Infinite partition monoids

University of Western Sydney
4th Novi Sad Algebraic Conference

University of Novi Sad 5-9 June 2013

Motivation

Various results on infinite symmetric groups and transformation semigroups by:

- Sierpiński, Banach,
- Galvin, Bergman,
- Higgins, Howie, Maltcev, Mitchell, Péresse, Ruškuc, ...

Motivation

Various results on infinite symmetric groups and transformation semigroups by:

- Sierpiński, Banach,
- Galvin, Bergman,
- Higgins, Howie, Maltcev, Mitchell, Péresse, Ruškuc, ...

What about other semigroups? Today: partition monoids.

1. Transformation semigroups.

Let:

- X be an infinite set,
- $\mathcal{S}_{X}=\{$ permutations of $X\}$
$=$ the symmetric group on X,
- $\mathcal{T}_{X}=\{$ transformations of $X\}$
$=$ the (full) transformation semigroup on X.

1. Transformation semigroups.

Let:

- X be an infinite set,
- $\mathcal{S}_{X}=\{$ permutations of $X\}$
$=$ the symmetric group on X,
- $\mathcal{T}_{X}=\{$ transformations of $X\}$
$=$ the (full) transformation semigroup on X.

Theorem (Sierpiński, Banach, 1935)

Any countable subset of \mathcal{T}_{X} is contained in a 2-generated subsemigroup of \mathcal{T}_{X}.

1. Transformation semigroups.

Theorem (Galvin, 1995)

Any countable subset of \mathcal{S}_{X} is contained in a 2-generated subgroup of \mathcal{S}_{X}.

1. Transformation semigroups.

Theorem (Galvin, 1995)

Any countable subset of \mathcal{S}_{X} is contained in a 2-generated subgroup of \mathcal{S}_{X}, where the orders of the generators are 53 and 4 .

1. Transformation semigroups.

Theorem (Galvin, 1995)

Any countable subset of \mathcal{S}_{X} is contained in a 2-generated subgroup of \mathcal{S}_{X}, where the orders of the generators are 53 and 4 .

Proof: "We may assume that $X=\mathbb{Z}_{53} \times \mathbb{Z} \times T$ where $|T|=|X| \ldots . . "$

1. Transformation semigroups.

Theorem (Galvin, 1995)

Any countable subset of \mathcal{S}_{X} is contained in a 2 -generated subgroup of \mathcal{S}_{X}, where the orders of the generators are 53 and 4 .

Proof: "We may assume that $X=\mathbb{Z}_{53} \times \mathbb{Z} \times T$ where $|T|=|X| \ldots \ldots$ "

- "Generating countable sets of permutations" - J of LMS

1. Transformation semigroups.

Theorem (Galvin, 1995)

Any countable subset of \mathcal{S}_{X} is contained in a 2 -generated subgroup of \mathcal{S}_{X}, where the orders of the generators are 53 and 4 .

Proof: "We may assume that $X=\mathbb{Z}_{53} \times \mathbb{Z} \times T$ where $|T|=|X| \ldots \ldots$ "

- "Generating countable sets of permutations" - J of LMS
- MathSciNet review by Dugald Macpherson:
- "The proofs are elementary but ingenious. .."

1. Transformation semigroups.

Theorem (Galvin, 1995)

Any countable subset of \mathcal{S}_{X} is contained in a 2 -generated subgroup of \mathcal{S}_{X}, where the orders of the generators are 53 and 4 .

Proof: "We may assume that $X=\mathbb{Z}_{53} \times \mathbb{Z} \times T$ where $|T|=|X| \ldots . . "$

- "Generating countable sets of permutations" - J of LMS
- MathSciNet review by Dugald Macpherson:
- "The proofs are elementary but ingenious. . ."

Theorem (Galvin, 1995)

Any countable subset of \mathcal{S}_{X} is contained in a 2-generated subsemigroup of \mathcal{S}_{X}.

1. Transformation semigroups.

> Theorem (Bergman, 2006)
> If $\mathcal{S}_{X}=\langle U\rangle$, then $\mathcal{S}_{X}=U \cup U^{2} \cup \cdots \cup U^{n}$ for some n.

1. Transformation semigroups.

Theorem (Bergman, 2006)
If $\mathcal{S}_{X}=\langle U\rangle$, then $\mathcal{S}_{X}=U \cup U^{2} \cup \cdots \cup U^{n}$ for some n.

Theorem (Maltcev, Mitchell, Ruškuc, 2009)
If $\mathcal{T}_{X}=\langle U\rangle$, then $\mathcal{T}_{X}=U \cup U^{2} \cup \cdots \cup U^{n}$ for some n.

1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

$\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ where

1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

$\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ where

Theorem (Higgins, Howie, Ruškuc, 1998)
$\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ where:

- α is injective and $|X \backslash X \alpha|=|X|$, and
- β is surjective and $\left\{x \in X:\left|x \alpha^{-1}\right|=|X|\right\}$ has size $|X|$.

1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

$\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ where

Theorem (Higgins, Howie, Ruškuc, 1998)
$\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ where:

- α is injective and $|X \backslash X \alpha|=|X|$, and
- β is surjective and $\left\{x \in X:\left|x \alpha^{-1}\right|=|X|\right\}$ has size $|X|$.

1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

$\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ where

Theorem (Higgins, Howie, Ruškuc, 1998)
$\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ where:

- α is injective and $|X \backslash X \alpha|=|X|$, and
- β is surjective and $\left\{x \in X:\left|x \alpha^{-1}\right|=|X|\right\}$ has size $|X|$.

1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

$\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ where

Theorem (Higgins, Howie, Ruškuc, 1998)
$\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ where:

- α is injective and $|X \backslash X \alpha|=|X|$, and
- β is surjective and $\left\{x \in X:\left|x \alpha^{-1}\right|=|X|\right\}$ has size $|X|$.

1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

$\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ where

Theorem (Higgins, Howie, Ruškuc, 1998)
$\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ where:

- α is injective and $|X \backslash X \alpha|=|X|$, and
- β is surjective and $\left\{x \in X:\left|x \alpha^{-1}\right|=|X|\right\}$ has size $|X|$.

1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)
If $|X|$ is regular, then $\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ iff:

- α is injective and $|X \backslash X \alpha|=|X|$, and
- β is surjective and $\left\{x \in X:\left|x \alpha^{-1}\right|=|X|\right\}$ has size $|X|$.

1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

If $|X|$ is regular, then $\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ iff:

- α is injective and $|X \backslash X \alpha|=|X|$, and
- β is surjective and $\left\{x \in X:\left|x \alpha^{-1}\right|=|X|\right\}$ has size $|X|$.

1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

If $|X|$ is regular, then $\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ iff:

- α is injective and $|X \backslash X \alpha|=|X|$, and
- β is surjective and $\left\{x \in X:\left|x \alpha^{-1}\right|=|X|\right\}$ has size $|X|$.

1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

If $|X|$ is regular, then $\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ iff:

- α is injective and $|X \backslash X \alpha|=|X|$, and
- β is surjective and $\left\{x \in X:\left|x \alpha^{-1}\right|=|X|\right\}$ has size $|X|$.

- $|X|$ is singular if $X=\bigcup_{i \in I} X_{i}$ with $|I|<|X|$ and $\left|X_{i}\right|<|X|$,

1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

If $|X|$ is regular, then $\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ iff:

- α is injective and $|X \backslash X \alpha|=|X|$, and
- β is surjective and $\left\{x \in X:\left|x \alpha^{-1}\right|=|X|\right\}$ has size $|X|$.

- $|X|$ is singular if $X=\bigcup_{i \in I} X_{i}$ with $|I|<|X|$ and $\left|X_{i}\right|<|X|$,
- $|X|$ is regular otherwise.

1. Transformation semigroups.

Theorem (East, Mitchell, Péresse, 2013)
If $|X|$ is singular, then $\mathcal{T}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ iff:

- α is is surjective and $|X \backslash X \alpha|=|X|$, and
- β is surjective and $\left\{x \in X:\left|x \alpha^{-1}\right| \geq \mu\right\}$ has size $|X|$ for all cardinals $\mu<|X|$.

2. Partition monoids.

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.

$$
\begin{aligned}
& \text { ••••••••\}x } \\
& \text { ••••••\} } x^{\prime}
\end{aligned}
$$

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.
- The partition monoid on X is

$$
\mathcal{P}_{X}=\left\{\text { set partitions of } X \cup X^{\prime}\right\}
$$

$$
\begin{aligned}
& \text { •••••••••\}x } \\
& \text { ••••••\}x }
\end{aligned}
$$

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.
- The partition monoid on X is
$\mathcal{P}_{X}=\left\{\right.$ set partitions of $\left.X \cup X^{\prime}\right\}$
- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

$$
\begin{aligned}
& \stackrel{1}{\bullet} \quad \stackrel{2}{\bullet} \quad \stackrel{4}{\bullet} \quad \stackrel{5}{\bullet} \quad \stackrel{6}{\bullet}\} X \\
& \text { •••••• } x^{x}
\end{aligned}
$$

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.
- The partition monoid on X is

$$
\begin{aligned}
\mathcal{P}_{X} & =\left\{\text { set partitions of } X \cup X^{\prime}\right\} \\
& \equiv\left\{\text { graphs on vertex set } X \cup X^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

$$
\begin{aligned}
& \left.\stackrel{1}{\bullet} \quad \stackrel{2}{\bullet} \quad \stackrel{3}{\bullet} \quad \stackrel{4}{\bullet} \quad \stackrel{5}{\bullet} \quad{ }^{6} \quad \begin{array}{l}
1
\end{array}\right\} X \\
& \text { •••••• } x^{x}
\end{aligned}
$$

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.
- The partition monoid on X is
$\mathcal{P}_{X}=\left\{\right.$ set partitions of $\left.X \cup X^{\prime}\right\}$
$\equiv\left\{\right.$ graphs on vertex set $\left.X \cup X^{\prime}\right\}$.
- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.
- The partition monoid on X is
$\mathcal{P}_{X}=\left\{\right.$ set partitions of $\left.X \cup X^{\prime}\right\}$
$\equiv\left\{\right.$ graphs on vertex set $\left.X \cup X^{\prime}\right\}$.
- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.
- The partition monoid on X is
$\mathcal{P}_{X}=\left\{\right.$ set partitions of $\left.X \cup X^{\prime}\right\}$
$\equiv\left\{\right.$ graphs on vertex set $\left.X \cup X^{\prime}\right\}$.
- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.
- The partition monoid on X is

$$
\begin{aligned}
\mathcal{P}_{X} & =\left\{\text { set partitions of } X \cup X^{\prime}\right\} \\
& \equiv\left\{\text { graphs on vertex set } X \cup X^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.
- The partition monoid on X is

$$
\begin{aligned}
\mathcal{P}_{X} & =\left\{\text { set partitions of } X \cup X^{\prime}\right\} \\
& \equiv\left\{\text { graphs on vertex set } X \cup X^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.
- The partition monoid on X is

$$
\begin{aligned}
\mathcal{P}_{X} & =\left\{\text { set partitions of } X \cup X^{\prime}\right\} \\
& \equiv\left\{\text { (equiv. classes of) graphs on vertex set } X \cup X^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

2. Partition monoids.

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.
- The partition monoid on X is

$$
\begin{aligned}
\mathcal{P}_{X} & =\left\{\text { set partitions of } X \cup X^{\prime}\right\} \\
& \equiv\left\{\text { (equiv. classes of) graphs on vertex set } X \cup X^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

- Let X and X^{\prime} be disjoint sets in bijection via $x \mapsto x^{\prime}$.
- The partition monoid on X is

$$
\begin{aligned}
\mathcal{P}_{X} & =\left\{\text { set partitions of } X \cup X^{\prime}\right\} \\
& \equiv\left\{\text { (equiv. classes of) graphs on vertex set } X \cup X^{\prime}\right\} .
\end{aligned}
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \in \mathcal{P}_{6}$

2. Partition monoids.

Let $\alpha, \beta \in \mathcal{P}_{\boldsymbol{X}}$.

2. Partition monoids.

Let $\alpha, \beta \in \mathcal{P}_{\boldsymbol{X}}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,

2. Partition monoids.

Let $\alpha, \beta \in \mathcal{P}_{\boldsymbol{X}}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,

2. Partition monoids.

Let $\alpha, \beta \in \mathcal{P}_{\boldsymbol{X}}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,

2. Partition monoids.

Let $\alpha, \beta \in \mathcal{P}_{\boldsymbol{X}}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,

2. Partition monoids.

Let $\alpha, \beta \in \mathcal{P}_{\boldsymbol{X}}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out resulting graph to obtain $\alpha \beta$.

2. Partition monoids.

Let $\alpha, \beta \in \mathcal{P}_{\boldsymbol{X}}$. To calculate $\alpha \beta$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out resulting graph to obtain $\alpha \beta$.

2. Partition monoids.

Interesting things happen when X is infinite:

2. Partition monoids.

Interesting things happen when X is infinite:

Blocks of singular cardinality can be made from smaller blocks.

2. Partition monoids.

Interesting things happen when X is infinite:

2. Partition monoids.

Interesting things happen when X is infinite:

(Countably) infinite blocks can be made from finite blocks.

2. Partition monoids.

Theorem

$$
\mathcal{P}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle \text { where }
$$

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{\boldsymbol{X}}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{\boldsymbol{X}}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{\boldsymbol{X}}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Proof: Let $\gamma \in \mathcal{P}_{X}$. We'll show that $\gamma=\alpha \pi \beta$ for some $\pi \in \mathcal{S}_{X}$.

2. Partition monoids.

Some notation

Let $\gamma \in \mathcal{P}_{X}$ and let $\mu \leq|X|$ be a cardinal.

2. Partition monoids.

Some notation

Let $\gamma \in \mathcal{P}_{X}$ and let $\mu \leq|X|$ be a cardinal.

Define:

- $c_{u}(\gamma, \mu)=$ number of connected upper blocks of size $\geq \mu$,

2. Partition monoids.

Some notation

Let $\gamma \in \mathcal{P}_{X}$ and let $\mu \leq|X|$ be a cardinal.

Define:

- $c_{\mu}(\gamma, \mu)=$ number of connected upper blocks of size $\geq \mu$,
- $c_{l}(\gamma, \mu)=$ number of connected lower blocks of size $\geq \mu$,

2. Partition monoids.

Some notation

Let $\gamma \in \mathcal{P}_{X}$ and let $\mu \leq|X|$ be a cardinal.

Define:

- $c_{u}(\gamma, \mu)=$ number of connected upper blocks of size $\geq \mu$,
- $c_{l}(\gamma, \mu)=$ number of connected lower blocks of size $\geq \mu$,
- $d_{u}(\gamma, \mu)=$ number of disconnected upper blocks of size $\geq \mu$,

2. Partition monoids.

Some notation

Let $\gamma \in \mathcal{P}_{X}$ and let $\mu \leq|X|$ be a cardinal.

Define:

- $c_{\mu}(\gamma, \mu)=$ number of connected upper blocks of size $\geq \mu$,
- $c_{l}(\gamma, \mu)=$ number of connected lower blocks of size $\geq \mu$,
- $d_{u}(\gamma, \mu)=$ number of disconnected upper blocks of size $\geq \mu$,
- $d_{l}(\gamma, \mu)=$ number of disconnected lower blocks of size $\geq \mu$.

2. Partition monoids.

From theorem:

2. Partition monoids.

From theorem:

Here:

- $c_{u}(\alpha, 2)=0$

2. Partition monoids.

From theorem:

Here:

- $c_{u}(\alpha, 2)=0=d_{u}(\alpha, 1)$,

2. Partition monoids.

From theorem:

Here:

- $c_{u}(\alpha, 2)=0=d_{u}(\alpha, 1)$,
- $c_{l}(\alpha,|X|)=|X|$

2. Partition monoids.

From theorem:

Here:

- $c_{u}(\alpha, 2)=0=d_{u}(\alpha, 1)$,
- $c_{l}(\alpha,|X|)=|X|=d_{l}(\alpha,|X|)$,

2. Partition monoids.

From theorem:

Here:

$$
\begin{array}{ll}
\text { - } c_{u}(\alpha, 2)=0=d_{u}(\alpha, 1), & \text { - } c_{l}(\beta, 2)=0=d_{l}(\beta, 1), \\
- & c_{l}(\alpha,|X|)=|X|=d_{l}(\alpha,|X|),
\end{array} \text { - } c_{u}(\beta,|X|)=|X|=d_{u}(\beta,|X|) \text {, }
$$

2. Partition monoids.

From theorem:

Here:

- $c_{u}(\alpha, 2)=0=d_{u}(\alpha, 1), \quad \quad$ $c_{l}(\beta, 2)=0=d_{l}(\beta, 1)$,
- $c_{l}(\alpha,|X|)=|X|=d_{l}(\alpha,|X|), \quad$ - $c_{u}(\beta,|X|)=|X|=d_{u}(\beta,|X|)$,
- α is "injective",

2. Partition monoids.

From theorem:

Here:

- $c_{u}(\alpha, 2)=0=d_{u}(\alpha, 1)$,
- $c_{l}(\beta, 2)=0=d_{l}(\beta, 1)$,
- $c_{l}(\alpha,|X|)=|X|=d_{l}(\alpha,|X|)$,
- $c_{u}(\beta,|X|)=|X|=d_{u}(\beta,|X|)$,
- α is "injective",
- β is "co-injective",

2. Partition monoids.

From theorem:

Here:

- $c_{u}(\alpha, 2)=0=d_{u}(\alpha, 1), \quad \quad c_{l}(\beta, 2)=0=d_{l}(\beta, 1)$,
- $c_{l}(\alpha,|X|)=|X|=d_{l}(\alpha,|X|)$,
- $c_{u}(\beta,|X|)=|X|=d_{u}(\beta,|X|)$,
- α is "injective",
- β is "co-injective",
- α is NOT "co-injective",

2. Partition monoids.

From theorem:

Here:

- $c_{u}(\alpha, 2)=0=d_{u}(\alpha, 1), \quad$ - $c_{l}(\beta, 2)=0=d_{l}(\beta, 1)$,
- $c_{l}(\alpha,|X|)=|X|=d_{l}(\alpha,|X|)$,
- $c_{u}(\beta,|X|)=|X|=d_{u}(\beta,|X|)$,
- α is "injective",
- β is "co-injective",
- α is NOT "co-injective",
- β is NOT "injective".

2. Partition monoids.

Theorem

$$
\mathcal{P}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle \text { if }
$$

- $c_{u}(\alpha, 2)=d_{u}(\alpha, 1)=0$,
- $c_{l}(\beta, 2)=d_{l}(\beta, 1)=0$,
- $c_{l}(\alpha,|X|)=d_{l}(\alpha,|X|)=|X|$,
- $c_{u}(\beta,|X|)=d_{u}(\beta,|X|)=|X|$.

2. Partition monoids.

Theorem

$$
\begin{array}{ll}
\mathcal{P}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle \text { if } \\
\text { - } c_{u}(\alpha, 2)=d_{u}(\alpha, 1)=0, & \text { - } c_{l}(\beta, 2)=d_{l}(\beta, 1)=0, \\
\text { - } c_{l}(\alpha,|X|)+d_{l}(\alpha,|X|)=|X|, & \text { - } c_{u}(\beta,|X|)+d_{u}(\beta,|X|)=|X|, \\
\text { - } d_{l}(\alpha, 1)=|X|, & \text { - } d_{u}(\beta, 1)=|X| .
\end{array}
$$

$$
\begin{aligned}
& \alpha=M \\
& \overbrace{\underbrace{\square \sim}_{|X|} \underbrace{\square}_{|X|} \ldots \ldots \ldots \ldots}^{|X|} \longmapsto \square \\
& \beta=\overbrace{\square}^{|x|} \overbrace{7}^{|x|} \\
& \sqcup \quad . \cdots \cdots \cdots \cdots \square
\end{aligned}
$$

2. Partition monoids.

Theorem

$$
\mathcal{P}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle \text { if }
$$

- $c_{u}(\alpha, 2)=d_{u}(\alpha, 1)=0$,
- $c_{l}(\alpha, 2)+d_{l}(\alpha, 2)=|X|$,
- $d_{l}(\alpha, 1)=|X|$,
- $c_{l}(\beta, 2)=d_{l}(\beta, 1)=0$,
- $c_{u}(\beta,|X|)+d_{u}(\beta,|X|)=|X|$,
- $d_{u}(\beta, 1)=|X|$.

$$
\begin{aligned}
& \alpha=A \\
& \overbrace{\underbrace{\square}_{\geq 2}}^{\underbrace{\square}_{ \pm 2}} \ldots \ldots \ldots \ldots \quad \square \\
& \beta=\overbrace{\square}^{|x|} \overbrace{7}^{|x|} \\
& \longleftarrow \backsim \cdots \cdots \cdots \cdots \square
\end{aligned}
$$

2. Partition monoids.

Theorem

$$
\begin{array}{ll}
\mathcal{P}_{X} & =\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle \text { if } \\
& \\
\text { - } c_{u}(\alpha, 2)=d_{u}(\alpha, 1)=0, & \text { - } c_{l}(\beta, 2)=d_{l}(\beta, 1)=0, \\
\text { - } c_{l}(\alpha,|X|)+d_{l}(\alpha,|X|)=|X|, & \text { - } c_{u}(\beta, 2)+d_{u}(\beta, 2)=|X|, \\
\text { - } d_{l}(\alpha, 1)=|X|, & \text { - } d_{u}(\beta, 1)=|X| .
\end{array}
$$

$$
\beta=\overbrace{\square}^{22} \overbrace{\square}^{\geq 2}
$$

$\square \square$

2. Partition monoids.

Theorem

$$
\mathcal{P}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle \text { if }
$$

$$
\begin{array}{ll}
\text { - } c_{u}(\alpha, 2)=d_{u}(\alpha, 1)=0, & \text { - } c_{l}(\beta, 2)=d_{l}(\beta, 1)=0, \\
\text { - } d_{l}(\alpha, 1)=|X|, & \text { - } d_{u}(\beta, 1)=|X|,
\end{array}
$$

and either

$$
\text { - } c_{l}(\alpha, 2)+d_{l}(\alpha, 2)=|X|, \quad \bullet c_{u}(\beta,|X|)+d_{u}(\beta,|X|)=|X|
$$

or

$$
c_{l}(\alpha,|X|)+d_{l}(\alpha,|X|)=|X|, \quad \bullet c_{u}(\beta, 2)+d_{u}(\beta, 2)=|X|
$$

2. Partition monoids.

Theorem

If X is uncountable and regular, then $\mathcal{P}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ iff

- $c_{u}(\alpha, 2)=d_{u}(\alpha, 1)=0$,
- $c_{l}(\beta, 2)=d_{l}(\beta, 1)=0$,
- $d_{l}(\alpha, 1)=|X|$,
- $d_{u}(\beta, 1)=|X|$,
and either
- $c_{l}(\alpha, 2)+d_{l}(\alpha, 2)=|X|$,
- $c_{u}(\beta,|X|)+d_{u}(\beta,|X|)=|X|$,
or

$$
\text { - } c_{l}(\alpha,|X|)+d_{l}(\alpha,|X|)=|X|, \quad \text { - } c_{u}(\beta, 2)+d_{u}(\beta, 2)=|X| \text {. }
$$

2. Partition monoids.

Theorem

If X is countable, then $\mathcal{P}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ iff

- $c_{u}(\alpha, 2)=d_{u}(\alpha, 1)=0$,
- $c_{l}(\beta, 2)=d_{l}(\beta, 1)=0$,
- $d_{l}(\alpha, 1)=|X|$,
- $d_{u}(\beta, 1)=|X|$,
and either
- $c_{l}(\alpha, 2)+d_{l}(\alpha, 2)=|X|$,
- $c_{u}(\beta, 2)+d_{u}(\beta, 3)=|X|$,
or
- $c_{l}(\alpha, 2)+d_{l}(\alpha, 3)=|X|$,
- $c_{u}(\beta, 2)+d_{u}(\beta, 2)=|X|$.

2. Partition monoids.

2. Partition monoids.

Theorem

If X is singular, then $\mathcal{P}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$ iff

- $c_{u}(\alpha, 2)=d_{u}(\alpha, 1)=0$,
- $c_{l}(\beta, 2)=d_{l}(\beta, 1)=0$,
- $d_{l}(\alpha, 1)=|X|$,
- $d_{u}(\beta, 1)=|X|$,
and either
- $c_{l}(\alpha, 2)+d_{l}(\alpha, 2)=|X|$,
- $c_{u}(\beta, \mu)+d_{u}(\beta, \mu)=|X|$
for all cardinals $\mu<|X|$,
or
- $c_{l}(\alpha, \mu)+d_{l}(\alpha, \mu)=|X|$
- $c_{u}(\beta, 2)+d_{u}(\beta, 2)=|X|$. for all cardinals $\mu<|X|$,

2. Partition monoids.

Corollary 1

Any countable subset of \mathcal{P}_{X} is contained in a 4-generated subsemigroup of \mathcal{P}_{X}.

2. Partition monoids.

Corollary 1

Any countable subset of \mathcal{P}_{X} is contained in a 4-generated subsemigroup of \mathcal{P}_{X}.

Proof: Follows from general results of Mitchell and Péresse, and:

- any countable subset of \mathcal{S}_{X} is contained in a 2-generated subsemigroup of \mathcal{S}_{X} (Galvin), and
- $\mathcal{P}_{X}=\left\langle\mathcal{S}_{X}, \alpha, \beta\right\rangle$.

2. Partition monoids.

Corollary 1

Any countable subset of \mathcal{P}_{X} is contained in a 4-generated subsemigroup of \mathcal{P}_{X}.

Proof: Let $\gamma_{1}, \gamma_{2}, \ldots \in \mathcal{P}_{X}$.

2. Partition monoids.

Corollary 1

Any countable subset of \mathcal{P}_{X} is contained in a 4-generated subsemigroup of \mathcal{P}_{X}.

Proof: Let $\gamma_{1}, \gamma_{2}, \ldots \in \mathcal{P}_{X}$.
Then $\gamma_{n}=\alpha \beta \alpha^{n} \beta^{2} \alpha^{-n} \beta^{-1} \alpha^{-1}$ where:

2. Partition monoids.

Corollary 2

If $\mathcal{P}_{X}=\langle U\rangle$, then $\mathcal{P}_{X}=U \cup U^{2} \cup \cdots \cup U^{n}$ for some n.

2. Partition monoids.

Corollary 2

If $\mathcal{P}_{X}=\langle U\rangle$, then $\mathcal{P}_{X}=U \cup U^{2} \cup \cdots \cup U^{n}$ for some n.

Proof: Follows from general results of Maltcev, Mitchell and Ruškuc, and:

- \mathcal{P}_{X} is "strongly distorted" (Corollary 1).

2. Partition monoids.

Corollary 2

If $\mathcal{P}_{X}=\langle U\rangle$, then $\mathcal{P}_{X}=U \cup U^{2} \cup \cdots \cup U^{n}$ for some n.

Proof: Follows from general results of Maltcev, Mitchell and Ruškuc, and:

- \mathcal{P}_{X} is "strongly distorted" (Corollary 1).

