# Minimal matrix centralizers over the field $\mathbb{Z}_{2}$ 

Damjana Kokol Bukovšek

(Joint work with David Dolžan)
University of Ljubljana
Novi Sad, June 2013

## Let $M_{n}(\mathbb{F})$ be the algebra of $n \times n$ matrices over the field $\mathbb{F}$.

Let $M_{n}(\mathbb{F})$ be the algebra of $n \times n$ matrices over the field $\mathbb{F}$.
Denote by $\mathscr{C}(A)=\left\{B \in M_{n}(\mathbb{F}) ; A B=B A\right\}$ the centralizer of $A$.

Let $M_{n}(\mathbb{F})$ be the algebra of $n \times n$ matrices over the field $\mathbb{F}$.
Denote by $\mathscr{C}(A)=\left\{B \in M_{n}(\mathbb{F}) ; A B=B A\right\}$ the centralizer of $A$.
Let $A, B \in M_{n}(\mathbb{F})$. Then $A \leq B$ if and only if $\mathscr{C}(A) \subseteq \mathscr{C}(B)$.

Let $M_{n}(\mathbb{F})$ be the algebra of $n \times n$ matrices over the field $\mathbb{F}$.
Denote by $\mathscr{C}(A)=\left\{B \in M_{n}(\mathbb{F}) ; A B=B A\right\}$ the centralizer of $A$.
Let $A, B \in M_{n}(\mathbb{F})$. Then $A \leq B$ if and only if $\mathscr{C}(A) \subseteq \mathscr{C}(B)$.
A matrix $A \in M_{n}(\mathbb{F})$ is minimal if it is minimal with respect to this partial order.

Let $M_{n}(\mathbb{F})$ be the algebra of $n \times n$ matrices over the field $\mathbb{F}$.
Denote by $\mathscr{C}(A)=\left\{B \in M_{n}(\mathbb{F}) ; A B=B A\right\}$ the centralizer of $A$.
Let $A, B \in M_{n}(\mathbb{F})$. Then $A \leq B$ if and only if $\mathscr{C}(A) \subseteq \mathscr{C}(B)$.
A matrix $A \in M_{n}(\mathbb{F})$ is minimal if it is minimal with respect to this partial order.

Lemma
Let $A, B \in M_{n}(\mathbb{F})$. Then $\mathscr{C}(A) \subseteq \mathscr{C}(B)$ if and only if $B \in \mathbb{F}[A]$.

Let $M_{n}(\mathbb{F})$ be the algebra of $n \times n$ matrices over the field $\mathbb{F}$.
Denote by $\mathscr{C}(A)=\left\{B \in M_{n}(\mathbb{F}) ; A B=B A\right\}$ the centralizer of $A$.
Let $A, B \in M_{n}(\mathbb{F})$. Then $A \leq B$ if and only if $\mathscr{C}(A) \subseteq \mathscr{C}(B)$.
A matrix $A \in M_{n}(\mathbb{F})$ is minimal if it is minimal with respect to this partial order.

Lemma
Let $A, B \in M_{n}(\mathbb{F})$. Then $\mathscr{C}(A) \subseteq \mathscr{C}(B)$ if and only if $B \in \mathbb{F}[A]$.

A matrix $A \in M_{n}(\mathbb{F})$ is called non-derogatory if its minimal polynomial equals its characteristic polynomial. A matrix is derogatory if it is not non-derogatory.

## Theorem

Let $n \geq 2$. A matrix $A \in M_{n}(\mathbb{C})$ is non-derogatory if and only if $A$ is minimal.

## Theorem

Let $n \geq 2$. A matrix $A \in M_{n}(\mathbb{C})$ is non-derogatory if and only if $A$ is minimal.

Theorem (Dolinar, Guterman, Kuzma, Oblak, 2013)
Let $n \geq 2$ and $\mathbb{F}$ an arbitrary field. If $A \in M_{n}(\mathbb{F})$ is non-derogatory then $A$ is minimal.

## Theorem

Let $n \geq 2$. A matrix $A \in M_{n}(\mathbb{C})$ is non-derogatory if and only if $A$ is minimal.

Theorem (Dolinar, Guterman, Kuzma, Oblak, 2013)
Let $n \geq 2$ and $\mathbb{F}$ an arbitrary field. If $A \in M_{n}(\mathbb{F})$ is non-derogatory then $A$ is minimal.

Theorem (Dolinar, Guterman, Kuzma, Oblak, 2013)
Let $n \geq 2$ and $\mathbb{F}$ a field with $|\mathbb{F}| \geq n$. Then a matrix $A \in M_{n}(\mathbb{F})$ is non-derogatory if and only if $A$ is minimal.

For a polynomial $m(x)=x^{r}+b_{r-1} x^{r-1}+\ldots+b_{1} x+b_{0} \in \mathbb{F}[x]$ of degree $r$, let $C(m) \in M_{r}(\mathbb{F})$ denote the companion matrix of $m$

$$
C(m)=\left[\begin{array}{ccccc}
0 & 0 & 0 & \ldots & -b_{0} \\
1 & 0 & 0 & \ldots & -b_{1} \\
& \ddots & \ddots & & \vdots \\
0 & \ldots & 1 & 0 & -b_{r-2} \\
0 & \ldots & 0 & 1 & -b_{r-1}
\end{array}\right]
$$

For a polynomial $m(x)=x^{r}+b_{r-1} x^{r-1}+\ldots+b_{1} x+b_{0} \in \mathbb{F}[x]$ of degree $r$, let $C(m) \in M_{r}(\mathbb{F})$ denote the companion matrix of $m$

$$
C(m)=\left[\begin{array}{ccccc}
0 & 0 & 0 & \ldots & -b_{0} \\
1 & 0 & 0 & \ldots & -b_{1} \\
& \ddots & \ddots & & \vdots \\
0 & \ldots & 1 & 0 & -b_{r-2} \\
0 & \ldots & 0 & 1 & -b_{r-1}
\end{array}\right]
$$

## Example (Dolinar, Guterman, Kuzma, Oblak, 2013)

Let $A=C(m) \oplus C\left(m^{3}\right) \in M_{8}\left(\mathbb{Z}_{2}\right)$ for $m(x)=x^{2}+x+1$ in $\mathbb{Z}_{2}[x]$. Then $A$ is derogatory and minimal.

## Proposition

Suppose the spectrum of $A$ is either $\{0\}$ or $\{1\}$. Then $A$ is minimal if and only if $A$ is non-derogatory.

## Proposition

Suppose the spectrum of $A$ is either $\{0\}$ or $\{1\}$. Then $A$ is minimal if and only if $A$ is non-derogatory.

Proof: We only have to prove the implication: $A$ is minimal $\Rightarrow A$ is non-derogatory.

## Proposition

Suppose the spectrum of $A$ is either $\{0\}$ or $\{1\}$. Then $A$ is minimal if and only if $A$ is non-derogatory.

Proof: We only have to prove the implication: $A$ is minimal $\Rightarrow A$ is non-derogatory.
Suppose $A$ is derogatory. Let $\lambda$ be the only eigenvalue of $A$. The Jordan form of $A$ is $J_{k_{1}}(\lambda) \oplus J_{k_{2}}(\lambda) \oplus \ldots \oplus J_{k_{t}}(\lambda)$, where $t \geq 2$.

## Proposition

Suppose the spectrum of $A$ is either $\{0\}$ or $\{1\}$. Then $A$ is minimal if and only if $A$ is non-derogatory.

Proof: We only have to prove the implication: $A$ is minimal $\Rightarrow A$ is non-derogatory.
Suppose $A$ is derogatory. Let $\lambda$ be the only eigenvalue of $A$. The Jordan form of $A$ is $J_{k_{1}}(\lambda) \oplus J_{k_{2}}(\lambda) \oplus \ldots \oplus J_{k_{t}}(\lambda)$, where $t \geq 2$.
Let $X=J_{k_{1}}(\lambda+1) \oplus J_{k_{2}}(\lambda) \oplus \ldots \oplus J_{k_{t}}(\lambda)$.
If $\lambda=0$ then $A$ is similar to $X(X+I)$; if $\lambda=1$ then $A$ is similar to $X(X+I)+I$.

## Proposition

Suppose the spectrum of $A$ is either $\{0\}$ or $\{1\}$. Then $A$ is minimal if and only if $A$ is non-derogatory.

Proof: We only have to prove the implication: $A$ is minimal $\Rightarrow A$ is non-derogatory.
Suppose $A$ is derogatory. Let $\lambda$ be the only eigenvalue of $A$. The Jordan form of $A$ is $J_{k_{1}}(\lambda) \oplus J_{k_{2}}(\lambda) \oplus \ldots \oplus J_{k_{t}}(\lambda)$, where $t \geq 2$.
Let $X=J_{k_{1}}(\lambda+1) \oplus J_{k_{2}}(\lambda) \oplus \ldots \oplus J_{k_{t}}(\lambda)$.
If $\lambda=0$ then $A$ is similar to $X(X+I)$; if $\lambda=1$ then $A$ is similar to $X(X+I)+I$.
So $A \in \mathbb{F}[X]$, but $X \notin \mathbb{F}[A]$, since spectrum of $X$ is equal to $\mathbb{Z}_{2}$. This implies that $A$ is not minimal.

## Example

Let

$$
A=J_{3}(0) \oplus J_{1}(0) \oplus J_{1}(1)=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Then $A$ is derogatory and minimal. This is the smallest derogatory minimal matrix.

Outline of the proof: Suppose that $A$ is not minimal. So, $A=p(X)$ for some polynomial $p$ and matrix $X$ and $\mathscr{C}(X) \neq \mathscr{C}(A)$.

Outline of the proof: Suppose that $A$ is not minimal. So, $A=p(X)$ for some polynomial $p$ and matrix $X$ and $\mathscr{C}(X) \neq \mathscr{C}(A)$.

Case 1: $X$ has an eigenvalue $\alpha$, which is not in $\mathbb{Z}_{2}$.

Outline of the proof: Suppose that $A$ is not minimal. So, $A=p(X)$ for some polynomial $p$ and matrix $X$ and $\mathscr{C}(X) \neq \mathscr{C}(A)$.

Case 1: $X$ has an eigenvalue $\alpha$, which is not in $\mathbb{Z}_{2}$.
Then $X$ is similar to a matrix $C\left(q^{m}\right) \oplus X^{\prime}$, where $q(x)$ is the the minimal polynomial of $\alpha$.

Outline of the proof: Suppose that $A$ is not minimal. So, $A=p(X)$ for some polynomial $p$ and matrix $X$ and $\mathscr{C}(X) \neq \mathscr{C}(A)$.

Case 1: $X$ has an eigenvalue $\alpha$, which is not in $\mathbb{Z}_{2}$.
Then $X$ is similar to a matrix $C\left(q^{m}\right) \oplus X^{\prime}$, where $q(x)$ is the the minimal polynomial of $\alpha$.
$p(\alpha)$ is either 0 or 1 and $p(\beta)=p(\alpha)$ for any other zero $\beta$ of the polynomial $q$.

Outline of the proof: Suppose that $A$ is not minimal. So, $A=p(X)$ for some polynomial $p$ and matrix $X$ and $\mathscr{C}(X) \neq \mathscr{C}(A)$.

Case 1: $X$ has an eigenvalue $\alpha$, which is not in $\mathbb{Z}_{2}$.
Then $X$ is similar to a matrix $C\left(q^{m}\right) \oplus X^{\prime}$, where $q(x)$ is the the minimal polynomial of $\alpha$.
$p(\alpha)$ is either 0 or 1 and $p(\beta)=p(\alpha)$ for any other zero $\beta$ of the polynomial $q$.
So, $A=p(X)$ is similar to $J_{m}(p(\alpha)) \oplus \ldots \oplus J_{m}(p(\alpha)) \oplus p\left(X^{\prime}\right)$. A contradiction.

## Case 2: The spectrum of $X$ is equal to $\mathbb{Z}_{2}$.

## Case 2: The spectrum of $X$ is equal to $\mathbb{Z}_{2}$.

The polynomial $p$ either maps 0 to 0 and 1 to 1 or vice versa.

Case 2: The spectrum of $X$ is equal to $\mathbb{Z}_{2}$.
The polynomial $p$ either maps 0 to 0 and 1 to 1 or vice versa. Assume $p(0)=0$ and $p(1)=1$.

Case 2: The spectrum of $X$ is equal to $\mathbb{Z}_{2}$.
The polynomial $p$ either maps 0 to 0 and 1 to 1 or vice versa.
Assume $p(0)=0$ and $p(1)=1$.
$X$ is similar to $X_{0} \oplus X_{1}$, where $X_{0}$ and $X_{1}+I$ are nilpotents.

Case 2: The spectrum of $X$ is equal to $\mathbb{Z}_{2}$.
The polynomial $p$ either maps 0 to 0 and 1 to 1 or vice versa.
Assume $p(0)=0$ and $p(1)=1$.
$X$ is similar to $X_{0} \oplus X_{1}$, where $X_{0}$ and $X_{1}+I$ are nilpotents.
$J_{1}(1)$ is similar to $p\left(X_{1}\right)$, so $X_{1}=J_{1}(1)$, and $J_{3}(0) \oplus J_{1}(0)$ is similar to $p\left(X_{0}\right)$.

Case 2: The spectrum of $X$ is equal to $\mathbb{Z}_{2}$.
The polynomial $p$ either maps 0 to 0 and 1 to 1 or vice versa.
Assume $p(0)=0$ and $p(1)=1$.
$X$ is similar to $X_{0} \oplus X_{1}$, where $X_{0}$ and $X_{1}+I$ are nilpotents.
$J_{1}(1)$ is similar to $p\left(X_{1}\right)$, so $X_{1}=J_{1}(1)$, and $J_{3}(0) \oplus J_{1}(0)$ is similar to $p\left(X_{0}\right)$.
$X_{0}$ has at most two Jordan blocks. It is easy to verify, that it cannot have only one.

Case 2: The spectrum of $X$ is equal to $\mathbb{Z}_{2}$.
The polynomial $p$ either maps 0 to 0 and 1 to 1 or vice versa.
Assume $p(0)=0$ and $p(1)=1$.
$X$ is similar to $X_{0} \oplus X_{1}$, where $X_{0}$ and $X_{1}+I$ are nilpotents.
$J_{1}(1)$ is similar to $p\left(X_{1}\right)$, so $X_{1}=J_{1}(1)$, and $J_{3}(0) \oplus J_{1}(0)$ is similar to $p\left(X_{0}\right)$.
$X_{0}$ has at most two Jordan blocks. It is easy to verify, that it cannot have only one.
So $X_{0}$ is similar to $J_{3}(0) \oplus J_{1}(0)$, and $X$ is similar to $A$.

Case 2: The spectrum of $X$ is equal to $\mathbb{Z}_{2}$.
The polynomial $p$ either maps 0 to 0 and 1 to 1 or vice versa.
Assume $p(0)=0$ and $p(1)=1$.
$X$ is similar to $X_{0} \oplus X_{1}$, where $X_{0}$ and $X_{1}+I$ are nilpotents.
$J_{1}(1)$ is similar to $p\left(X_{1}\right)$, so $X_{1}=J_{1}(1)$, and $J_{3}(0) \oplus J_{1}(0)$ is similar to $p\left(X_{0}\right)$.
$X_{0}$ has at most two Jordan blocks. It is easy to verify, that it cannot have only one.
So $X_{0}$ is similar to $J_{3}(0) \oplus J_{1}(0)$, and $X$ is similar to $A$.
Since $\mathscr{C}(X) \subseteq \mathscr{C}(A)$, it follows $\mathscr{C}(A)=\mathscr{C}(X)$. A contradiction.

## Theorem

Suppose the spectrum of $A$ is equal to $\mathbb{Z}_{2}$ and the Jordan form of $A$ is $J_{k_{1}}(0) \oplus J_{k_{2}}(0) \oplus \ldots \oplus J_{k_{t}}(0) \oplus J_{l_{1}}(1) \oplus J_{l_{2}}(1) \oplus \ldots \oplus J_{l_{s}}(1)$ for some integers $k_{1} \geq k_{2} \geq \ldots \geq k_{t}$ and $l_{1} \geq l_{2} \geq \ldots \geq I_{s}$. Then $A$ is not minimal if and only if at least one of the following statements holds.
(1) $t$ is even and $k_{1}=k_{2}+1, k_{3}=k_{4}+1, \ldots, k_{t-1}=k_{t}+1$.
(2) $t \geq 3$ is odd and $k_{1}=k_{2}+1, k_{3}=k_{4}+1, \ldots$,
$k_{t-2}=k_{t-1}+1, k_{t}=1$.
(3) $s$ is even and $l_{1}=I_{2}+1, l_{3}=l_{4}+1, \ldots, I_{s-1}=I_{s}+1$.
(4) $s \geq 3$ is odd and $l_{1}=I_{2}+1, l_{3}=I_{4}+1, \ldots, I_{s-2}=I_{s-1}+1$, $I_{s}=1$.
(5) A has at least two equal Jordan blocks, so $k_{m}=k_{m+1}$ for some $m$ or $I_{m}=I_{m+1}$ for some $m$.

Rational canonical form of a matrix over an arbitrary field:
Every matrix $A \in M_{n}(\mathbb{F})$ is similar to a unique (up to the order of the blocks) block diagonal matrix

$$
C=C\left(m_{1}^{k_{11}}\right) \oplus \ldots \oplus C\left(m_{1}^{k_{1 k}}\right) \oplus \ldots \oplus C\left(m_{l}^{k_{11}}\right) \oplus \ldots \oplus C\left(m_{l}^{k_{k k}}\right) \in M_{n}(\mathbb{F}),
$$

where $m_{1}, \ldots, m_{l} \in \mathbb{F}[x]$ are the distinct, monic irreducible divisors of the characteristic polynomial $f \in \mathbb{F}[x]$ of $A$ and $k_{i j}$ is the largest power of $m_{i}$, which divides the $j$-th invariant factor $f_{j}$ of $A$.

Rational canonical form of a matrix over an arbitrary field:
Every matrix $A \in M_{n}(\mathbb{F})$ is similar to a unique (up to the order of the blocks) block diagonal matrix

$$
C=C\left(m_{1}^{k_{11}}\right) \oplus \ldots \oplus C\left(m_{1}^{k_{1 k}}\right) \oplus \ldots \oplus C\left(m_{l}^{k_{11}}\right) \oplus \ldots \oplus C\left(m_{l}^{k_{k k}}\right) \in M_{n}(\mathbb{F}),
$$

where $m_{1}, \ldots, m_{l} \in \mathbb{F}[x]$ are the distinct, monic irreducible divisors of the characteristic polynomial $f \in \mathbb{F}[x]$ of $A$ and $k_{i j}$ is the largest power of $m_{i}$, which divides the $j$-th invariant factor $f_{j}$ of $A$.

Suppose now that the minimal polinomial of $A \in M_{n}\left(\mathbb{Z}_{2}\right)$ is a power of an irreducible polynomial $m(x) \in \mathbb{Z}_{2}[x]$.

Rational canonical form of a matrix over an arbitrary field:
Every matrix $A \in M_{n}(\mathbb{F})$ is similar to a unique (up to the order of the blocks) block diagonal matrix

$$
C=C\left(m_{1}{ }^{k_{11}}\right) \oplus \ldots \oplus C\left(m_{1}^{k_{1 k}}\right) \oplus \ldots \oplus C\left(m_{l}^{k_{11}}\right) \oplus \ldots \oplus C\left(m_{l}^{k_{k}}\right) \in M_{n}(\mathbb{F}),
$$

where $m_{1}, \ldots, m_{l} \in \mathbb{F}[x]$ are the distinct, monic irreducible divisors of the characteristic polynomial $f \in \mathbb{F}[x]$ of $A$ and $k_{i j}$ is the largest power of $m_{i}$, which divides the $j$-th invariant factor $f_{j}$ of $A$.
Suppose now that the minimal polinomial of $A \in M_{n}\left(\mathbb{Z}_{2}\right)$ is a power of an irreducible polynomial $m(x) \in \mathbb{Z}_{2}[x]$.
Then $A$ is similar to a unique block diagonal matrix

$$
C\left(m^{k_{1}}\right) \oplus C\left(m^{k_{2}}\right) \oplus \ldots \oplus C\left(m^{k_{t}}\right)
$$

for some integers $k_{1} \geq k_{2} \geq \ldots \geq k_{t}$.

## Theorem

Let $A \in M_{n}\left(\mathbb{Z}_{2}\right)$. If the rational canonical form of $A$ is of the form $C\left(m^{k}\right) \oplus C\left(m^{k}\right)$ or $C\left(m^{k}\right) \oplus C\left(m^{k+1}\right)$ for some irreducible polynomial $m(x) \in \mathbb{Z}_{2}[x]$ of degree $t \geq 1$ and $k \in \mathbb{N}$, then $A$ is not minimal.

## Theorem

Let $A \in M_{n}\left(\mathbb{Z}_{2}\right)$. If the rational canonical form of $A$ is of the form $C\left(m^{k}\right) \oplus C\left(m^{k}\right)$ or $C\left(m^{k}\right) \oplus C\left(m^{k+1}\right)$ for some irreducible polynomial $m(x) \in \mathbb{Z}_{2}[x]$ of degree $t \geq 1$ and $k \in \mathbb{N}$, then $A$ is not minimal.

## Theorem

Suppose the minimal polynomial of $A$ is $p(x)=m(x)^{k}$, where $m(x)$ is an irreducible polynomial of degree $r \geq 3$ and $k \in \mathbb{N}$. Then $A$ is minimal if and only if $A$ is non-derogatory.

## Example

Let $m_{1}, m_{2} \in \mathbb{Z}_{2}[x]$ denote the polynomials $m_{1}(x)=x^{3}+x+1$, $m_{2}(x)=x^{3}+x^{2}+1$, and let

$$
B=C\left(m_{1}^{3}\right) \oplus C\left(m_{1}\right) .
$$

Then $B$ is not minimal by above Theorem. However, the matrix

$$
A=\left[\begin{array}{cc}
B & 0 \\
0 & C\left(m_{2}\right)
\end{array}\right]
$$

is minimal.

## Theorem

Let $n \geq 2$. Suppose the minimal polynomial of $A \in M_{n}\left(\mathbb{Z}_{2}\right)$ is of the form $p(x)=m(x)^{k}$, where $k \in \mathbb{N}$ and $m(x)=x^{2}+x+1 \in \mathbb{Z}_{2}[x]$ is the irreducible quadratic polynomial and let $C\left(m^{k_{1}}\right) \oplus C\left(m^{k_{2}}\right) \oplus \ldots \oplus C\left(m^{k_{t}}\right)$ be the rational canonical form of $A$ for some integers $k=k_{1} \geq k_{2} \geq \ldots \geq k_{t}$. Then $A$ is not minimal if and only if one of the following statements holds.
(1) There exists some $s \in\{1,2, \ldots, t-1\}$ such that $k_{s}=k_{s+1}$.
(2) $t$ is even and $k_{1}=k_{2}+1, k_{3}=k_{4}+1, \ldots, k_{t-1}=k_{t}+1$.
(3) $t \geq 3$ is odd and $k_{1}=k_{2}+1, k_{3}=k_{4}+1, \ldots$,

$$
k_{t-2}=k_{t-1}+1, k_{t}=1
$$

## Thank you!

