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Definitions
History

Spectrum in Z2
Minimal polynomial a power of an irreducible

Let Mn(F) be the algebra of n×n matrices over the field F.

Denote by C (A) = {B ∈Mn(F);AB = BA} the centralizer of A.

Let A,B ∈Mn(F). Then A≤ B if and only if C (A)⊆ C (B).

A matrix A ∈Mn(F) is minimal if it is minimal with respect to this
partial order.

Lemma

Let A,B ∈Mn(F). Then C (A)⊆ C (B) if and only if B ∈ F[A].

A matrix A ∈Mn(F) is called non-derogatory if its minimal
polynomial equals its characteristic polynomial. A matrix is
derogatory if it is not non-derogatory.
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Minimal polynomial a power of an irreducible

Theorem
Let n ≥ 2. A matrix A ∈Mn(C) is non-derogatory if and only if A
is minimal.

Theorem (Dolinar, Guterman, Kuzma, Oblak, 2013)
Let n ≥ 2 and F an arbitrary field. If A ∈Mn(F) is
non-derogatory then A is minimal.

Theorem (Dolinar, Guterman, Kuzma, Oblak, 2013)
Let n ≥ 2 and F a field with |F| ≥ n. Then a matrix A ∈Mn(F) is
non-derogatory if and only if A is minimal.
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Definitions
History

Spectrum in Z2
Minimal polynomial a power of an irreducible

For a polynomial m(x) = x r +br−1x r−1 + . . .+b1x +b0 ∈ F[x ] of
degree r , let C(m) ∈Mr (F) denote the companion matrix of m

C(m) =


0 0 0 . . . −b0
1 0 0 . . . −b1

. . . . . .
...

0 . . . 1 0 −br−2
0 . . . 0 1 −br−1

 .

Example (Dolinar, Guterman, Kuzma, Oblak, 2013)

Let A = C(m)⊕C(m3) ∈M8(Z2) for m(x) = x2 +x +1 in Z2[x ].
Then A is derogatory and minimal.
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Proposition
Suppose the spectrum of A is either {0} or {1}. Then A is
minimal if and only if A is non-derogatory.

Proof: We only have to prove the implication: A is minimal⇒ A
is non-derogatory.
Suppose A is derogatory. Let λ be the only eigenvalue of A.
The Jordan form of A is Jk1(λ )⊕Jk2(λ )⊕ . . .⊕Jkt (λ ), where
t ≥ 2.
Let X = Jk1(λ +1)⊕Jk2(λ )⊕ . . .⊕Jkt (λ ).
If λ = 0 then A is similar to X (X + I); if λ = 1 then A is similar to
X (X + I)+ I.
So A ∈ F[X ], but X /∈ F[A], since spectrum of X is equal to Z2.
This implies that A is not minimal.
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Example
Let

A = J3(0)⊕J1(0)⊕J1(1) =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 .
Then A is derogatory and minimal. This is the smallest
derogatory minimal matrix.
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History

Spectrum in Z2
Minimal polynomial a power of an irreducible

Outline of the proof: Suppose that A is not minimal. So,
A = p(X ) for some polynomial p and matrix X and
C (X ) 6= C (A).

Case 1: X has an eigenvalue α, which is not in Z2.

Then X is similar to a matrix C(qm)⊕X ′, where q(x) is the the
minimal polynomial of α.

p(α) is either 0 or 1 and p(β ) = p(α) for any other zero β of the
polynomial q.

So, A = p(X ) is similar to Jm(p(α))⊕ . . .⊕Jm(p(α))⊕p(X ′). A
contradiction.
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Case 2: The spectrum of X is equal to Z2.

The polynomial p either maps 0 to 0 and 1 to 1 or vice versa.

Assume p(0) = 0 and p(1) = 1.

X is similar to X0⊕X1, where X0 and X1 + I are nilpotents.

J1(1) is similar to p(X1), so X1 = J1(1), and J3(0)⊕J1(0) is
similar to p(X0).

X0 has at most two Jordan blocks. It is easy to verify, that it
cannot have only one.

So X0 is similar to J3(0)⊕J1(0), and X is similar to A.

Since C (X )⊆ C (A), it follows C (A) = C (X ). A contradiction.
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Theorem
Suppose the spectrum of A is equal to Z2 and the Jordan form
of A is Jk1(0)⊕Jk2(0)⊕ . . .⊕Jkt (0)⊕Jl1(1)⊕Jl2(1)⊕ . . .⊕Jls(1)
for some integers k1 ≥ k2 ≥ . . .≥ kt and l1 ≥ l2 ≥ . . .≥ ls. Then A
is not minimal if and only if at least one of the following
statements holds.

1 t is even and k1 = k2 +1, k3 = k4 +1, . . . , kt−1 = kt +1.
2 t ≥ 3 is odd and k1 = k2 +1, k3 = k4 +1, . . . ,

kt−2 = kt−1 +1, kt = 1.
3 s is even and l1 = l2 +1, l3 = l4 +1, . . . , ls−1 = ls +1.
4 s ≥ 3 is odd and l1 = l2 +1, l3 = l4 +1, . . . , ls−2 = ls−1 +1,

ls = 1.
5 A has at least two equal Jordan blocks, so km = km+1 for

some m or lm = lm+1 for some m.
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Rational canonical form of a matrix over an arbitrary field:

Every matrix A ∈Mn(F) is similar to a unique (up to the order of
the blocks) block diagonal matrix

C =C(m1
k11)⊕. . .⊕C(m1

k1k )⊕. . .⊕C(ml
kl1)⊕. . .⊕C(ml

klk )∈Mn(F),

where m1, . . . ,ml ∈ F[x ] are the distinct, monic irreducible
divisors of the characteristic polynomial f ∈ F[x ] of A and kij is
the largest power of mi , which divides the j-th invariant factor fj
of A.

Suppose now that the minimal polinomial of A ∈Mn(Z2) is a
power of an irreducible polynomial m(x) ∈ Z2[x ].

Then A is similar to a unique block diagonal matrix

C(mk1)⊕C(mk2)⊕ . . .⊕C(mkt )

for some integers k1 ≥ k2 ≥ . . .≥ kt .
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Rational canonical form of a matrix over an arbitrary field:

Every matrix A ∈Mn(F) is similar to a unique (up to the order of
the blocks) block diagonal matrix

C =C(m1
k11)⊕. . .⊕C(m1

k1k )⊕. . .⊕C(ml
kl1)⊕. . .⊕C(ml

klk )∈Mn(F),

where m1, . . . ,ml ∈ F[x ] are the distinct, monic irreducible
divisors of the characteristic polynomial f ∈ F[x ] of A and kij is
the largest power of mi , which divides the j-th invariant factor fj
of A.

Suppose now that the minimal polinomial of A ∈Mn(Z2) is a
power of an irreducible polynomial m(x) ∈ Z2[x ].

Then A is similar to a unique block diagonal matrix

C(mk1)⊕C(mk2)⊕ . . .⊕C(mkt )

for some integers k1 ≥ k2 ≥ . . .≥ kt .
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Theorem
Let A ∈Mn(Z2). If the rational canonical form of A is of the form
C(mk )⊕C(mk ) or C(mk )⊕C(mk+1) for some irreducible
polynomial m(x) ∈ Z2[x ] of degree t ≥ 1 and k ∈ N, then A is
not minimal.

Theorem

Suppose the minimal polynomial of A is p(x) = m(x)k , where
m(x) is an irreducible polynomial of degree r ≥ 3 and k ∈ N.
Then A is minimal if and only if A is non-derogatory.
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polynomial m(x) ∈ Z2[x ] of degree t ≥ 1 and k ∈ N, then A is
not minimal.
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Suppose the minimal polynomial of A is p(x) = m(x)k , where
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Example

Let m1,m2 ∈ Z2[x ] denote the polynomials m1(x) = x3 +x +1,
m2(x) = x3 +x2 +1, and let

B = C(m3
1)⊕C(m1).

Then B is not minimal by above Theorem. However, the matrix

A =

[
B 0
0 C(m2)

]
,

is minimal.
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Theorem
Let n ≥ 2. Suppose the minimal polynomial of A ∈Mn(Z2) is of
the form p(x) = m(x)k , where k ∈ N and
m(x) = x2 +x +1 ∈ Z2[x ] is the irreducible quadratic polynomial
and let C(mk1)⊕C(mk2)⊕ . . .⊕C(mkt ) be the rational canonical
form of A for some integers k = k1 ≥ k2 ≥ . . .≥ kt . Then A is not
minimal if and only if one of the following statements holds.

1 There exists some s ∈ {1,2, . . . , t−1} such that ks = ks+1.
2 t is even and k1 = k2 +1, k3 = k4 +1, . . . , kt−1 = kt +1.
3 t ≥ 3 is odd and k1 = k2 +1, k3 = k4 +1, . . . ,

kt−2 = kt−1 +1, kt = 1.
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Thank you!
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