Preliminaries	Parameters N, M and M'	Conjecture	References
000	0000000	0	0
0	00000000	00	
0	0000000		

Reaching the minimum ideal in a finite semigroup

Nasim Karimi

University of Porto, Portugal

June 7, 2013

Reaching the minimum ideal in a finite semigroup

University of Porto, Portugal

Preliminaries	Parameters N, M and M'	Conjecture	References
000	0000000	000	0
0	00000000		

Overview Preliminaries

Parameter N(S, A)Parameters N, M and M'Questions

Parameters N, M and M'

How do these parameters relate to the Černý conjecture? How far apart can N, M and M' be? How do these parameters behave with respect to decompositions?

Conjecture

Directed diameter of a finite group

Directed diameter of a direct power of a finite group

References

References

University of Porto, Portugal

Reaching the minimum ideal in a finite semigroup

Preliminaries • 00 •	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture O OO	References O
Parameter $N(S, A)$			

Notation

Let S be a finite semigroup and $A \subseteq S$ be a generating set of S. For every $s \in S$, denote by $\ell_A(s)$ the minimum length of a sequence which represents s in terms of generators in A.

Preliminaries • 0 0 •	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture O OO	References O
Parameter $N(S, A)$			

Notation

Let S be a finite semigroup and $A \subseteq S$ be a generating set of S. For every $s \in S$, denote by $\ell_A(s)$ the minimum length of a sequence which represents s in terms of generators in A.

Definition

Let S be a finite semigroup with a generating set $A \subseteq S$ and the minimum ideal I. Define

 $N(S,A) = \min\{\ell_A(s) : s \in I\}.$

Reaching the minimum ideal in a finite semigroup

Preliminaries ○●○ ○	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 000000000 000000000	Conjecture O OO	References O
Parameter $N(S, A)$			

If G is a finite group, then N(G, A) = 1, for every generating set A.

Reaching the minimum ideal in a finite semigroup

University of Porto, Portugal

Preliminaries ○ ○ ○	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture O OO	References O
Parameter $N(S, A)$			

If G is a finite group, then N(G, A) = 1, for every generating set A.

> a b aa ab ba *bb

Figure: Group N(G, A) = 1

Preliminaries O O O O O	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture O OO	References O
Parameter N(S, A)			

If G is a finite group, then N(G, A) = 1, for every generating set A.

► If
$$C_{i,n} = \langle a : a^i = a^{i+n} \rangle$$
,
then $N(C_{i,n}, \{a\}) = i$.

a b aa ab ba *bb

Figure: Group N(G, A) = 1

Preliminaries ○●○ ○	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000 00000000	Conjecture 0 00	References O
Parameter $N(S, A)$			

If G is a finite group, then N(G, A) = 1, for every generating set A.

а

b aa ab

ba

Figure: cyclic semigroup $N(C_{4,6}, \{a\}) = 4$

a

aa

aaa

aaaa

aaaaa

*aaaaaa aaaaaaa

aaaaaaa

Preliminaries ○● ○	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 0000000 00000000 00000000 00000000	Conjecture 0 00	References O
Parameter $N(S, A)$			

Preliminaries ○○○ ○	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture 0 00	References O
Parameters N, M and M'			

Reaching the minimum ideal in a finite semigroup

University of Porto, Portugal

Preliminaries ○○○ ○	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 000000000 000000000	Conjecture O OO	References O
Parameters N, M and M	/		

Definition

•
$$N(S) = \min\{N(S, A) : S = \langle A \rangle, |A| = \operatorname{rank}(S)\}.$$

Reaching the minimum ideal in a finite semigroup

Preliminaries ○○○ ○	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000 00000000	Conjecture O OO	References O
Parameters N, M and M	,		

Definition

$$\blacktriangleright N(S) = \min\{N(S,A) : S = \langle A \rangle, |A| = \operatorname{rank}(S)\}.$$

•
$$M(S) = \max\{N(S, A) : S = \langle A \rangle, |A| = \operatorname{rank}(S)\}.$$

- 4 同 ト 4 目 ト 4 目 ト

Preliminaries ○○○ ○	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 000000000 000000000	Conjecture O OO	References O
Parameters N, M and M'			

Definition

- $\blacktriangleright N(S) = \min\{N(S,A) : S = \langle A \rangle, |A| = \operatorname{rank}(S)\}.$
- $M(S) = \max\{N(S, A) : S = \langle A \rangle, |A| = \operatorname{rank}(S)\}.$

•
$$M'(S) = \max\{N(S,A) : S = \langle A \rangle\}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Reaching the minimum ideal in a finite semigroup

Preliminaries ○○○ ○	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture 0 00	References O
Parameters N, M and N	1'		

Definition

$$\blacktriangleright N(S) = \min\{N(S,A) : S = \langle A \rangle, |A| = \operatorname{rank}(S)\}.$$

•
$$M(S) = \max\{N(S, A) : S = \langle A \rangle, |A| = \operatorname{rank}(S)\}.$$

•
$$M'(S) = \max\{N(S,A) : S = \langle A \rangle\}.$$

Remark

• min{
$$N(S, A) : S = \langle A \rangle$$
} = 1.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Preliminaries ○○○ ○	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture O OO	References O
Parameters N, M and M'			

Definition

$$\blacktriangleright N(S) = \min\{N(S,A) : S = \langle A \rangle, |A| = \operatorname{rank}(S)\}.$$

•
$$M(S) = \max\{N(S, A) : S = \langle A \rangle, |A| = \operatorname{rank}(S)\}.$$

•
$$M'(S) = \max\{N(S,A) : S = \langle A \rangle\}.$$

Remark

• min{
$$N(S, A) : S = \langle A \rangle$$
} = 1.

• If
$$A \subseteq B$$
, then $N(S, B) \leq N(S, A)$. Hence

• $M'(S) = \max\{N(S, A) : A \text{ is a minimal generating set}\}.$

- 4 周 ト 4 戸 ト 4 戸 ト

Preliminaries ○○○ ●	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000 00000000	Conjecture O OO	References O
Questions			

Preliminaries ○○○ ●	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture O OO	References O
Questions			

- How do these parameters relate to the Černý conjecture?
- How far apart can N(S), M(S) and M'(S) be?

4 E 5 4

Preliminaries ○○○ ●	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture 0 00	References O
Questions			

- How do these parameters relate to the Černý conjecture?
- How far apart can N(S), M(S) and M'(S) be?
- How do these parameters behave with respect to decompositions (direct product and semidirect product)?

Preliminaries ○○○ ●	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000 00000000	Conjecture 0 00	References O
Questions			

- How do these parameters relate to the Černý conjecture?
- How far apart can N(S), M(S) and M'(S) be?
- How do these parameters behave with respect to decompositions (direct product and semidirect product)?

• Is it true that
$$M(S) = M'(S)$$
?

Preliminaries ○○○ ●	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture 0 00	References O
Questions			

- How do these parameters relate to the Černý conjecture?
- How far apart can N(S), M(S) and M'(S) be?
- How do these parameters behave with respect to decompositions (direct product and semidirect product)?
- Is it true that M(S) = M'(S)?
- How do these parameters behave with respect to division?

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> ●○○○○○○○ ○○○○○○○○○ ○○○○○○○○	Conjecture O OO	References O
How do these parameters	relate to the Černý conjecture?		

Definition

A deterministic complete automaton $\mathscr{A} = (Q, A)$ is called synchronizing if there is a word $w \in A^*$ such that |Qw| = 1, that is w acts as a constant map in Q. We call such a word w a reset word.

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	•0000000 00000000 00000000	0	0
	· · · · · · · · · · · · · · · · · · ·		

Definition

A deterministic complete automaton $\mathscr{A} = (Q, A)$ is called synchronizing if there is a word $w \in A^*$ such that |Qw| = 1, that is w acts as a constant map in Q. We call such a word w a reset word.

Notation

Denote by $\ell_{srw}(\mathscr{A})$ the length of the shortest reset words of the synchronizing automaton $\mathscr{A} = (Q, A)$.

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	0000000 00000000 0000000	000	0

Example

$$Q = \{0, 1, 2, 3\}, A = \{a, b\}$$

$$0 \xrightarrow{ba^{3}ba^{3}b} 0$$

$$1 \xrightarrow{ba^{3}ba^{3}b} 0$$

$$2 \xrightarrow{ba^{3}ba^{3}b} 0$$

$$3 \xrightarrow{ba^{3}ba^{3}b} 0$$

The shortest reset word is ba^3ba^3b , then $\ell_{srw}(\mathscr{A}) = 9$.

Figure: Synchronizing automaton $\mathscr{A} = (Q, A)$

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> ○○●○○○○○ ○○○○○○○○ ○○○○○○○○	Conjecture O OO	References O
How do these parameters	relate to the Černý conjecture?		

Černý's conjecture

Notation For every $n \in N$ denote,

$$c(n) = \max\{\ell_{srw}(\mathscr{A}) \mid \mathscr{A} = (Q, A) \text{ is synchronizing}, |Q| = n\}.$$

Reaching the minimum ideal in a finite semigroup

0

Černý's conjecture

Notation For every $n \in N$ denote,

$$c(n) = \max\{\ell_{srw}(\mathscr{A}) \mid \mathscr{A} = (Q, A) \text{ is synchronizing}, |Q| = n\}.$$

Conjecture Černý's conjecture states that $c(n) = (n - 1)^2$.

Reaching the minimum ideal in a finite semigroup

University of Porto, Portugal

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	0000000 00000000 0000000	0 00	0

Let $\mathscr{A} = (Q, A)$ be a synchronizing automaton. If S is the transition semigroup of \mathscr{A} , then

 $N(S, A') = \ell_{srw}(\mathscr{A}),$

where $A' = \{ \rho_a : q \mapsto qa \mid a \in A \}.$

000 0000000 0 0 0 00000000 00 00	Preliminaries	Parameters N, M and M'	Conjecture	References
0 0000000	000 0 0	0000000 00000000 0000000	0	0

Let $\mathscr{A} = (Q, A)$ be a synchronizing automaton. If S is the transition semigroup of \mathscr{A} , then

$$N(S,A') = \ell_{srw}(\mathscr{A}),$$

where $\mathcal{A}' = \{
ho_{a}: q \mapsto qa \mid a \in A \}.$
Example

$$Q = \{0, 1, 2, 3\}, A = \{a, b\}$$

$$\rho_a = (1, 2, 3, 0), \rho_b = (0, 1, 2, 0).$$

Figure: Automaton $\mathscr{A} = (Q, A)$

Reaching the minimum ideal in a finite semigroup

Preliminaries	Parameters N, M and M'	Conjecture	References
000	00000000	00	0
0	0000000		

The transition semigroup S is the semigroup generated by A', where $A' = \{\rho_a, \rho_b\}$.

Figure: The transition Semigroup of $\mathscr{A} = (Q, A)$

< A > <

Preliminaries	Parameters N, M and M'	Conjecture	References
000	00000000	0	0
0	00000000	00	
0	0000000		
	<u>×</u> <u>-</u>		

Figure: The minimum ideal of S

N(S,A')=9

Reaching the minimum ideal in a finite semigroup

University of Porto, Portugal

| 4 同 1 4 三 1 4 三 1

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> ○○○○○○○○ ○○○○○○○○ ○○○○○○○○	Conjecture O OO	References O
How do these parameters	relate to the Černý conjecture?		

Černý-Pin conjecture [Rys92]

Let $\mathscr{A} = (Q, A)_r$ be a deterministic complete automaton, in which r is the minimal rank of a transformation in the transition semigroup of \mathscr{A} . Denote by $\ell_{sw}(\mathscr{A})$ the minimum length of the words with rank r.

Preliminaries 000 0 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> ○○○○○○○○ ○○○○○○○○ ○○○○○○○○	Conjecture 0 00	References O
How do these parameters	relate to the Černý conjecture?		

Černý-Pin conjecture [Rys92]

Let $\mathscr{A} = (Q, A)_r$ be a deterministic complete automaton, in which r is the minimal rank of a transformation in the transition semigroup of \mathscr{A} . Denote by $\ell_{sw}(\mathscr{A})$ the minimum length of the words with rank r.

Remark

The automaton $\mathscr{A} = (Q, A)_1$ is synchronizing.

・ 同 ト ・ ヨ ト ・ ヨ ト

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 000000€0 00000000 00000000	Conjecture 0 00	References O		
	. ¥				
How do these parameters relate to the Cerný conjecture?					

Černý-Pin conjecture [Rys92]

Let $\mathscr{A} = (Q, A)_r$ be a deterministic complete automaton, in which r is the minimal rank of a transformation in the transition semigroup of \mathscr{A} . Denote by $\ell_{sw}(\mathscr{A})$ the minimum length of the words with rank r.

Remark

The automaton $\mathscr{A} = (Q, A)_1$ is synchronizing.

Definition

For every $n \in N$ define,

$$cp(n) = \max\{\ell_{sw}(\mathscr{A}) \mid \mathscr{A} = (Q, A)_r, |Q| = n\}.$$

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	0000000 00000000 0000000	0 00	0
How do these parameters	s relate to the Černý conjecture?		

Conjecture Černý-Pin conjecture states that $cp(n) = (n - r)^2$.

Reaching the minimum ideal in a finite semigroup

University of Porto, Portugal

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> ○○○○○○○○ ○○○○○○○○○ ○○○○○○○○	Conjecture O OO	References O
How do these parameters	relate to the Černý conjecture?		

Conjecture Černý-Pin conjecture states that $cp(n) = (n - r)^2$. Let $\mathscr{A} = (Q, A)_r$ be a deterministic complete automaton. If S is the transition semigroup of \mathscr{A} , then

$$N(S,A') = \ell_{sw}(\mathscr{A}),$$

where $A' = \{ \rho_a : q \mapsto qa \mid a \in A \}.$

- 4 周 ト 4 戸 ト 4 戸 ト

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> ○○○○○○○ ○○○○○○○○ ○○○○○○○○	Conjecture 0 00	References O
How do these parameters relat	te to the Černý conjecture?		

Conjecture Černý-Pin conjecture states that $cp(n) = (n - r)^2$. Let $\mathscr{A} = (Q, A)_r$ be a deterministic complete automaton. If S is the transition semigroup of \mathscr{A} , then

$$N(S,A') = \ell_{sw}(\mathscr{A}),$$

where $A' = \{ \rho_a : q \mapsto qa \mid a \in A \}.$

Conclusion

To calculate the shortest length of small rank words (reset words) in a deterministic complete automaton (synchronizing automaton) is equivalent to calculating the parameter N(S, A) for a finite transformation semigroup S.

ロト ・ 同ト ・ ヨト ・ ヨト

Preliminaries	Parameters N, M and M'	Conjecture	References
000	0000000	0	0
ŏ	0000000		
How far apart can N. M	and M' be?		

• How far apart can N, M and M' be?

We present some results relating to the following semigroups

- Certain families of transformation semigroups
- Semilattices
- Completely regular semigroups
- 0-simple semigroups
| Preliminaries | Parameters N, M and M' | Conjecture | References |
|---------------|----------------------------|------------|------------|
| 000 | 0000000
00000000 | 000 | 0 |
| 0 | 0000000 | | |
| | , | | |

How far apart can N, M and M' be?

Example 1

$$a = (2, 3, 1), \ b = (2, 1, 3),$$

c = (1, 2, 1)

 $T_3 = \langle \{a, b, c\} \rangle$

 $N(T_3, \{a, b, c\}) = 4$

Figure: \mathscr{D} -classes in T_3

Reaching the minimum ideal in a finite semigroup

University of Porto, Portugal

-

A (1) > A (2) > A

Preliminaries	Parameters N, M and M'	Conjecture	References	
000 0 0	0000000 00000000 0000000	0 00	0	
How far apart can N, M and M' be?				

Example 2

$$a = (2, 3, 1), \ b = (2, 1, 3),$$

c = (1, 1, 2)

 $T_3 = \langle \{a, b, c\} \rangle$

 $N(T_3, \{a, b, c\}) = 2$

Figure: \mathscr{D} -classes in T_3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Preliminaries 000 0 0	Parameters N , M and M' 000000000000000000000000000000000000	Conjecture 0 00	References O
How far apart can N. M and I	M' be?		

Fact

$$N(T_3) = 2, M(T_3) = 4$$

More generally:

$$N(T_n) = n - 1, M(T_n) = ?$$

Even more generally:

Proposition

The parameter N(S) is equal to n, if S is one of the transformation semigroups $\mathcal{PT}_n, \mathcal{I}_n, \mathcal{PO}_n, \mathcal{POI}_n$ or \mathcal{POPI}_n ; and it is equal to n - 1, if S is one of the transformation semigroups $\mathcal{T}_n, \mathcal{O}_n$ or $Sing_n$.

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> ○○○○○○○ ○○○○○○○○○ ○○○○○○○○○	Conjecture o oo	References O
How far apart can N M and	M' be?		

Proof sketch

The half part of proof is an immediate consequence of the following lemma; and the other part is straightforward by using the results which have been proved in [GH87, GH92, How78, Fer00, Fer01].

Lemma

If $S \leq \mathcal{PT}_n$ is a finite transformation semigroup with a generating set $A \subseteq \{f \in S : \operatorname{rank}(f) \geq n-1\}$, then

$$N(S) \geq n-r$$
,

where r is the rank of elements in the minimum ideal of S.

Preliminaries 000	Parameters N, M and M'	Conjecture O	References O	
0	00000000 0000000	00		
How far apart can N , M and M' be?				

Semilattices

Definition

Let S be a finite semilattice. An element $s \in S$ is irreducible if $s = a \land b$ $(a, b \in S)$ implies a = s or b = s. Denote by I(S) the set of all irreducible elements of S.

Lemma

The set I(S) is the unique generating set of S with minimum size. Furthermore, every generating set of S contains I(S).

Corollary

If S is a finite semilattice, then

$$N(S) = M(S) = M'(S).$$

Preliminaries	Parameters N, M and M'	Conjecture	References	
000	0000000	0	0	
0	000000000	00		
0	0000000			
How far apart can N M and M' be?				

Proposition

The inequality $M'(S) \le |I(S)|$ holds for every finite semilattice S. The equality holds when S is the free semilattice generated by I(S).

・ 同 ト ・ 三 ト ・

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> ○○○○○○○ ○○○○○○○●○ ○○○○○○○	Conjecture 0 00	References O		
How far apart can N, M and M' be?					

Fact

Let S be a completely regular semigroup. Green's relation \mathscr{D} is a congruence in S and S/\mathscr{D} is a semilattice of \mathscr{D} -classes which are simple semigroups [Hig92].

Notation

Denote the semilattice S/\mathcal{D} by S'. If a \mathcal{D} -class of S is an irreducible element of S', then we call it an irreducible \mathcal{D} -class of S. Denote by IRD(S) the set of all irreducible \mathcal{D} -classes of S.

Lemma

Let S be a completely regular semigroup,

 $M'(S) \leq |\operatorname{IRD}(S)|.$

Preliminaries	Parameters N, M and M'	Conjecture	References		
000 0 0	0000000 0000000 0000000	0	0		
How far apart can N , M and M' be?					

0-Simple semigroups

Lemma

Let S be a finite regular 0-simple semigroup. Let $S = M^0[G, I, L, P]$ be represented as a Rees matrix semigroup over a group G, where P is a regular matrix with entries from $G \cup \{0\}$.

▶ If P does not contain any entry equal to 0, then

N(S) = M(S) = M'(S) = 1.

If P does contain at least one 0 entry, then

$$N(S) = M(S) = M'(S) = 2.$$

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	0000000 00000000 0000000	0 00	0

How do these parameters behave with respect to decompositions?

We present an upper bound for N(S) provided that S is a wreath product of two transformation semigroups.

3 N 4

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	0000000 00000000 0000000	0 00	0

Wreath product

Definition

Define $(X, S) \wr (Y, T) = (X \times Y, S^Y \rtimes T)$, where the action of the semidirect product is given by

$$T imes S^Y o S^Y (t, f) \mapsto {}^tf,$$

$${}^t f: Y \to S \\ y \mapsto y t f$$

and the action of $S^Y \rtimes T$ on the set $X \times Y$ is described by

$$(x,y)(f,t) = (x(yf),yt)$$

Preliminaries	Parameters N, M and M'	Conjecture	References
000	0000000	000	0
0	000000		

Diameter

Definition

The directed diameter of a finite group G with respect to a set of generators A denoted by $d^+(G, A)$, is the maximum over $g \in G$ of the length of the shortest words in A representing g.

Preliminaries 000 0	Parameters N , M and M'	Conjecture o oo	References O
How do these parameters behav	with respect to decompositions?		

Special cases

Given two transformation monoids (X, S) and (Y, T).

▶ If *T* has trivial group of units, then

$$N(S^{Y} \rtimes T) \leq \max\{|Y|, d^{+}(U_{S}^{Y}, A')\}N(S) + N(T),$$

for every generating set A' of U_S^Y with minimum size.

Preliminaries 000 0 0	Parameters N , M and M'	Conjecture 0 00	References O
How do these parameters	behave with respect to decompositions?		

Special cases

Given two transformation monoids (X, S) and (Y, T).

If T has trivial group of units, then

$$N(S^{Y} \rtimes T) \leq \max\{|Y|, d^{+}(U_{S}^{Y}, A')\}N(S) + N(T),$$

for every generating set A' of U_S^Y with minimum size.

If T has trivial group of units and rank(Uⁿ_S) = n rank(U_S), then

$$N(S^{Y} \rtimes T) \leq nN(S) + N(T),$$

where n = |Y|.

Preliminaries 000 0	Parameters N , M and M'	Conjecture 0 00	References O
How do these parameters b	behave with respect to decompositions?		

Special cases

Given two transformation monoids (X, S) and (Y, T).

If T has trivial group of units, then

$$N(S^Y \rtimes T) \leq \max\{|Y|, d^+(U_S^Y, A')\}N(S) + N(T),$$

for every generating set A' of U_S^Y with minimum size.

If T has trivial group of units and rank(Uⁿ_S) = n rank(U_S), then

$$N(S^{Y} \rtimes T) \leq nN(S) + N(T),$$

where n = |Y|.

▶ If *S* is a group, then

$$N(S^Y \rtimes T) \leq N(T)$$

Preliminaries	Parameters N, M and M'	Conjecture	References
000	0000000	0	0
0	00000000	00	
0	00000000		

General case

Theorem

Given two transformation monoids (X, S) and (Y, T). There exist integers $0 \le m_1 \le N(S)$ and $0 \le m_2 \le N(T)$ such that

 $N(S^{Y} \rtimes T) \leq (m_{1}+m_{2})d^{+}(U_{S}^{Y} \rtimes U_{T}, A') + |Y|(N(S)-m_{1})+N(T)-m_{2},$

for every generating set A' of $U_S^Y \rtimes U_T$ with minimum size.

| 4 同 1 4 回 1 4 回 1

Preliminaries	Parameters N, M and M'	Conjecture	References
000	0000000	0	0
0	00000000	00	

General case

Theorem

Given two transformation monoids (X, S) and (Y, T). There exist integers $0 \le m_1 \le N(S)$ and $0 \le m_2 \le N(T)$ such that

 $N(S^{Y} \rtimes T) \leq (m_{1}+m_{2})d^{+}(U_{S}^{Y} \rtimes U_{T}, A') + |Y|(N(S)-m_{1})+N(T)-m_{2},$

for every generating set A' of $U_S^Y \rtimes U_T$ with minimum size.

Question

How large can the directed diameter of a (semi)direct product of a finite group be?

- 4 同 6 4 日 6 4 日 6

0000000 00000000 00000000	000	0		
How do these parameters behave with respect to decompositions?				
•	e with respect to decompositions?			

A generating set of minimum size

We used [Wie87] for calculating the rank of direct power of a finite semigroup and proved the following lemma:

Lemma

Let (X, S), (Y, T) be two transformation monoids. Let A', A and B be generating sets with minimum size of $U_S^Y \rtimes U_T$, S and T, respectively. The set

$$G = A' \cup \{((a)_y, 1) : a \in A \setminus U_S, y \in Y\} \cup \{(\overline{1}, b) : b \in B \setminus U_T\}$$

is a generating set of $S^Y \rtimes T$ with minimum size.

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	0000000 00000000 0000000	000	0

Minimum ideal

Lemma

Let (X, S) and (Y, T) be two transformation monoids. Let I_S and I_T be the minimum ideals of S and T, respectively. The set

 $E = \{(f, t) : f \in I_S^Y, t \in I_T, f \text{ is a constant map}\}$

is contained in the minimum ideal of $S^Y \rtimes T$.

Preliminaries 000 0	Parameters N , M and M'	Conjecture 0 00	References O
How do these parameters h	behave with respect to decompositions?		

Proof sketch

• Choose A, B such that N(S, A) = N(S) and N(T, B) = N(T).

・ロト ・同ト ・ヨト ・ヨト

Preliminaries 000 0	Parameters N , M and M'	Conjecture 0 00	References O
How do these parameters b	behave with respect to decompositions?		

Proof sketch

- Choose A, B such that N(S, A) = N(S) and N(T, B) = N(T).
- ▶ There exist $a_1, a_2, \ldots, a_{N(S)} \in A$ and $b_1, b_2, \ldots, b_{N(T)} \in B$ such that $a_1a_2 \ldots a_{N(S)} \in I_S$ and $b_1b_2 \ldots b_{N(T)} \in I_T$.

A (1) > A (2) > A

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	0000000 00000000 0000000	0 00	0

Proof sketch

- Choose A, B such that N(S, A) = N(S) and N(T, B) = N(T).
- ▶ There exist $a_1, a_2, \ldots, a_{N(S)} \in A$ and $b_1, b_2, \ldots, b_{N(T)} \in B$ such that $a_1a_2 \ldots a_{N(S)} \in I_S$ and $b_1b_2 \ldots b_{N(T)} \in I_T$.
- ▶ Define the function f from Y to I_S to be the constant map with image a₁a₂...a_{N(S)}.

- A - A - B - A - B - A

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	0000000 00000000 0000000	0 00	0

Proof sketch

- Choose A, B such that N(S, A) = N(S) and N(T, B) = N(T).
- ▶ There exist $a_1, a_2, \ldots, a_{N(S)} \in A$ and $b_1, b_2, \ldots, b_{N(T)} \in B$ such that $a_1a_2 \ldots a_{N(S)} \in I_S$ and $b_1b_2 \ldots b_{N(T)} \in I_T$.
- ▶ Define the function f from Y to I_S to be the constant map with image a₁a₂...a_{N(S)}.
- ► The pair $(f, b_1 b_2 \dots b_{N(T)})$ is an element of the minimum ideal of $S^Y \rtimes T$.

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	0000000 00000000 0000000	0 00	0

Proof sketch

- Choose A, B such that N(S, A) = N(S) and N(T, B) = N(T).
- ▶ There exist $a_1, a_2, \ldots, a_{N(S)} \in A$ and $b_1, b_2, \ldots, b_{N(T)} \in B$ such that $a_1a_2 \ldots a_{N(S)} \in I_S$ and $b_1b_2 \ldots b_{N(T)} \in I_T$.
- ▶ Define the function f from Y to I_S to be the constant map with image $a_1a_2...a_{N(S)}$.
- ► The pair $(f, b_1 b_2 \dots b_{N(T)})$ is an element of the minimum ideal of $S^Y \rtimes T$.
- ▶ We show that the pair $(f, b_1 b_2 \dots b_{N(T)})$ is a product of at most $(m_1 + m_2)d^+(U_S^Y \rtimes U_T) + |Y|(N(S) m_1) + N(T) m_2$ elements in *G*, where

$$m_1 = |\{a_1, a_2, \ldots, a_{N(S)}\} \cap U_S|, m_2 = |\{b_1, b_2, \ldots, b_{N(T)}\} \cap U_T|.$$

Preliminaries	Parameters N, M and M'	Conjecture	References	
000 0 0	0000000 00000000 0000000	• • • • • • • • • • • • • • • • • • • •	0	

Directed diameter of a finite group

Trivial upper bound

Question

How large can the directed diameter of a finite group be?

くロット (四マ・川川・二日)

Reaching the minimum ideal in a finite semigroup

University of Porto, Portugal

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	000000000000000000000000000000000000000	• 00	0
Dr. J. K. B. S. C. C. S.			

Directed diameter of a finite group

Trivial upper bound

Question

How large can the directed diameter of a finite group be?

Fact

The directed diameter of a finite group with respect to every generating set is at most the order of the group.

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	00000000 00000000 00000000	• • • • • • • • • • • • • • • • • • • •	0
DE LE DE LE CORT			

Directed diameter of a finite group

Trivial upper bound

Question

How large can the directed diameter of a finite group be?

Fact

The directed diameter of a finite group with respect to every generating set is at most the order of the group.

Example

The directed diameter of a cyclic group with respect to a singleton generating set is the order of the group.

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 000000000 00000000	Conjecture ○ ●○	References O
Directed diameter of a di	rect power of a finite group		

What can we say about the direct power of a finite group?

Reaching the minimum ideal in a finite semigroup

University of Porto, Portugal

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture ○ ●○	References O
Directed diameter of a di	rect power of a finite group		

What can we say about the direct power of a finite group? We have

$$d^+(G^n,A) \le |G^n| = |G|^n.$$

What can we say about the direct power of a finite group? We have

$$d^+(G^n,A)\leq |G^n|=|G|^n.$$

I have tried to show that

Conjecture

Let G^n be the n-th direct power of a non trivial finite group G. There exists a generating set A for G^n of minimum size such that

$$d^+(G^n,A) \leq n|G|.$$

Reaching the minimum ideal in a finite semigroup

3 N A 3 N

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture ○ ○●	References O
Directed diameter of a dir	ect power of a finite group		

The following groups satisfy the conjecture:

Reaching the minimum ideal in a finite semigroup

University of Porto, Portugal

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture ○ ○●	References O
Directed diameter of a direct pov	ver of a finite group		

The following groups satisfy the conjecture:

• Every group *G* with the following property

 $\operatorname{rank}(G^n)=n\operatorname{rank}(G),$

(eg. nilpotent groups).

34.16

Reaching the minimum ideal in a finite semigroup

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture ○ ○●	References O
Directed diameter of a dir	ect power of a finite group		

The following groups satisfy the conjecture:

• Every group *G* with the following property

 $\operatorname{rank}(G^n)=n\operatorname{rank}(G),$

(eg. nilpotent groups).

• The symmetric group S_n .

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000 00000000	Conjecture ○ ○●	References O
Directed diameter of a di	rect power of a finite group		

The following groups satisfy the conjecture:

• Every group G with the following property

 $\operatorname{rank}(G^n)=n\operatorname{rank}(G),$

(eg. nilpotent groups).

- The symmetric group S_n .
- The dihedral group D_n .

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture ○ ○●	References O
Directed diameter of a dir	ect power of a finite group		

The following groups satisfy the conjecture:

• Every group G with the following property

 $\operatorname{rank}(G^n) = n \operatorname{rank}(G),$

(eg. nilpotent groups).

- The symmetric group S_n .
- The dihedral group D_n .

For proving these results I used the Wiegold's papers about the generating sets of minimum size for direct power of a finite group. [Wie74, Wie75, Wie78, Wie80, MW81]

- (同) - (目) - (目)

Preliminaries Pa	arameters N, M and M'	Onjecture	 References
000 00	2000000	O	
0 00	20000000	OO	
0 00	000000		

References

References I

V. H. Fernandes.

The monoid of all injective orientation preserving partial transformations on a finite chain.

Comm. Algebra, 28(7):3401-3426, 2000.

V. H. Fernandes.

The monoid of all injective order preserving partial transformations on a finite chain. *Semigroup Forum*, 62(2):178–204, 2001.

 M. S. Gomes and J. M. Howie.
 On the ranks of certain finite semigroups of transformations. Math. Proc. Cambridge Philos. Soc., 101(3):395–403, 1987.

Preliminaries	Parameters N, M and M'	Conjecture	References
000 0 0	0000000 00000000 0000000	0 00	•

References

References II

On the ranks of certain semigroups of order-preserving transformations.

Semigroup Forum, 45(3):272–282, 1992.

```
P. M. Higgins.
```

Techniques of semigroup theory. Oxford University Press, New York, 1992.

🚺 J. M. Howie.

Idempotent generators in finite full transformation semigroups. *Proc. Roy. Soc. Edinburgh Sect. A*, 81(3-4):317–323, 1978.
Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 000000000 00000000	Conjecture 0 00	References ●
References			

References III

D. Meier and James Wiegold.
Growth sequences of finite groups. V.
J. Austral. Math. Soc. Ser. A, 31(3):374–375, 1981.

I. C. Rystsov.
On the rank of a finite automaton.
Kibernet. Sistem. Anal., (3):3–10, 187, 1992.

J. Wiegold.

Growth sequences of finite groups.

J. Austral. math. Soc. 17, pages 133–141, 1974.

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture 0 00	References ●
References			

References IV

James Wiegold.
Growth sequences of finite groups. III.
J. Austral. Math. Soc. Ser. A, 25(2):142–144, 1978.

James Wiegold.

Growth sequences of finite groups. IV. J. Austral. Math. Soc. Ser. A, 29(1):14–16, 1980.

Preliminaries 000 0	Parameters <i>N</i> , <i>M</i> and <i>M'</i> 00000000 00000000 00000000	Conjecture O OO	References ●
References			

References V

J. Wiegold.
Growth sequences of finite semigroups.
J. Austral. math. Soc. (Ser.A) 43, pages 16–20, 1987.

Reaching the minimum ideal in a finite semigroup

University of Porto, Portugal