c_l(\alpha, |X|) + d_l(\alpha, |X|) = |X|$, $c_u(\beta, 2) + d_u(\beta, 2) = |X|$.

Theorem

If X is countable, then
$$\mathcal{P}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$$
 iff

- $c_u(\alpha, 2) = d_u(\alpha, 1) = 0$,
- $d_l(\alpha, 1) = |X|$,

and either

• $c_l(\alpha, 2) + d_l(\alpha, 2) = |X|$,

•
$$c_l(\alpha, 2) + d_l(\alpha, 3) = |X|$$

- $c_l(\beta, 2) = d_l(\beta, 1) = 0$,
- $d_u(\beta, 1) = |X|$,
- $c_u(\beta, 2) + d_u(\beta, 3) = |X|$,
- $c_u(\beta, 2) + d_u(\beta, 2) = |X|.$

Theorem

If X is singular, then $\mathcal{P}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle$ iff

- $c_u(\alpha, 2) = d_u(\alpha, 1) = 0$,
- $d_l(\alpha, 1) = |X|$,

and either

• $c_l(\alpha, 2) + d_l(\alpha, 2) = |X|,$

- $c_l(\beta, 2) = d_l(\beta, 1) = 0$,
- $d_u(\beta, 1) = |X|$,

•
$$c_u(eta,\mu)+d_u(eta,\mu)=|X|$$

for all cardinals $\mu<|X|$

- $c_l(\alpha, \mu) + d_l(\alpha, \mu) = |X|$ for all cardinals $\mu < |X|$,
- $c_u(\beta, 2) + d_u(\beta, 2) = |X|.$

Corollary 1

Any countable subset of \mathcal{P}_X is contained in a 4-generated subsemigroup of \mathcal{P}_X .

Corollary 1

Any countable subset of \mathcal{P}_X is contained in a 4-generated subsemigroup of \mathcal{P}_X .

Proof: Follows from general results of Mitchell and Péresse, and:

• any countable subset of S_X is contained in a 2-generated subsemigroup of S_X (Galvin), and

•
$$\mathcal{P}_X = \langle \mathcal{S}_X, \alpha, \beta \rangle.$$

Corollary 1

Any countable subset of \mathcal{P}_X is contained in a 4-generated subsemigroup of \mathcal{P}_X .

Proof: Let $\gamma_1, \gamma_2, \ldots \in \mathcal{P}_X$.

Corollary 1

Any countable subset of \mathcal{P}_X is contained in a 4-generated subsemigroup of \mathcal{P}_X .

Proof: Let
$$\gamma_1, \gamma_2, \ldots \in \mathcal{P}_X$$
.

Then
$$\gamma_n = \alpha \beta \alpha^n \beta^2 \alpha^{-n} \beta^{-1} \alpha^{-1}$$
 where:

Corollary 2

If
$$\mathcal{P}_X = \langle U \rangle$$
, then $\mathcal{P}_X = U \cup U^2 \cup \cdots \cup U^n$ for some *n*.

æ

- 4 聞 と 4 直 と 4 直 と

Corollary 2

If
$$\mathcal{P}_X = \langle U \rangle$$
, then $\mathcal{P}_X = U \cup U^2 \cup \cdots \cup U^n$ for some *n*.

Proof: Follows from general results of Maltcev, Mitchell and Ruškuc, and:

• \mathcal{P}_X is "strongly distorted" (Corollary 1).

Corollary 2

If
$$\mathcal{P}_X = \langle U \rangle$$
, then $\mathcal{P}_X = U \cup U^2 \cup \cdots \cup U^n$ for some *n*.

Proof: Follows from general results of Maltcev, Mitchell and Ruškuc, and:

• \mathcal{P}_X is "strongly distorted" (Corollary 1).

