Compact Notation for Finite Transformations

Attila Egri-Nagy, University of Western Sydney, Australia
A.Egri-Nagy@uws.edu.au

Chrystopher L. Nehaniv, University of Hertfordshire, UK C.L.Nehaniv@herts.ac.uk

$$
[[[1,3 \mid 2], 5 \mid 4], 6]([[7,8 \mid 9], 10], 11,[14,13,12])(16,17)
$$

Informal Definition

1. Left-to-right comma-separated enumeration indicates a "conveyor belt" of maps. For example, $1,2,3$ reads as $1 \mapsto 2,2 \mapsto 3$.
2. Parentheses containing a left-to-right comma-separated enumeration of points add the extra map from the last element to the first element of the enumeration, i.e. $(1, \ldots, \mathrm{n})$ adds the map $1 \mapsto n$.
3. Square brackets containing a left-to-right enumeration of points leave the image of the last element undefined. Therefore they can be used to denote partial mappings, or for total trajectories terminating in a trivial cycle. If something follows the closing square bracket in a left-to-right order, then the image of the last element is defined by that following element. For example $\ldots \mathrm{n}], \mathrm{k} .$. defines the map $n \mapsto k$.
4. A vertical bar I ("splat") appearing before the last element in a square bracket turns the preceding sequence into a set and maps all of its elements into the last point. They all 'hit the same wall'. For instance, $[1,2,3 \mid 4]$ yields the maps $1 \mapsto 4,2 \mapsto 4$ and $3 \mapsto 4$. (Note, this is an exception to left-to-right mapping mentioned in (1).)

The Language of Compact Notation Strings

The following context-free grammar defines the language of compact notations. The terminal symbols are [,],(,),,,I and the symbols for the n points. The nonterminal symbols are C for components, N for nontrivial trees, T for trees and P for points.

$$
\begin{aligned}
& S \rightarrow C^{+} \mid() \\
& C \rightarrow\left((T,)^{+} T\right) \mid N \\
& N \rightarrow\left[(T,)^{+} T \mid P\right] \mid\left[(T,)^{+} T\right] \\
& T \rightarrow N \mid P \\
& P \rightarrow 1|2| 3|\ldots| \mathrm{n}
\end{aligned}
$$

Canonical Form

Both $[1,2,[3,4 \mid 6]]$ and $[[1,2], 3,4 \mid 6]$ denote the same transformation. However, a simple recursive algorithm that starts from the point(s) of each component's cycle can produce a canonical form. All we need to do is to examine the cardinality of the preimage set from outside the cycle, i.e. the number of incoming arrows: 0 leaf, 1 conveyor belt, more than 1 splat.

For instance, here are the conjugacy class representatives of the full transformation semigroup T_{4} on four points in canonical form:
$[1,2,3 \mid 4],[[1,2], 3 \mid 4],[1,2 \mid 3],[[1,2 \mid 3], 4],[1,2,3,4],[1,2,3]$, $[1,2][3,4],[1,2],[1,2](3,4),(),(1,2),([1,2], 3),(1,2,3)$, $([1,2 \mid 3], 4),([1,2],[3,4]),([1,2,3], 4),(1,2)(3,4),([1,2], 3,4)$, $(1,2,3,4)$

