Monoid varieties with continuum many subvarieties

Marcel Jackson (La Trobe University, Melbourne) Joint work with E.W.H. Lee (Nova Southeastern University, Florida)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let W be a set of possibly empty words in an alphabet A not including 0.

The set $W^{\leq} \cup \{0\}$ becomes a monoid denoted by M(W), with

$$u \cdot v := egin{cases} uv & ext{if } uv \in W^\leq \ 0 & ext{otherwise} \end{cases}$$

Let S(W) denote nonempty subword version (not a monoid).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Let W be a set of possibly empty words in an alphabet A not including 0.

The set $W^{\leq} \cup \{0\}$ becomes a monoid denoted by M(W), with

$$u \cdot v := egin{cases} uv & ext{if } uv \in W^\leq \ 0 & ext{otherwise} \end{cases}$$

Let S(W) denote nonempty subword version (not a monoid).

Example: M(xyx) (we'll omit brackets {, }) elements: 1, x, y, xy, yz, xyx, 0. multiplication: $xy \cdot x = xyx$ but $xy \cdot y = 0$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

isoterms

A word w is an isoterm for a variety V if

$$m{V}\modelsm{w}pproxm{u}$$
 implies $m{w}=m{u}$

A word w is an isoterm for a variety V if

 $V \models w \approx u$ implies w = u

Folklore fact

A word *w* is an isoterm for *semigroup* variety *V* if and only if $S(w) \in V$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A word w is an isoterm for a variety V if

 $V \models w \approx u$ implies w = u

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Folklore fact

A word *w* is an isoterm for *monoid* variety *V* if and only if $M(w) \in V$.

Aperiodicity and central idempotents

Straubing (1982)

The pseudovariety generated by the M(W) for finite W is the class of finite aperiodic semigroups with central idempotents.

・ロン ・四 と ・ ヨ と ・ ヨ と

Aperiodicity and central idempotents

Straubing (1982)

The pseudovariety generated by the M(W) for finite W is the class of finite aperiodic semigroups with central idempotents. Expect equations like

$$x^3 \approx x^4, xt_1xt_2x \approx x^3t_1t_2 \approx t_1t_2x^3.$$

A major source of bad behaviour!

・ コット (雪) (小田) (コット 日)

M(*xyxy*) has no finite identity basis (O.Sapir, 2000)—"not finitely based" (NFB). Characterised for words in {*x*, *y*}*.

- *M*(*xyxy*) has no finite identity basis (O.Sapir, 2000)—"not finitely based" (NFB). Characterised for words in {*x*, *y*}*.
- for any fixed finite nonsingleton alphabet A, the NFB property holds for almost all words w ∈ A* (J, 2001).

- *M*(*xyxy*) has no finite identity basis (O.Sapir, 2000)—"not finitely based" (NFB). Characterised for words in {*x*, *y*}*.
- for any fixed finite nonsingleton alphabet A, the NFB property holds for almost all words w ∈ A* (J, 2001).
- For any word *w* there are sequences of words
 w ≤ *w*₁ ≤ *w*₂ ≤ ... such that *M*(*w*₁), *M*(*w*₂), ... are alternately FB and NFB (O.Sapir and J, 2000).

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- *M*(*xyxy*) has no finite identity basis (O.Sapir, 2000)—"not finitely based" (NFB). Characterised for words in {*x*, *y*}*.
- for any fixed finite nonsingleton alphabet A, the NFB property holds for almost all words w ∈ A* (J, 2001).
- For any word *w* there are sequences of words
 w ≤ *w*₁ ≤ *w*₂ ≤ ... such that *M*(*w*₁), *M*(*w*₂), ... are alternately FB and NFB (O.Sapir and J, 2000).
- *M*(*xyxy*) has an infinite irredundant *semigroup* identity basis (J, 2005).

- *M*(*xyxy*) has no finite identity basis (O.Sapir, 2000)—"not finitely based" (NFB). Characterised for words in {*x*, *y*}*.
- for any fixed finite nonsingleton alphabet A, the NFB property holds for almost all words w ∈ A* (J, 2001).
- For any word *w* there are sequences of words
 w ≤ *w*₁ ≤ *w*₂ ≤ ... such that *M*(*w*₁), *M*(*w*₂), ... are alternately FB and NFB (O.Sapir and J, 2000).
- *M*(*xyxy*) has an infinite irredundant *semigroup* identity basis (J, 2005).
- The *semigroup* variety of *M*(*xyx*) has continuum many semigroup subvarieties (J, 2000).

The semigroup subvariety lattice of $\mathbb{V}_{s}(M(xyx))$...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

... embeds the full powerset lattice $\wp(\mathbb{N})$.

The semigroup subvariety lattice of $\mathbb{V}_{s}(M(xyx))...$

... embeds the full powerset lattice $\wp(\mathbb{N})$. So $\mathcal{L}(\mathbb{V}_s(M(xyx)))$

- is of the cardinality of the continuum *c*,
- order embeds the usual order on \mathbb{R} ,
- has an antichain of size c,
- contains c many nonfinitely generated subvarieties,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• contains *c* many NFB subvarieties.

• A monoid of index 3 or more generates a *semigroup* variety with uncountably many subvarieties if and only if the variety contains *M*(*xyx*).

・ロン ・聞 と ・ ヨ と ・ ヨ と

- A monoid of index 3 or more generates a *semigroup* variety with uncountably many subvarieties if and only if the variety contains *M*(*xyx*).
- A finite inherently nonfinitely based semigroup generates a variety with uncountably many subvarieties.

イロト 不良 とくほ とくほう 一日

- A monoid of index 3 or more generates a *semigroup* variety with uncountably many subvarieties if and only if the variety contains *M*(*xyx*).
- A finite inherently nonfinitely based semigroup generates a variety with uncountably many subvarieties.
- A finite aperiodic semigroup with central idempotents generates a hereditarily finitely based semigroup variety if and only if it does not contain *M*(*xyx*).

Wenting Zhang and Yanfeng Lou 2008

There is a finitely generated monoid variety with continuum many subvarieties that does not have *xyx* as an isoterm.

- A monoid of index 3 or more generates a *semigroup* variety with uncountably many subvarieties if and only if the variety contains *M*(*xyx*).
- A finite inherently nonfinitely based semigroup generates a variety with uncountably many subvarieties.
- A finite aperiodic semigroup with central idempotents generates a hereditarily finitely based semigroup variety if and only if it does not contain *M*(*xyx*).

But the *monoid* subvariety lattice of $\mathbb{V}_{s}(M(xyx))$...

consists of itself along with just $\mathbb{V}_m(M(xy))$, $\mathbb{V}_m(M(x))$, the variety of semilattice monoids and the trivial variety.

Moving from $\{\cdot\}$ to $\{\cdot, 1\}$.

Stays the same

The finite basis property.

Moving from $\{\cdot\}$ to $\{\cdot, 1\}$.

Stays the same

The finite basis property.

Brutally destroyed

having nonfinitely generated subvarieties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- having NFB subvarieties
- having large numbers of subvarieties
- irredundant axiomatisability

In the monoid signature...

J, 2004

 $\mathbb{V}_m(M(xsxyty))$ and $\mathbb{V}_m(M(xysxty, xsytxy))$ are limit varieties, both with finite subvariety lattices.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In the monoid signature...

J, 2004

 $\mathbb{V}_m(M(xsxyty))$ and $\mathbb{V}_m(M(xysxty, xsytxy))$ are limit varieties, both with finite subvariety lattices.

E.W.H.Lee (2009)

If *M* is an aperiodic monoid with central idempotents then $\mathbb{V}_m(M)$ has a NFB monoid subvariety if and only only if either *xsxyty* is an isoterm or both *xysxty*, *xsytxy* are isoterms.

Wenting Zhang (2013) recently showed the existence of a third limit variety of aperiodic monoids.

Lunch-time chat, NSAC 09

How can we construct a finite aperiodic monoid with central idempotents whose variety contains a nonfinitely generated monoid subvariety?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lunch-time chat, NSAC 09

How can we construct a finite aperiodic monoid with central idempotents whose variety contains a nonfinitely generated monoid subvariety?

Crucial pattern

 $x_0 ? x_1 x_0 x_2 x_1 x_3 x_2 x_4 x_3 x_5 x_4 \dots x_n x_{n-1} ? x_n$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lunch-time chat, NSAC 09

How can we construct a finite aperiodic monoid with central idempotents whose variety contains a nonfinitely generated monoid subvariety?

Crucial pattern

 $x_0 ? x_1 x_0 x_2 x_1 x_3 x_2 x_4 x_3 x_5 x_4 \dots x_n x_{n-1} ? x_n$

Example

 $x_0 X y x_1 x_0 x_2 x_1 x_3 x_2 x_4 x_3 x_5 x_4 \dots x_n x_{n-1} X y x_n$

 $\approx x_0 \ yx \ x_1x_0 \ x_2x_1 \ x_3x_2 \ x_4x_3 \ x_5x_4 \dots \ x_nx_{n-1} \ yx \ x_n$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The monoid subvariety lattice of $\mathbb{V}_m(M(xyxy))$ embeds $\wp(\mathbb{N})$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The monoid subvariety lattice of $\mathbb{V}_m(M(xyxy))$ embeds $\wp(\mathbb{N})$.

Example

Let *G* be a finite group failing the law $xyxy \approx yxyx$. Then

- $\mathbb{V}_m(G)$ and $\mathbb{V}_m(M(xx))$ are Cross varieties.
- ② V_m(G) ∨ V_m(M(xx)) contains M(xyxy), so the monoid subvariety lattice embeds ℘(ℕ).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The monoid subvariety lattice of $\mathbb{V}_m(M(xyxy))$ embeds $\wp(\mathbb{N})$.

Example

Let *G* be a finite group failing the law $xyxy \approx yxyx$. Then

- $\mathbb{V}_m(G)$ and $\mathbb{V}_m(M(xx))$ are Cross varieties.

Theorem

Let *M* be a finite inherently nonfinitely based monoid. The monoid subvariety lattice of $\mathbb{V}_m(M)$ lattice embeds $\wp(\mathbb{N})$.

Uses Mark Sapir's Zimin word classification of INFB.

 $X_1 X_2 X_1 X_3 X_1 X_2 X_1 X_4 X_1 X_2 X_1 X_3 X_1 X_2 X_1 \dots$

The follow identities are an irredundant system defining a finitely generated monoid variety:

$$xt_1xt_2x \approx x^3t_1t_2 \approx t_1t_2x^3, x^3 \approx x^4$$

with (for each n > 0)

 $x_0 \ z_0 \underline{xy} z_1 \ x_1 x_0 \ x_2 x_1 \ x_3 x_2 \ x_4 x_3 \ x_5 x_4 \dots \ x_n x_{n-1} \ z_0 \underline{xy} z_1 \ x_n$ $\approx x_0 \ z_0 \underline{yx} z_1 \ x_1 x_0 \ x_2 x_1 \ x_3 x_2 \ x_4 x_3 \ x_5 x_4 \dots \ x_n x_{n-1} \ z_0 \underline{yx} z_1 \ x_n$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The follow identities are an irredundant system defining a finitely generated monoid variety:

$$xt_1xt_2x \approx x^3t_1t_2 \approx t_1t_2x^3, x^3 \approx x^4$$

with (for each n > 0)

$$x_0 \ z_0 \underline{xy} z_1 \ x_1 x_0 \ x_2 x_1 \ x_3 x_2 \ x_4 x_3 \ x_5 x_4 \dots \ x_n x_{n-1} \ z_0 \underline{xy} z_1 \ x_n$$

$$\approx x_0 \ z_0 \underline{yx} z_1 \ x_1 x_0 \ x_2 x_1 \ x_3 x_2 \ x_4 x_3 \ x_5 x_4 \dots \ x_n x_{n-1} \ z_0 \underline{yx} z_1 \ x_n$$

The variety can be generated by M(W) for a set W containing about 80 words:

xyyx, xxyy, xtyxy, xytxy, xyxty, xyzyxz, zxyzyx, xyzxzy,...

..., xyabcadbecdexy.