Small expansions of $(\omega,<)$ and $\left(\omega+\omega^{*},<\right)$

Dejan Ilić

Faculty of Transport and Traffic Engineering University of Belgrade

Novi Sad, June 5 ${ }^{\text {th }} 2013$

Dejan Ilić \quad Small expansions of $(\omega,<)$ and $\left(\omega+\omega^{*},<\right)$

Definitions, Notations, Problems and Results

- For $\mathcal{M}=(M, \ldots), A \subseteq M: \varphi(A)=\{a \in A \mid \mathcal{M} \models \varphi(a)\}$.
- $A \subseteq M$ is minimal set iff for every $\varphi \in$ For $_{M}$ exactly one of $\varphi(A)$ and $\neg \varphi(A)$ is infinite. We also say that $\operatorname{CB}(A)=1=\operatorname{deg}(A)$.
- If there are pairwise disjoint formulas $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ such that $\varphi_{i}(A)$ is minimal set, then we say that $\mathrm{CB}(A)=1$ and $\operatorname{deg}(A)=n$.
- Structure is minimal if its underlying set is minimal. CB rank and degree of structure is rank and degree of underlying set. $\mathrm{CB}(\varphi)=\mathrm{CB}(\varphi(M))$, $\operatorname{deg}(\varphi)=\operatorname{deg}(\varphi(M))$.

Examples:

- $\mathbb{C}=(C,+, \cdot, 0,1)$ is minimal.

Examples:

- $\mathbb{C}=(C,+, \cdot, 0,1)$ is minimal.
- $(\omega,<)$ and $(\omega+\omega *,<)$ are minimal.

Examples:

- $\mathbb{C}=(C,+, \cdot, 0,1)$ is minimal.
- $(\omega,<)$ and $(\omega+\omega *,<)$ are minimal.
- $(\omega+Z,<)$ is not minimal: $x<0_{z}$ is infinite, co-infinite, so $\mathrm{CB}(x=x)=1, \operatorname{deg}(x=x)=2 . \omega$ is minimal in it, even though it is not definable.

Examples:

- $\mathbb{C}=(C,+, \cdot, 0,1)$ is minimal.
- $(\omega,<)$ and $(\omega+\omega *,<)$ are minimal.
- $(\omega+Z,<)$ is not minimal: $x<0_{z}$ is infinite, co-infinite, so $\mathrm{CB}(x=x)=1, \operatorname{deg}(x=x)=2$. ω is minimal in it, even though it is not definable. co-infinite. However, set of all nonnegative integer is minimal.

Examples:

- $\mathbb{C}=(C,+, \cdot, 0,1)$ is minimal.
- $(\omega,<)$ and $(\omega+\omega *,<)$ are minimal.
- $(\omega+Z,<)$ is not minimal: $x<0_{z}$ is infinite, co-infinite, so $\mathrm{CB}(x=x)=1, \operatorname{deg}(x=x)=2 . \omega$ is minimal in it, even though it is not definable. co-infinite. However, set of all nonnegative integer is minimal.
- Consider $\left(\omega,<, P_{k}\right)$, where $P(x)$ says " k divides x ".

Examples:

- $\mathbb{C}=(C,+, \cdot, 0,1)$ is minimal.
- $(\omega,<)$ and $(\omega+\omega *,<)$ are minimal.
- $(\omega+Z,<)$ is not minimal: $x<0_{z}$ is infinite, co-infinite, so $\mathrm{CB}(x=x)=1, \operatorname{deg}(x=x)=2$. ω is minimal in it, even though it is not definable. co-infinite. However, set of all nonnegative integer is minimal.
- Consider $\left(\omega,<, P_{k}\right)$, where $P(x)$ says " k divides x ". $\mathrm{CB}(x=x)=1, \operatorname{deg}(x=x)=k$.
- Let $P(x) \Longleftrightarrow{ }^{\text {def }}(\exists y)\left(x=2^{y}\right)$ and $\mathcal{M}=(\omega,<, P)$. $\mathrm{CB}(x=x)=2$.

Examples:

- $\mathbb{C}=(C,+, \cdot, 0,1)$ is minimal.
- $(\omega,<)$ and $(\omega+\omega *,<)$ are minimal.
- $(\omega+Z,<)$ is not minimal: $x<0_{z}$ is infinite, co-infinite, so $\mathrm{CB}(x=x)=1, \operatorname{deg}(x=x)=2$. ω is minimal in it, even though it is not definable. co-infinite. However, set of all nonnegative integer is minimal.
- Consider $\left(\omega,<, P_{k}\right)$, where $P(x)$ says " k divides x ". $\mathrm{CB}(x=x)=1, \operatorname{deg}(x=x)=k$.
- Let $P(x) \Longleftrightarrow{ }^{\text {def }}(\exists y)\left(x=2^{y}\right)$ and $\mathcal{M}=(\omega,<, P)$. $\mathrm{CB}(x=x)=2$.
If f is function increasing faster then any linear, we can make such example:

Examples:

- $\mathbb{C}=(C,+, \cdot, 0,1)$ is minimal.
- $(\omega,<)$ and $(\omega+\omega *,<)$ are minimal.
- $(\omega+Z,<)$ is not minimal: $x<0_{z}$ is infinite, co-infinite, so $\mathrm{CB}(x=x)=1, \operatorname{deg}(x=x)=2$. ω is minimal in it, even though it is not definable. co-infinite. However, set of all nonnegative integer is minimal.
- Consider $\left(\omega,<, P_{k}\right)$, where $P(x)$ says " k divides x ". $\mathrm{CB}(x=x)=1, \operatorname{deg}(x=x)=k$.
- Let $P(x) \Longleftrightarrow{ }^{\text {def }}(\exists y)\left(x=2^{y}\right)$ and $\mathcal{M}=(\omega,<, P)$. $\mathrm{CB}(x=x)=2$.
If f is function increasing faster then any linear, we can make such example: $Q(x) \Longleftrightarrow{ }^{\text {def }}(\exists y)(x=f(y))$. Then $(\omega,<, Q)$ is of $C B$ rank $=2$.
- Unary expansion: Only unary relations are added.
- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- Essentially unary expansion: Definitionally equivalent to some unary expansion.
- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- Essentially unary expansion: Definitionally equivalent to some unary expansion.

Question: Which expansions of $(\omega,<)$ are minimal?

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- Essentially unary expansion: Definitionally equivalent to some unary expansion.

Question: Which expansions of $(\omega,<)$ are minimal?
Theorem 1:
No proper expansion of $(\omega,<)$ is minimal.

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- Essentially unary expansion: Definitionally equivalent to some unary expansion.

Question: Which expansions of $(\omega,<)$ are minimal?
Theorem 1:
No proper expansion of $(\omega,<)$ is minimal.
This result can also be found in A. Pillay, C. Steinhorn Discrete O-Minimal Structures, Annals of Pure and Applied Logic 34 (1987)

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- Essentially unary expansion: Definitionally equivalent to some unary expansion.

Question: Which expansions of $(\omega,<)$ are minimal?
Theorem 1:
No proper expansion of $(\omega,<)$ is minimal.
This result can also be found in A. Pillay, C. Steinhorn Discrete O-Minimal Structures, Annals of Pure and Applied Logic 34 (1987) Theorem 1 can be extended in the following way:

- Unary expansion: Only unary relations are added.
- Definitionally equivalent structures: Same definable sets.
- Proper expansion: New definable sets added to structure.
- Essentially unary expansion: Definitionally equivalent to some unary expansion.

Question: Which expansions of $(\omega,<)$ are minimal?
Theorem 1:
No proper expansion of $(\omega,<)$ is minimal.
This result can also be found in A. Pillay, C. Steinhorn Discrete O-Minimal Structures, Annals of Pure and Applied Logic 34 (1987) Theorem 1 can be extended in the following way:

Assume L is a discrete ordered set. No proper expansion of $(\omega+L,<)$ is minimal.

Question: Which expansions of $(\omega,<)$ have properties $\mathrm{CB}(x=x)=1$ and $\operatorname{deg}(x=x)=k>1$?

Question: Which expansions of $(\omega,<)$ have properties $\mathrm{CB}(x=x)=1$ and $\operatorname{deg}(x=x)=k>1$?

Theorem 2:
Every expansion of $(\omega,<)$ with CB rank 1 and degree $k>1$ is essentially unary:

Question: Which expansions of $(\omega,<)$ have properties $\mathrm{CB}(x=x)=1$ and $\operatorname{deg}(x=x)=k>1$?

Theorem 2:

Every expansion of $(\omega,<)$ with CB rank 1 and degree $k>1$ is essentially unary: It is definitionally equivalent to ($\omega,<, P_{k}$) where $P_{k}(x)$ is $x \equiv 0(\bmod k)$.

Question: What happens if $\mathrm{CB}(x=x)>1$?

Question: What happens if $\mathrm{CB}(x=x)>1$?
 Answer: We don't know even for $\mathrm{CB}(x=x)=2$ and $\operatorname{deg}(x=x)=1$.

Question: What happens if $\mathrm{CB}(x=x)>1$?
Answer: We don't know even for $\mathrm{CB}(x=x)=2$ and $\operatorname{deg}(x=x)=1$.
Example: Let $P(x) \Longleftrightarrow{ }^{\text {def }}(\exists y)\left(x=2^{y}\right)$ and $\mathcal{M}=(\omega,<, P)$.

Question: What happens if $\mathrm{CB}(x=x)>1$?
Answer: We don't know even for $\mathrm{CB}(x=x)=2$ and $\operatorname{deg}(x=x)=1$.
Example: Let $P(x) \Longleftrightarrow{ }^{\text {def }}(\exists y)\left(x=2^{y}\right)$ and $\mathcal{M}=(\omega,<, P)$. $\mathrm{CB}(x=x)=2$.

Question: What happens if $\mathrm{CB}(x=x)>1$?
Answer: We don't know even for $\mathrm{CB}(x=x)=2$ and $\operatorname{deg}(x=x)=1$.
Example: Let $P(x) \Longleftrightarrow{ }^{\text {def }}(\exists y)\left(x=2^{y}\right)$ and $\mathcal{M}=(\omega,<, P)$.
$\mathrm{CB}(x=x)=2$.
If f is function increasing faster then any linear, we can make such example:

Question: What happens if $\mathrm{CB}(x=x)>1$?
Answer: We don't know even for $\mathrm{CB}(x=x)=2$ and $\operatorname{deg}(x=x)=1$.
Example: Let $P(x) \Longleftrightarrow{ }^{\text {def }}(\exists y)\left(x=2^{y}\right)$ and $\mathcal{M}=(\omega,<, P)$.
$\mathrm{CB}(x=x)=2$.
If f is function increasing faster then any linear, we can make such example: $Q(x) \Longleftrightarrow{ }^{\text {def }}(\exists y)(x=f(y))$. Then $(\omega,<, Q)$ is of CB rank $=2$.

Question: What happens if $\mathrm{CB}(x=x)>1$?

Answer: We don't know even for $\mathrm{CB}(x=x)=2$ and $\operatorname{deg}(x=x)=1$.
Example: Let $P(x) \Longleftrightarrow{ }^{\text {def }}(\exists y)\left(x=2^{y}\right)$ and $\mathcal{M}=(\omega,<, P)$.
$\mathrm{CB}(x=x)=2$.
If f is function increasing faster then any linear, we can make such example: $Q(x) \Longleftrightarrow{ }^{\text {def }}(\exists y)(x=f(y))$. Then $(\omega,<, Q)$ is of CB rank $=2$.

Conjecture

If $C B$ rank of expansion of $(\omega,<)$ is 2 , then it is essentially unary.

Technical details

Assume L is a discretely ordered set or empty set, $\mathcal{M}=(\omega+L,<, \ldots)$ is expasion of $(\omega+L,<, \ldots)$ and \mathbb{U} is an universe of $\operatorname{Th}(\mathcal{M})$.

Assume L is a discretely ordered set or empty set, $\mathcal{M}=(\omega+L,<, \ldots)$ is expasion of $(\omega+L,<, \ldots)$ and \mathbb{U} is an universe of $\operatorname{Th}(\mathcal{M})$.

Definition

$p \in S_{1}(E)$ is an ω-type if $|\varphi(\omega)| \geqslant \aleph_{0}$ for every $\varphi \in p$.

Assume L is a discretely ordered set or empty set, $\mathcal{M}=(\omega+L,<, \ldots)$ is expasion of $(\omega+L,<, \ldots)$ and \mathbb{U} is an universe of $\operatorname{Th}(\mathcal{M})$.

Definition

$p \in S_{1}(E)$ is an ω-type if $|\varphi(\omega)| \geqslant \aleph_{0}$ for every $\varphi \in p$.
$\left(e_{1}, e_{2}, \ldots\right)$ is an ω-sequence iff $\operatorname{tp}\left(e_{i+1} / e_{1}, e_{2}, \ldots, e_{i}\right)$ is an ω-type.

Dejan Ilić \quad Small expansions of $(\omega,<)$ and $\left(\omega+\omega^{*},<\right)$

Assume L is a discretely ordered set or empty set, $\mathcal{M}=(\omega+L,<, \ldots)$ is expasion of $(\omega+L,<, \ldots)$ and \mathbb{U} is an universe of $\operatorname{Th}(\mathcal{M})$.

Definition

$p \in S_{1}(E)$ is an ω-type if $|\varphi(\omega)| \geqslant \aleph_{0}$ for every $\varphi \in p$.
$\left(e_{1}, e_{2}, \ldots\right)$ is an ω-sequence iff $\operatorname{tp}\left(e_{i+1} / e_{1}, e_{2}, \ldots, e_{i}\right)$ is an ω-type.
If $|\omega \backslash \varphi(\omega)|<\aleph_{0}$ and $n_{\varphi}=\max (\omega \backslash \varphi(\omega))$, then:

Assume L is a discretely ordered set or empty set, $\mathcal{M}=(\omega+L,<, \ldots)$ is expasion of $(\omega+L,<, \ldots)$ and \mathbb{U} is an universe of $\operatorname{Th}(\mathcal{M})$.

Definition

$p \in S_{1}(E)$ is an ω-type if $|\varphi(\omega)| \geqslant \aleph_{0}$ for every $\varphi \in p$.
$\left(e_{1}, e_{2}, \ldots\right)$ is an ω-sequence iff $\operatorname{tp}\left(e_{i+1} / e_{1}, e_{2}, \ldots, e_{i}\right)$ is an ω-type.
If $|\omega \backslash \varphi(\omega)|<\aleph_{0}$ and $n_{\varphi}=\max (\omega \backslash \varphi(\omega))$, then:

- $\varphi^{\prime}(x)=\varphi(x) \vee x \leqslant n_{\varphi}$;

Assume L is a discretely ordered set or empty set, $\mathcal{M}=(\omega+L,<, \ldots)$ is expasion of $(\omega+L,<, \ldots)$ and \mathbb{U} is an universe of $\operatorname{Th}(\mathcal{M})$.

Definition

$p \in S_{1}(E)$ is an ω-type if $|\varphi(\omega)| \geqslant \aleph_{0}$ for every $\varphi \in p$.
$\left(e_{1}, e_{2}, \ldots\right)$ is an ω-sequence iff $\operatorname{tp}\left(e_{i+1} / e_{1}, e_{2}, \ldots, e_{i}\right)$ is an ω-type.
If $|\omega \backslash \varphi(\omega)|<\aleph_{0}$ and $n_{\varphi}=\max (\omega \backslash \varphi(\omega))$, then:

- $\varphi^{\prime}(x)=\varphi(x) \vee x \leqslant n_{\varphi}$;
- $\varphi^{*}(x) \Longleftrightarrow{ }^{\text {def }}[0, x] \subseteq \varphi^{\prime}(\mathbb{U})$.

Assume L is a discretely ordered set or empty set, $\mathcal{M}=(\omega+L,<, \ldots)$ is expasion of $(\omega+L,<, \ldots)$ and \mathbb{U} is an universe of $\operatorname{Th}(\mathcal{M})$.

Definition

$p \in S_{1}(E)$ is an ω-type if $|\varphi(\omega)| \geqslant \aleph_{0}$ for every $\varphi \in p$.
$\left(e_{1}, e_{2}, \ldots\right)$ is an ω-sequence iff $\operatorname{tp}\left(e_{i+1} / e_{1}, e_{2}, \ldots, e_{i}\right)$ is an ω-type.
If $|\omega \backslash \varphi(\omega)|<\aleph_{0}$ and $n_{\varphi}=\max (\omega \backslash \varphi(\omega))$, then:

- $\varphi^{\prime}(x)=\varphi(x) \vee x \leqslant n_{\varphi}$;
- $\varphi^{*}(x) \Longleftrightarrow{ }^{\text {def }}[0, x] \subseteq \varphi^{\prime}(\mathbb{U})$.

$$
p_{E}=\{n<x \mid n \in \omega\} \cup\left\{\varphi^{*}(x) \mid \varphi(x) \in \text { For }_{L_{E}},|\omega \backslash \varphi(\omega)|<\aleph_{0}\right\} .
$$

Remark:

- Complete type over E is ω-type iff it contains p_{E}.

Remark:

- Complete type over E is ω-type iff it contains p_{E}.
- If $(\omega+L,<, \ldots)$ is minimal, then p_{0} has unique completion and it is unique ω-type over \emptyset.

Remark:

- Complete type over E is ω-type iff it contains p_{E}.
- If $(\omega+L,<, \ldots)$ is minimal, then p_{0} has unique completion and it is unique ω-type over \emptyset.

Definition

$$
\operatorname{cl}(E)=\operatorname{convex}\left(p_{0}(\mathbb{U}) \cap \operatorname{dcl}(E)\right) .
$$

Remark:

- Complete type over E is ω-type iff it contains p_{E}.
- If $(\omega+L,<, \ldots)$ is minimal, then p_{0} has unique completion and it is unique ω-type over \emptyset.

Definition

$$
\operatorname{cl}(E)=\operatorname{convex}\left(p_{0}(\mathbb{U}) \cap \operatorname{dcl}(E)\right) .
$$

From now on, $(\omega+L,<, \ldots)$ is minimal!

Remark:

- Complete type over E is ω-type iff it contains p_{E}.
- If $(\omega+L,<, \ldots)$ is minimal, then p_{0} has unique completion and it is unique ω-type over \emptyset.

Definition

$$
\operatorname{cl}(E)=\operatorname{convex}\left(p_{0}(\mathbb{U}) \cap \operatorname{dcl}(E)\right)
$$

From now on, $(\omega+L,<, \ldots)$ is minimal!

Lemma1

If $a \models p_{0}$ and $D<a$, then D has a maximum definable by a formula using the same parameters as does formula defining D.

Lemma2

Let $a \models p_{0}$ and $\operatorname{cl}(E) \neq \emptyset$. The following are equivalent:

Lemma2

Let $a \models p_{0}$ and $\operatorname{cl}(E) \neq \emptyset$. The following are equivalent:

- $\operatorname{tp}(a / E)$ is an ω-type;

Lemma2

Let $a \models p_{0}$ and $\operatorname{cl}(E) \neq \emptyset$. The following are equivalent:

- $\operatorname{tp}(a / E)$ is an ω-type;
- $\omega<a<\operatorname{cl}(E)$.

Lemma2

Let $a \models p_{0}$ and $\operatorname{cl}(E) \neq \emptyset$. The following are equivalent:

- $\operatorname{tp}(a / E)$ is an ω-type;
- $\omega<a<\operatorname{cl}(E)$.

Corollary

If $\operatorname{cl}(E) \neq \emptyset$ is nonempty, then $p_{E}(\mathbb{U})=\{x \mid \omega<x<\operatorname{cl}(E)\}$.

Lemma2

Let $a \models p_{0}$ and $\operatorname{cl}(E) \neq \emptyset$. The following are equivalent:

- $\operatorname{tp}(a / E)$ is an ω-type;
- $\omega<a<\operatorname{cl}(E)$.

Corollary

If $\operatorname{cl}(E) \neq \emptyset$ is nonempty, then $p_{E}(\mathbb{U})=\{x \mid \omega<x<\operatorname{cl}(E)\}$.

Lemma3

If p_{E} has unique completion and f is E-definable unary function mapping $p_{E}(\mathbb{U})$ into itself, then:

Lemma2

Let $a \models p_{0}$ and $\operatorname{cl}(E) \neq \emptyset$. The following are equivalent:

- $\operatorname{tp}(a / E)$ is an ω-type;
- $\omega<a<\operatorname{cl}(E)$.

Corollary

If $\operatorname{cl}(E) \neq \emptyset$ is nonempty, then $p_{E}(\mathbb{U})=\{x \mid \omega<x<\operatorname{cl}(E)\}$.

Lemma3

If p_{E} has unique completion and f is E-definable unary function mapping $p_{E}(\mathbb{U})$ into itself, then:

- $f_{E}=f \upharpoonright_{p_{E}(\mathbb{U})}$ is increasing;

Lemma2

Let $a \models p_{0}$ and $\operatorname{cl}(E) \neq \emptyset$. The following are equivalent:

- $\operatorname{tp}(a / E)$ is an ω-type;
- $\omega<a<\operatorname{cl}(E)$.

Corollary

If $\operatorname{cl}(E) \neq \emptyset$ is nonempty, then $p_{E}(\mathbb{U})=\{x \mid \omega<x<\operatorname{cl}(E)\}$.

Lemma3

If p_{E} has unique completion and f is E-definable unary function mapping $p_{E}(\mathbb{U})$ into itself, then:

- $f_{E}=f \upharpoonright_{p_{E}(\mathbb{U})}$ is increasing;
- $f_{E}(x)=x \pm m$ for some m.

Lemma4

If p_{E} has unique completion and $d \models p_{E}$, then the following are equivalent:

Lemma4

If p_{E} has unique completion and $d \models p_{E}$, then the following are equivalent:

- $\operatorname{tp}(a / d E)$ is ω-type;

Dejan Ilić \quad Small expansions of $(\omega,<)$ and $\left(\omega+\omega^{*},<\right)$

Lemma4

If p_{E} has unique completion and $d \models p_{E}$, then the following are equivalent:

- $\operatorname{tp}(a / d E)$ is ω-type;
- $\operatorname{tp}(a / d)$ is ω-type.

Lemma4

If p_{E} has unique completion and $d \models p_{E}$, then the following are equivalent:

- $\operatorname{tp}(a / d E)$ is ω-type;
- $\operatorname{tp}(a / d)$ is ω-type.

Lemma5

- If p_{E} has unique completion and $d \models p_{E}$, then $p_{d E}$ has unique completion.

Lemma4

If p_{E} has unique completion and $d \models p_{E}$, then the following are equivalent:

- $\operatorname{tp}(a / d E)$ is ω-type;
- $\operatorname{tp}(a / d)$ is ω-type.

Lemma5

- If p_{E} has unique completion and $d \models p_{E}$, then $p_{d E}$ has unique completion.
- ω-type over ω-sequence is unique.

Theorem 1

No proper expansion of $(\omega+L,<)$ is minimal.

Now assume $\mathrm{CB}(\omega)=\mathrm{CB}(x=x)=1$ and $\operatorname{deg}(\omega)=\operatorname{deg}(x=x)=k>1$.

Now assume $\mathrm{CB}(\omega)=\mathrm{CB}(x=x)=1$ and $\operatorname{deg}(\omega)=\operatorname{deg}(x=x)=k>1$.

Lemma6

$P_{k}(x)$ such that $P_{k}(\omega)=\{x \mid x \equiv 0(\bmod k\}$ is definable.

Now assume $\mathrm{CB}(\omega)=\mathrm{CB}(x=x)=1$ and $\operatorname{deg}(\omega)=\operatorname{deg}(x=x)=k>1$.

Lemma6

$P_{k}(x)$ such that $P_{k}(\omega)=\{x \mid x \equiv 0(\bmod k\}$ is definable.

Theorem 2

Assume \mathcal{M} is expansion of $(\omega+L,<)$, such that $\mathrm{CB}(\omega)=\mathrm{CB}(x=x)=1$ and $\operatorname{deg}(\omega)=\operatorname{deg}(x=x)=k>1$. Then it is definitionally equivalent to $\left(\omega+L,<, P_{k}\right)$.

