Small expansions of $(\omega, <)$ and $(\omega + \omega^*, <)$

Dejan Ilić

Faculty of Transport and Traffic Engineering University of Belgrade

Novi Sad, June $5^{\rm th}$ 2013

æ

Definitions, Notations, Problems and Results

Dejan Ilić Small expansions of $(\omega, <)$ and $(\omega + \omega^*, <)$

- For $\mathcal{M} = (M, ...)$, $A \subseteq M$: $\varphi(A) = \{a \in A \mid \mathcal{M} \models \varphi(a)\}.$
- A ⊆ M is minimal set iff for every φ ∈ For_M exactly one of φ(A) and ¬φ(A) is infinite.
 We also say that CB(A) = 1 =deg(A).
- If there are pairwise disjoint formulas $\varphi_1, \varphi_2, \dots, \varphi_n$ such that $\varphi_i(A)$ is minimal set, then we say that CB(A) = 1 and deg(A) = n.
- Structure is minimal if its underlying set is minimal.
 CB rank and degree of structure is rank and degree of underlying set. CB(φ) =CB(φ(M)), deg(φ) =deg(φ(M)).

(日) (同) (E) (E) (E)

• $\mathbb{C} = (C, +, \cdot, 0, 1)$ is minimal.

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣 ─

- $\mathbb{C} = (C, +, \cdot, 0, 1)$ is minimal.
- ($\omega, <$) and ($\omega + \omega *, <$) are minimal.

(四) (王) (王) (王)

- $\mathbb{C} = (C, +, \cdot, 0, 1)$ is minimal.
- ($\omega,<$) and ($\omega+\omega*,<$) are minimal.
- (ω + Z, <) is not minimal: x < 0_Z is infinite, co-infinite, so CB(x = x) = 1, deg(x = x) = 2. ω is minimal in it, even though it is not definable.

· < @ > < 글 > < 글 > · · 글

- $\mathbb{C} = (C, +, \cdot, 0, 1)$ is minimal.
- ($\omega,<$) and ($\omega+\omega*,<$) are minimal.
- (ω + Z, <) is not minimal: x < 0_Z is infinite, co-infinite, so CB(x = x) = 1, deg(x = x) = 2. ω is minimal in it, even though it is not definable. co-infinite. However, set of all nonnegative integer is minimal.

- $\mathbb{C} = (C, +, \cdot, 0, 1)$ is minimal.
- ($\omega,<$) and ($\omega+\omega*,<$) are minimal.
- (ω + Z, <) is not minimal: x < 0_Z is infinite, co-infinite, so CB(x = x) = 1, deg(x = x) = 2. ω is minimal in it, even though it is not definable. co-infinite. However, set of all nonnegative integer is minimal.
- Consider $(\omega, <, P_k)$, where P(x) says "k divides x".

- $\mathbb{C} = (C, +, \cdot, 0, 1)$ is minimal.
- ($\omega,<$) and ($\omega+\omega*,<$) are minimal.
- (ω + Z, <) is not minimal: x < 0_Z is infinite, co-infinite, so CB(x = x) = 1, deg(x = x) = 2. ω is minimal in it, even though it is not definable. co-infinite. However, set of all nonnegative integer is minimal.
- Consider (ω, <, P_k), where P(x) says "k divides x". CB(x = x) = 1, deg(x = x) = k.
- Let $P(x) \iff^{\text{def}} (\exists y)(x = 2^y) \text{ and } \mathcal{M} = (\omega, <, P).$ CB(x = x) = 2.

· < @ > < 문 > < 문 > · · 문

- $\mathbb{C} = (\mathcal{C}, +, \cdot, 0, 1)$ is minimal.
- ($\omega,<$) and ($\omega+\omega*,<$) are minimal.
- (ω + Z, <) is not minimal: x < 0_Z is infinite, co-infinite, so CB(x = x) = 1, deg(x = x) = 2. ω is minimal in it, even though it is not definable. co-infinite. However, set of all nonnegative integer is minimal.
- Consider (ω, <, P_k), where P(x) says "k divides x". CB(x = x) = 1, deg(x = x) = k.
- Let $P(x) \iff^{\text{def}} (\exists y)(x = 2^y) \text{ and } \mathcal{M} = (\omega, <, P).$ CB(x = x) = 2.

If f is function increasing faster then any linear, we can make such example:

(日) (同) (E) (E) (E)

- $\mathbb{C} = (\mathcal{C}, +, \cdot, 0, 1)$ is minimal.
- ($\omega,<$) and ($\omega+\omega*,<$) are minimal.
- (ω + Z, <) is not minimal: x < 0_Z is infinite, co-infinite, so CB(x = x) = 1, deg(x = x) = 2. ω is minimal in it, even though it is not definable. co-infinite. However, set of all nonnegative integer is minimal.
- Consider (ω, <, P_k), where P(x) says "k divides x". CB(x = x) = 1, deg(x = x) = k.
- Let $P(x) \iff^{\text{def}} (\exists y)(x = 2^y) \text{ and } \mathcal{M} = (\omega, <, P).$ CB(x = x) = 2.

If f is function increasing faster then any linear, we can make such example: $Q(x) \iff^{\text{def}} (\exists y)(x = f(y))$. Then $(\omega, <, Q)$ is of CB rank =2.

イロン イ部ン イヨン イヨン 三日

• Unary expansion: Only unary relations are added.

▲御→ ▲ 注→ ▲ 注→ 二 注 …

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.

→ 注→ 注

æ

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- *Essentially unary expansion*: Definitionally equivalent to some unary expansion.

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- *Essentially unary expansion*: Definitionally equivalent to some unary expansion.

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- *Essentially unary expansion*: Definitionally equivalent to some unary expansion.

Theorem 1:

No proper expansion of $(\omega, <)$ is minimal.

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- *Essentially unary expansion*: Definitionally equivalent to some unary expansion.

Theorem 1:

No proper expansion of $(\omega, <)$ is minimal.

This result can also be found in A. Pillay, C. Steinhorn *Discrete O-Minimal Structures*, Annals of Pure and Applied Logic 34 (1987)

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- *Essentially unary expansion*: Definitionally equivalent to some unary expansion.

Theorem 1:

No proper expansion of $(\omega, <)$ is minimal.

This result can also be found in A. Pillay, C. Steinhorn *Discrete O-Minimal Structures*, Annals of Pure and Applied Logic 34 (1987) Theorem 1 can be extended in the following way:

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- *Essentially unary expansion*: Definitionally equivalent to some unary expansion.

Theorem 1:

No proper expansion of $(\omega, <)$ is minimal.

This result can also be found in A. Pillay, C. Steinhorn *Discrete O-Minimal Structures*, Annals of Pure and Applied Logic 34 (1987) Theorem 1 can be extended in the following way:

Assume L is a discrete ordered set. No proper expansion of $(\omega + L, <)$ is minimal.

Question: Which expansions of $(\omega, <)$ have properties CB(x = x) = 1 and deg(x = x) = k > 1?

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ 釣 Q ()~

æ

個 と く ヨ と く ヨ と …

Question: Which expansions of $(\omega, <)$ have properties CB(x = x) = 1 and deg(x = x) = k > 1?

Theorem 2:

Every expansion of $(\omega, <)$ with CB rank 1 and degree k > 1 is essentially unary:

Question: Which expansions of $(\omega, <)$ have properties CB(x = x) = 1 and deg(x = x) = k > 1?

Theorem 2:

Every expansion of $(\omega, <)$ with CB rank 1 and degree k > 1 is essentially unary: It is definitionally equivalent to $(\omega, <, P_k)$ where $P_k(x)$ is $x \equiv 0 \pmod{k}$.

御 と くぼ と くぼ と

Question: What happens if CB(x = x) > 1?

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣 ─

Question: What happens if CB(x = x) > 1? **Answer:** We don't know even for CB(x = x) = 2 and deg(x = x) = 1.

★@> ★ E> ★ E> = E

Question: What happens if CB(x = x) > 1? **Answer:** We don't know even for CB(x = x) = 2 and deg(x = x) = 1. **Example:** Let $P(x) \iff^{def} (\exists y)(x = 2^y)$ and $\mathcal{M} = (\omega, <, P)$.

Question: What happens if CB(x = x) > 1? **Answer:** We don't know even for CB(x = x) = 2 and deg(x = x) = 1. **Example:** Let $P(x) \iff^{def} (\exists y)(x = 2^y)$ and $\mathcal{M} = (\omega, <, P)$. CB(x = x) = 2.

Question: What happens if CB(x = x) > 1? **Answer:** We don't know even for CB(x = x) = 2 and deg(x = x) = 1. **Example:** Let $P(x) \iff^{def} (\exists y)(x = 2^y)$ and $\mathcal{M} = (\omega, <, P)$. CB(x = x) = 2. If f is function increasing faster then any linear, we can make such example:

Question: What happens if CB(x = x) > 1? **Answer:** We don't know even for CB(x = x) = 2 and deg(x = x) = 1. **Example:** Let $P(x) \iff^{def} (\exists y)(x = 2^y)$ and $\mathcal{M} = (\omega, <, P)$. CB(x = x) = 2. If f is function increasing faster then any linear, we can make such example: $Q(x) \iff^{def} (\exists y)(x = f(y))$. Then $(\omega, <, Q)$ is of CB rank =2.

· < @ > < 글 > < 글 > · · 글

Question: What happens if CB(x = x) > 1? **Answer:** We don't know even for CB(x = x) = 2 and deg(x = x) = 1. **Example:** Let $P(x) \iff^{def} (\exists y)(x = 2^y)$ and $\mathcal{M} = (\omega, <, P)$. CB(x = x) = 2. If f is function increasing faster then any linear, we can make such example: $Q(x) \iff^{def} (\exists y)(x = f(y))$. Then $(\omega, <, Q)$ is of CB rank =2.

Conjecture

If CB rank of expansion of $(\omega, <)$ is 2, then it is essentially unary.

イロン イ部ン イヨン イヨン 三日

Technical details

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

<日</th>< 日</th>< 日</th>

Definition

 $p \in S_1(E)$ is an ω -type if $|\varphi(\omega)| \ge \aleph_0$ for every $\varphi \in p$.

- (回) (三) (三) (三) (三)

Definition

 $p \in S_1(E)$ is an ω -type if $|\varphi(\omega)| \ge \aleph_0$ for every $\varphi \in p$. (e_1, e_2, \ldots) is an ω -sequence iff $\operatorname{tp}(e_{i+1}/e_1, e_2, \ldots, e_i)$ is an ω -type.

Definition

 $p \in S_1(E)$ is an ω -type if $|\varphi(\omega)| \ge \aleph_0$ for every $\varphi \in p$. (e_1, e_2, \ldots) is an ω -sequence iff $\operatorname{tp}(e_{i+1}/e_1, e_2, \ldots, e_i)$ is an ω -type.

If $|\omega\smallsetminus arphi(\omega)|<leph_0$ and $n_arphi=\max(\omega\smallsetminus arphi(\omega))$, then:

- (回) (三) (三) (三) (三)

Definition

 $p \in S_1(E)$ is an ω -type if $|\varphi(\omega)| \ge \aleph_0$ for every $\varphi \in p$. (e_1, e_2, \ldots) is an ω -sequence iff $\operatorname{tp}(e_{i+1}/e_1, e_2, \ldots, e_i)$ is an ω -type.

If
$$|\omega \smallsetminus \varphi(\omega)| < \aleph_0$$
 and $n_{\varphi} = \max(\omega \smallsetminus \varphi(\omega))$, then:
• $\varphi'(x) = \varphi(x) \lor x \leqslant n_{\varphi}$;

Definition

 $p \in S_1(E)$ is an ω -type if $|\varphi(\omega)| \ge \aleph_0$ for every $\varphi \in p$. (e_1, e_2, \ldots) is an ω -sequence iff $\operatorname{tp}(e_{i+1}/e_1, e_2, \ldots, e_i)$ is an ω -type.

If
$$|\omega \smallsetminus \varphi(\omega)| < \aleph_0$$
 and $n_{\varphi} = \max(\omega \smallsetminus \varphi(\omega))$, then:
• $\varphi'(x) = \varphi(x) \lor x \leqslant n_{\varphi};$

•
$$\varphi^*(x) \iff^{\operatorname{def}} [0, x] \subseteq \varphi'(\mathbb{U}).$$

Definition

 $p \in S_1(E)$ is an ω -type if $|\varphi(\omega)| \ge \aleph_0$ for every $\varphi \in p$. (e_1, e_2, \ldots) is an ω -sequence iff $\operatorname{tp}(e_{i+1}/e_1, e_2, \ldots, e_i)$ is an ω -type.

If
$$|\omega \smallsetminus \varphi(\omega)| < \aleph_0$$
 and $n_{\varphi} = \max(\omega \smallsetminus \varphi(\omega))$, then:
• $\varphi'(x) = \varphi(x) \lor x \leqslant n_{\varphi}$;
• $\varphi^*(x) \Longleftrightarrow^{\operatorname{def}} [0, x] \subseteq \varphi'(\mathbb{U})$.

$$p_{E} = \{n < x \mid n \in \omega\} \cup \{\varphi^{*}(x) \mid \varphi(x) \in \mathit{For}_{L_{E}}, \ |\omega \smallsetminus \varphi(\omega)| < \aleph_{0}\}.$$

• Complete type over *E* is ω -type iff it contains p_E .

|▲■▶ ▲≣▶ ▲≣▶ | ≣ | 釣�?

- Complete type over *E* is ω -type iff it contains p_E .
- If $(\omega + L, <, ...)$ is minimal, then p_0 has unique completion and it is unique ω -type over \emptyset .

<日</th>< 日</th>< 日</th>

- Complete type over *E* is ω -type iff it contains p_E .
- If $(\omega + L, <, ...)$ is minimal, then p_0 has unique completion and it is unique ω -type over \emptyset .

Definition

$$\operatorname{cl}(E) = \operatorname{convex}(p_0(\mathbb{U}) \cap \operatorname{dcl}(E)).$$

· < @ > < 글 > < 글 > · · 글

- Complete type over *E* is ω -type iff it contains p_E .
- If $(\omega + L, <, ...)$ is minimal, then p_0 has unique completion and it is unique ω -type over \emptyset .

Definition

$$\operatorname{cl}(E) = \operatorname{convex}(p_0(\mathbb{U}) \cap \operatorname{dcl}(E)).$$

From now on, $(\omega + L, <, \dots)$ is minimal!

イロン イボン イヨン イヨン 三日

- Complete type over *E* is ω -type iff it contains p_E .
- If $(\omega + L, <, ...)$ is minimal, then p_0 has unique completion and it is unique ω -type over \emptyset .

Definition

$$\operatorname{cl}(E) = \operatorname{convex}(p_0(\mathbb{U}) \cap \operatorname{dcl}(E)).$$

From now on, $(\omega + L, <, ...)$ is minimal!

Lemma1

If $a \models p_0$ and D < a, then D has a maximum definable by a formula using the same parameters as does formula defining D.

・ロン ・回と ・ヨン ・ヨン

Let $a \models p_0$ and $cl(E) \neq \emptyset$. The following are equivalent:

(4回) (4回) (4回) 三日

Let $a \models p_0$ and $cl(E) \neq \emptyset$. The following are equivalent:

• tp(a/E) is an ω -type;

<□> < 注> < 注> < 注> < 注> < 注

Let $a \models p_0$ and $cl(E) \neq \emptyset$. The following are equivalent:

- tp(a/E) is an ω -type;
- $\omega < a < cl(E)$.

(日) (注) (注) (注)

Let $a \models p_0$ and $cl(E) \neq \emptyset$. The following are equivalent:

- tp(a/E) is an ω -type;
- $\omega < a < cl(E)$.

Corollary

If $cl(E) \neq \emptyset$ is nonempty, then $p_E(\mathbb{U}) = \{x \mid \omega < x < cl(E)\}.$

<ロ> (四) (四) (注) (注) (三)

Let $a \models p_0$ and $cl(E) \neq \emptyset$. The following are equivalent:

- tp(a/E) is an ω -type;
- $\omega < a < cl(E)$.

Corollary

If $\operatorname{cl}(E) \neq \emptyset$ is nonempty, then $p_E(\mathbb{U}) = \{x \mid \omega < x < \operatorname{cl}(E)\}.$

Lemma3

If p_E has unique completion and f is E-definable unary function mapping $p_E(\mathbb{U})$ into itself, then:

イロン イヨン イヨン イヨン

Э

Let $a \models p_0$ and $cl(E) \neq \emptyset$. The following are equivalent:

- tp(a/E) is an ω -type;
- $\omega < a < cl(E)$.

Corollary

If $\operatorname{cl}(E) \neq \emptyset$ is nonempty, then $p_E(\mathbb{U}) = \{x \mid \omega < x < \operatorname{cl}(E)\}.$

Lemma3

If p_E has unique completion and f is E-definable unary function mapping $p_E(\mathbb{U})$ into itself, then:

イロン イヨン イヨン イヨン

Э

Let $a \models p_0$ and $cl(E) \neq \emptyset$. The following are equivalent:

- tp(a/E) is an ω -type;
- $\omega < a < cl(E)$.

Corollary

If $\operatorname{cl}(E) \neq \emptyset$ is nonempty, then $p_E(\mathbb{U}) = \{x \mid \omega < x < \operatorname{cl}(E)\}.$

Lemma3

If p_E has unique completion and f is E-definable unary function mapping $p_E(\mathbb{U})$ into itself, then:

•
$$f_E(x) = x \pm m$$
 for some m .

イロン イヨン イヨン イヨン

Э

If p_E has unique completion and $d \models p_E$, then the following are equivalent:

A ■

< ≣ >

æ

If p_E has unique completion and $d \models p_E$, then the following are equivalent:

A ■

★国社

If p_E has unique completion and $d \models p_E$, then the following are equivalent:

- tp(a/dE) is ω -type;
- tp(a/d) is ω -type.

回 と く ヨ と く ヨ と … ヨ

If p_E has unique completion and $d \models p_E$, then the following are equivalent:

- tp(a/dE) is ω -type;
- tp(a/d) is ω -type.

Lemma5

If *p_E* has unique completion and *d* ⊨ *p_E*, then *p_{dE}* has unique completion.

- (回) (三) (三) (三) (三)

If p_E has unique completion and $d \models p_E$, then the following are equivalent:

- tp(a/dE) is ω -type;
- tp(a/d) is ω -type.

Lemma5

- If *p_E* has unique completion and *d* ⊨ *p_E*, then *p_{dE}* has unique completion.
- ω -type over ω -sequence is unique.

Theorem 1

No proper expansion of $(\omega + L, <)$ is minimal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Now assume $CB(\omega) = CB(x = x) = 1$ and $deg(\omega) = deg(x = x) = k > 1$.

|▲■▶ ▲≣▶ ▲≣▶ | ≣ | 釣�?

Now assume
$$CB(\omega) = CB(x = x) = 1$$
 and $deg(\omega) = deg(x = x) = k > 1$.

 $P_k(x)$ such that $P_k(\omega) = \{x | x \equiv 0 \pmod{k}$ is definable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Now assume
$$CB(\omega) = CB(x = x) = 1$$
 and $deg(\omega) = deg(x = x) = k > 1$.

$$P_k(x)$$
 such that $P_k(\omega) = \{x | x \equiv 0 \pmod{k}\}$ is definable.

Theorem 2

Assume \mathcal{M} is expansion of $(\omega + L, <)$, such that $CB(\omega) = CB(x = x) = 1$ and $deg(\omega) = deg(x = x) = k > 1$. Then it is definitionally equivalent to $(\omega + L, <, P_k)$.

イロン イ部ン イヨン イヨン 三日