How to decide absorption

Alexandr Kazda (joint work with Libor Barto)

Department of Algebra Charles University, Prague

June 8th 2013

AK & LB (Charles University)

How to decide absorption

June 8th 2013 1 / 10

Definition (Libor Barto, Marcin Kozik)

Let $B \leq A$ be algebras. We say that B absorbs A if there exists a term t in A such that for any $b_1, \ldots, b_n \in B, a \in A$ we have:

$$t(a, a, a, \dots, a) = a$$

 $t(a, b_2, b_3, \dots, b_{n-1}, b_n) \in B$
 $t(b_1, a, b_3, \dots, b_{n-1}, b_n) \in B$
 \vdots
 $t(b_1, b_2, b_3, \dots, b_{n-1}, a) \in B$

Definition (Libor Barto, Marcin Kozik)

Let $B \le A$ be algebras. We say that B absorbs A if there exists a term t in A such that for any $b_1, \ldots, b_n \in B, a \in A$ we have:

$$t(a, a, a, \dots, a) = a$$

 $t(a, b_2, b_3, \dots, b_{n-1}, b_n) \in B$
 $t(b_1, a, b_3, \dots, b_{n-1}, b_n) \in B$
 \vdots
 $t(b_1, b_2, b_3, \dots, b_{n-1}, a) \in B$

- If 0 is the minimal element of a finite semilattice (L, ∧) then {0} absorbs L; absorption term is t(x₁, x₂) = x₁ ∧ x₂.
- If A is an algebra with a majority term m then every singleton is an absorbing subalgebra; absorption term is m.
- If A is an algebra then always $A \leq A$.
- If A is an abelian group then A has no proper absorbing subalgebra.

- If 0 is the minimal element of a finite semilattice (L, ∧) then {0} absorbs L; absorption term is t(x₁, x₂) = x₁ ∧ x₂.
- If A is an algebra with a majority term m then every singleton is an absorbing subalgebra; absorption term is m.
- If A is an algebra then always $A \leq A$.
- If A is an abelian group then A has no proper absorbing subalgebra.

- If 0 is the minimal element of a finite semilattice (L, ∧) then {0} absorbs L; absorption term is t(x₁, x₂) = x₁ ∧ x₂.
- If A is an algebra with a majority term m then every singleton is an absorbing subalgebra; absorption term is m.
- If A is an algebra then always $A \leq A$.
- If A is an abelian group then A has no proper absorbing subalgebra.

- If 0 is the minimal element of a finite semilattice (L, ∧) then {0} absorbs L; absorption term is t(x₁, x₂) = x₁ ∧ x₂.
- If A is an algebra with a majority term m then every singleton is an absorbing subalgebra; absorption term is m.
- If A is an algebra then always $A \leq A$.
- If A is an abelian group then A has no proper absorbing subalgebra.

- If 0 is the minimal element of a finite semilattice (L, ∧) then {0} absorbs L; absorption term is t(x₁, x₂) = x₁ ∧ x₂.
- If A is an algebra with a majority term m then every singleton is an absorbing subalgebra; absorption term is m.
- If A is an algebra then always $A \leq A$.
- If A is an abelian group then A has no proper absorbing subalgebra.

- Let A be idempotent finite algebra. Then A has an NU term iff every singleton {a} absorbs A.
- Miklós Maróti: We can decide whether a finite algebra A has an NU term.
- Problem: Given $B \leq A$, can we decide if $B \leq A$?
- Libor Barto, Jakub Bulín: Yes, if A is finitely related.
- Can we do more?

- Let A be idempotent finite algebra. Then A has an NU term iff every singleton {a} absorbs A.
- Miklós Maróti: We can decide whether a finite algebra A has an NU term.
- Problem: Given $B \leq A$, can we decide if $B \leq A$?
- Libor Barto, Jakub Bulín: Yes, if A is finitely related.
- Can we do more?

- Let A be idempotent finite algebra. Then A has an NU term iff every singleton {a} absorbs A.
- Miklós Maróti: We can decide whether a finite algebra A has an NU term.
- Problem: Given $B \leq A$, can we decide if $B \leq A$?
- Libor Barto, Jakub Bulín: Yes, if A is finitely related.
- Can we do more?

- Let A be idempotent finite algebra. Then A has an NU term iff every singleton {a} absorbs A.
- Miklós Maróti: We can decide whether a finite algebra A has an NU term.
- Problem: Given $B \leq A$, can we decide if $B \leq A$?
- Libor Barto, Jakub Bulín: Yes, if A is finitely related.
- Can we do more?

- Let A be idempotent finite algebra. Then A has an NU term iff every singleton {a} absorbs A.
- Miklós Maróti: We can decide whether a finite algebra A has an NU term.
- Problem: Given $B \leq A$, can we decide if $B \leq A$?
- Libor Barto, Jakub Bulín: Yes, if A is finitely related.
- Can we do more?

- Let A be idempotent finite algebra. Then A has an NU term iff every singleton {a} absorbs A.
- Miklós Maróti: We can decide whether a finite algebra A has an NU term.
- Problem: Given $B \leq A$, can we decide if $B \leq A$?
- Libor Barto, Jakub Bulín: Yes, if A is finitely related.
- Can we do more?

- Let $B \leq A$ with absorption term t.
- If t is n-ary then for no C can we have $C \cap B \neq \emptyset$, $C \not\subset B$, and $C^n \setminus B^n \leq A^n$.
- We call (C, D) a blocker for B if
 - $\emptyset \neq D \subset C$,
 - $C \cap B \neq \emptyset$,
 - $D \cap B = \emptyset$,
 - $\{(x_1, \ldots, x_n) \in C^n : \exists i, x_i \in D\} \le A^n \text{ for every } n \in \mathbb{N}.$
- If $B \trianglelefteq A$, then there is no blocker for B.

• Let $B \trianglelefteq A$ with absorption term t.

- If t is n-ary then for no C can we have $C \cap B \neq \emptyset$, $C \not\subset B$, and $C^n \setminus B^n \leq A^n$.
- We call (C, D) a blocker for B if
 - $\emptyset \neq D \subset C$,
 - $C \cap B \neq \emptyset$,
 - $D \cap B = \emptyset$,
 - $\{(x_1, \ldots, x_n) \in C^n : \exists i, x_i \in D\} \le A^n \text{ for every } n \in \mathbb{N}.$
- If $B \trianglelefteq A$, then there is no blocker for B.

- Let $B \trianglelefteq A$ with absorption term t.
- If t is n-ary then for no C can we have $C \cap B \neq \emptyset$, $C \not\subset B$, and $C^n \setminus B^n \leq A^n$.
- We call (C, D) a blocker for B if
 - $\emptyset \neq D \subset C$,
 - $C \cap B \neq \emptyset$,
 - $D \cap B = \emptyset$,
 - $\{(x_1, \ldots, x_n) \in C^n : \exists i, x_i \in D\} \le A^n \text{ for every } n \in \mathbb{N}.$
- If $B \trianglelefteq A$, then there is no blocker for B.

- Let $B \trianglelefteq A$ with absorption term t.
- If t is n-ary then for no C can we have $C \cap B \neq \emptyset$, $C \not\subset B$, and $C^n \setminus B^n \leq A^n$.
- We call (C, D) a blocker for B if
 - $\emptyset \neq D \subset C$,
 - $C \cap B \neq \emptyset$,
 - $D \cap B = \emptyset$,
 - $\{(x_1,\ldots,x_n)\in C^n: \exists i, x_i\in D\}\leq A^n \text{ for every } n\in\mathbb{N}.$
- If $B \leq A$, then there is no blocker for B.

- Let $B \trianglelefteq A$ with absorption term t.
- If t is n-ary then for no C can we have $C \cap B \neq \emptyset$, $C \not\subset B$, and $C^n \setminus B^n \leq A^n$.
- We call (C, D) a blocker for B if
 - $\emptyset \neq D \subset C$,
 - $C \cap B \neq \emptyset$,
 - $D \cap B = \emptyset$,
 - $\{(x_1,\ldots,x_n)\in C^n: \exists i, x_i\in D\}\leq A^n \text{ for every } n\in\mathbb{N}.$
- If $B \trianglelefteq A$, then there is no blocker for B.

- Given idempotent A with finitely many operations, we can test if there are no blockers for B.
- However, we can have no blockers and no absorption: Consider $A = (\mathbb{Z}_2, m)$, where $m(x, y, z) = x + y + z \pmod{2}$.

- Given idempotent A with finitely many operations, we can test if there are no blockers for B.
- However, we can have no blockers and no absorption: Consider $A = (\mathbb{Z}_2, m)$, where $m(x, y, z) = x + y + z \pmod{2}$.

- Given idempotent A with finitely many operations, we can test if there are no blockers for B.
- However, we can have no blockers and no absorption: Consider $A = (\mathbb{Z}_2, m)$, where $m(x, y, z) = x + y + z \pmod{2}$.

- Weaker notion of absorption inspired by terms for congruence distributivity.
- Let $B \leq A$. Then $B \leq J A$ if there exist idempotent terms d_0, d_1, \ldots, d_n such that:

$$\forall i = 0, \dots, n, \ d_i(B, A, B) \subset B$$
$$d_0(x, y, z) = x$$
$$d_i(x, y, y) = d_{i+1}(x, y, y) \text{ for } i \text{ even}$$
$$d_i(x, x, y) = d_{i+1}(x, x, y) \text{ for } i \text{ odd}$$
$$d_n(x, y, z) = z.$$

• Weaker notion of absorption inspired by terms for congruence distributivity.

• Let $B \leq A$. Then $B \leq J A$ if there exist idempotent terms d_0, d_1, \ldots, d_n such that:

$$\forall i = 0, \dots, n, \ d_i(B, A, B) \subset B$$
$$d_0(x, y, z) = x$$
$$d_i(x, y, y) = d_{i+1}(x, y, y) \text{ for } i \text{ even}$$
$$d_i(x, x, y) = d_{i+1}(x, x, y) \text{ for } i \text{ odd}$$
$$d_n(x, y, z) = z.$$

- Weaker notion of absorption inspired by terms for congruence distributivity.
- Let $B \leq A$. Then $B \leq A$ if there exist idempotent terms d_0, d_1, \ldots, d_n such that:

$$\forall i = 0, \dots, n, \ d_i(B, A, B) \subset B$$

$$d_0(x, y, z) = x$$

$$d_i(x, y, y) = d_{i+1}(x, y, y) \text{ for } i \text{ even}$$

$$d_i(x, x, y) = d_{i+1}(x, x, y) \text{ for } i \text{ odd}$$

$$d_n(x, y, z) = z.$$

Putting it all together

Conjecture

Let A be a finite algebra, $B \leq A$. Then $B \leq A$ iff there is no blocker for B and $B \leq J$ A.

If this is true, then we can decide $B \leq A$ algorithmically.

Putting it all together

Conjecture

Let A be a finite algebra, $B \leq A$. Then $B \leq A$ iff there is no blocker for B and $B \leq J$ A.

If this is true, then we can decide $B \leq A$ algorithmically.

Putting it all together

Conjecture

Let A be a finite algebra, $B \leq A$. Then $B \leq A$ iff there is no blocker for B and $B \leq A$.

If this is true, then we can decide $B \trianglelefteq A$ algorithmically.

- This approach works for any A when |B| = 1, so we have an alternative proof of Miklós' result.
- We are now working on the general case...

- This approach works for any A when |B| = 1, so we have an alternative proof of Miklós' result.
- We are now working on the general case...

- This approach works for any A when |B| = 1, so we have an alternative proof of Miklós' result.
- We are now working on the general case...

Thank you for your attention.

э