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Intorduction

An associative ring R is said to be semiprime if the zero-ideal is the
intersection of prime ideals.

It is easy to see that R is semiprime if and only if for every a ∈ R, aRa = 0
implies a = 0.

Examples of semiprime rings:

- Any prime ring is obviously a semiprime ring.

- Any reduced ring is a semiprime ring.

- Any J-semisimple ring is semiprime. In particular, semisimple rings
and von Neumann regular rings are all semiprime.

- Any direct product of semiprime rings is semiprime.

- Any matrix ring over a semiprime ring is a semiprime ring.
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Intorduction

Throughout, R will be a unital semiprime ring.

An interesting class of additive maps d : R → R including both
automorphisms and generalized derivations is the class of generalized
skew derivations, that is, those satisfying

d(xy) = δ(x)y + σ(x)d(y) (x , y ∈ R),

for some map δ : R → R and automorphism σ ∈ Aut(R).
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Intorduction

Since by assumption R is semiprime, it is easy to see that the map δ is
automatically additive and it is uniquely determined by d . Moreover, δ is a
σ-derivation (skew-derivation), i.e. δ satisfies

δ(xy) = δ(x)y + σ(x)δ(y) (x , y ∈ R).

We decompose d as
d = δ + ρ,

where ρ := d − δ, and note that

ρ(x) = σ(x)d(1) (x ∈ R).
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Intorduction

On the other hand, an attractive and fairly large class of additive maps
φ : R → R is the class of generalized elementary operators, that is,
those which can be expressed as a finite sum

φ(x) =
∑
i

aixbi (x ∈ R),

where the coefficients ai , bi are elements of the Utumi right quotient ring
Qmr . If all ai , bi lie in R, then we say that φ is an elementary operator.

Motivated by the fact that (generalized) elementary operators comprise
both (X -)inner automorphisms x 7→ pxp−1 and (X -)inner generalized
derivations x 7→ px − xq, we consider the following question:

Problem

Describe the form of generalized skew derivations which are implemented
by (generalized) elementary operators.
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Preliminaries

The notion of a right quotient ring was introduced by Yuzo Utumi in 1956.
An overring Q of a ring R is said to be a right quotient ring of R if given
p, q ∈ Q, with p 6= 0, there exists a ∈ R satisfying pa 6= 0 and qa ∈ R.

Utumi proved that for every semiprime ring (or more generally, for any ring
without total left zero divisors) there exists a maximal right quotient ring,
called the Utumi right quotient ring of R and denoted by Qmr .

A right ideal I of R is said to be dense if for every x , y ∈ R, with x 6= 0
there exists a ∈ R such that xa 6= 0 and ya ∈ I . Note that this is
equivalent to saying that R is a right quotient ring of I .
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Preliminaries

The basic and in fact the characteristic four properties of Qmr are:

(i) R is a subring of Qmr .

(ii) For any q ∈ Qmr there exists a dense right ideal I of R such that
qI ⊆ R.

(iii) If 0 6= q ∈ Qmr and I is a dense right ideal of R, then qI 6= 0.

(iv) For any dense right ideal I of R and a right R-module homomorphism
f : IR → RR there exists q ∈ Qmr such that f is a left multiplication
by q.

The center of Qmr is called the extended centroid of R and it is denoted
by C . It is well known that C is a von Neumann regular self-injective ring.
Moreover, C is a field if and only if R is a prime ring.
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Preliminaries

For any subset S ⊆ Qmr there exists a unique idempotent ε(S) in C such
that

rannQmr (QmrSQmr ) = (1− ε(S))Qmr and ε(S)x = x for all x ∈ S ,

where rannQmr (X ) denotes the right annihilator in Qmr of a subset
X ⊆ Qmr . The idempotent ε(S) is called the central support of S .
Whenever S = {x} for some x ∈ Qmr we write ε(x) for ε(S).

An automorphism σ ∈ Aut(R) (resp. σ-derivation δ : R → R) is said to
be X -inner if there exists an element p ∈ Q×

mr (resp. q ∈ Qmr ) such that
σ(x) = pxp−1 (resp. δ(x) = qx − σ(x)q) for all x ∈ R. In this case we say
that an element p (resp. q) implements σ (resp. δ).
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Results

Theorem (D. Eremita, I. G. and D. Ilǐsević, 2013)

Suppose that σ : R → R is a ring epimorphism and let a ∈ Qmr . If the
map ρa : R → Qmr , given by ρa : x 7→ σ(x)a is implemented by a
generalized elementary operator, then there exists an invertible element
p ∈ Q×

mr such that

ε(a)σ(x) = ε(a)pxp−1 (x ∈ R).

In particular, ρa(x) = pxp−1a (x ∈ R).

Corollary

If an epimorphism σ : R → R is implemented by a generalized elementary
operator, then σ is an X-inner automorphism of R.

Problem

If an automorphism σ ∈ Aut(R) is implemented by an elementary operator
(with all coefficients lying in R), is σ in fact an inner automorphism of R?
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Suppose that σ : R → R is a ring epimorphism and let a ∈ Qmr . If the
map ρa : R → Qmr , given by ρa : x 7→ σ(x)a is implemented by a
generalized elementary operator, then there exists an invertible element
p ∈ Q×

mr such that

ε(a)σ(x) = ε(a)pxp−1 (x ∈ R).

In particular, ρa(x) = pxp−1a (x ∈ R).

Corollary

If an epimorphism σ : R → R is implemented by a generalized elementary
operator, then σ is an X-inner automorphism of R.

Problem

If an automorphism σ ∈ Aut(R) is implemented by an elementary operator
(with all coefficients lying in R), is σ in fact an inner automorphism of R?
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Results

The answer is negative (in general):

Example

Let R be the C ∗-algebra consisting of all elements x ∈ C ([1,∞],M2(C))
(i.e. all continuous functions from the interval [1,∞] ⊆ R to the
C ∗-algebra M2(C) of 2× 2 complex matrices) such that

x(n) =

[
λn(x) 0

0 λn+1(x)

]
(n ∈ N)

for some convergent sequence (λn(x)) of complex numbers. Then R
admits an outer ∗-automorphism σ which is implemented by an elementary
operator.

Problem

Characterize the class of all unital semiprime rings R with the property
that all automorphisms of R which are implemented by elementary
operators are necessarily inner.
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Results

Theorem (D. Eremita, I. G. and D. Ilǐsević, 2013)

If a σ-derivation δ : R → R is implemented by a generalized elementary
operator, then δ is X -inner, and for each element q ∈ Qmr which
implements δ there exists an invertible element p ∈ Q×

mr such that

ε(q)σ(x) = ε(q)pxp−1 (x ∈ R).

In particular, δ(x) = qx − pxp−1q (x ∈ R).

Corollary

Let δ be a non-zero σ-derivation of a prime ring R. If δ is implemented by
a generalized elementary operator, then both σ and δ are X -inner.

However, this Corollary is not true for general semiprime rings.
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If a σ-derivation δ : R → R is implemented by a generalized elementary
operator, then δ is X -inner, and for each element q ∈ Qmr which
implements δ there exists an invertible element p ∈ Q×

mr such that

ε(q)σ(x) = ε(q)pxp−1 (x ∈ R).

In particular, δ(x) = qx − pxp−1q (x ∈ R).

Corollary

Let δ be a non-zero σ-derivation of a prime ring R. If δ is implemented by
a generalized elementary operator, then both σ and δ are X -inner.

However, this Corollary is not true for general semiprime rings.
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Results

Example

Let R := Mn(C)⊕Mn(C)⊕Mn(C). Since each right ideal of Mn(C) is of
the form pMn(C) for some projection p ∈ Mn(C), we have
Qmr (Mn(C)) = Mn(C), and hence Qmr (R) = R. For 1 ≤ i ≤ 3, let εi be
the central idempotent of R with one non-zero entry 1 at i-th coordinate,
and let p be a non-central invertible matrix in Mn(C). We define maps
σ, δ : R → R by

σ(x) = σ(x1, x2, x3) := (px1p
−1, x3, x2) and δ(x) := ε1x − σ(x)ε1.

Obviously σ is an automorphism of R and δ is a non-zero inner
σ-derivation which is implemented by an elementary operator

φ : x 7→ ε1x1R − (p.ε1)x(p−1.ε1)

However, σ is not an (X -)inner automorphism of R since σ is not the
identity on the center of R (for example, σ(ε2) = ε3).
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Results

Finally, if d is a generalized σ-derivation, then using a decomposition
d = δ + ρ, one obtains:

Corollary

If a generalized σ-derivation d of R is implemented by a generalized
elementary operator, then δ is an X-inner σ-derivation, and for each
element q ∈ Qmr which implements δ, there exists an invertible element
p ∈ Q×

mr such that

ε(r)σ(x) = ε(r)pxp−1 (x ∈ R),

where r := d(1)− q. In particular, d(x) = qx − pxp−1r (x ∈ R).

Remark

All these results are also true when σ is only an epimorphism.
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