Fractional Universal Algebra

Andrei Krokhin Durham University, UK

The Valued Constraint Satisfaction Problem (VCSP)

- Fix a finite set *D*.
- A valued constraint (of arity m) over a set of variables V is an expression of the form R(x) where R : D^m → Q_{≥0} ∪ {∞} and x ∈ V^m.
- The Valued Constraint Satisfaction Problem (VCSP):
 - An instance I of VCSP is a function

$$R_I(x_1,\ldots,x_n)=\sum_{i=1}^q R_i(\mathbf{x}_i)$$

where each $R_i(\mathbf{x}_i)$ is a valued constraint over $V_l = \{x_1, \ldots, x_n\}$.

- The goal is to find a mapping $\varphi: V_I \rightarrow D$ that minimises R_I .
- Valued constraint language = any finite set Γ of functions on D.
- $\text{VCSP}(\Gamma)$ = all VCSP instances in which every R_i is from Γ .
- Want: full classification of problems VCSP(Γ) wrt tractability (assuming PTIME ≠ NP).

Special case 1

- Recall: minimize $R_i(x_1,\ldots,x_n) = \sum_{i=1}^q R_i(\mathbf{x}_i)$
- Special case 1: $\operatorname{Im}(R) = \{0, \infty\}$ for each $R \in \Gamma$, $\operatorname{VCSP}(\Gamma) = \operatorname{CSP}(\Gamma)$.
- Computational issue: feasibility, not optimisation
- Galois correspondence between relations and operations
- f is a polymorphism of R if

$$f \dots f$$

$$R (a_{11}, \dots, a_{1m}) = 0$$

$$\vdots \vdots \dots \vdots \dots$$

$$R (a_{n1}, \dots, a_{nm}) = 0$$

$$R \quad (b_1, \ldots, b_m) = 0$$

- Tractability of $\mathrm{CSP}(\Gamma)$ is characterised by polymorphisms of Γ
- Polymorphisms form clones superposition-closed sets of operations
- Much progress via clones, universal algebras, varieties.
- Dichotomy Conjecture: tractable if Taylor polymorphism, NP-c o/w

Special case 2

- Recall: minimize $R_i(x_1, \ldots, x_n) = \sum_{i=1}^q R_i(\mathbf{x}_i)$
- Special case 2: $\operatorname{Im}(R) \subseteq \mathbb{Q}_{\geq 0}$ for each $R \in \Gamma$.
- Finite-valued VCSPs
- Computational issue: optimisation, not feasibility
- Galois correspondence between rational-valued functions and fractional operations [Cohen, Cooper, Jeavons'06]
 - Proof uses Farkas' lemma from the theory of linear programming
- Tractability characterised by fractional polymorphisms.

Fractional polymorphisms

- An *n*-ary fractional operation on *D* is a probability distribution μ on the set $\{f \mid f : D^n \to D\}$ of all *n*-ary operations on *D*.
- For a function $R: D^n \to \mathbb{Q}_{\geq 0}$, a fractional operation μ is said to be a fractional polymorphism of R if, for all $\mathbf{a}_1, \ldots, \mathbf{a}_n \in D^m$,

$$\mathbb{E}_{f\sim\mu}(R(f(\mathbf{a}_1,\ldots,\mathbf{a}_n)))\leq \frac{1}{n}\cdot(R(\mathbf{a}_1)+\ldots R(\mathbf{a}_n)),$$

or, in expanded form,

$$\sum_{f:D^n\to D} \Pr_{\mu}[f] \cdot R(f(\mathbf{a}_1,\ldots,\mathbf{a}_n)) \leq \frac{1}{n}(R(\mathbf{a}_1)+\ldots+R(\mathbf{a}_n)).$$

For a function R : Dⁿ → Q_{≥0}, being submodular on a lattice (D, ∨, ∧) means having the binary fractional polymorphism with Pr[∨] = Pr[∧] = 1/2

$$\frac{1}{2} \cdot R(\mathbf{a}_1 \vee \mathbf{a}_2) + \frac{1}{2} \cdot R(\mathbf{a}_1 \wedge \mathbf{a}_2) \leq \frac{1}{2} \cdot (R(\mathbf{a}_1) + R(\mathbf{a}_2)).$$

Dichotomy for finite valued VCSPs

Theorem (Thapper, Živný '12; Kolmogorov '12; Thapper, Živný '13) $VCSP(\Gamma)$ is tractable iff Γ has a binary commutative fractional polymorphism.

- A binary fractional polymorphism μ is commutative if each operation f in supp(μ) = {f | Pr_μ[f] > 0} is commutative.
- One algorithm based on linear programming works for all tractable cases.
- Proofs use a combination of techniques from LP and clone theory.
- Curiously, the tractability condition is equivalent to requiring either
 - one binary fractional polymorphism μ with commutative f in $\mathrm{supp}(\mu)$, or
 - symmetric fractional polymorphisms of all arities

Tight dichotomy for |D| = 3

Theorem (Huber, AK, Powell '12)

Let |D| = 3. If we can name the elements of D as -1, 0, 1 so that

- Γ is submodular wrt -1 < 0 < 1 or
- Γ is α -bisubmodular for some rational $\alpha \in (0, 1]$

then $\operatorname{VCSP}(\Gamma)$ is tractable. Otherwise, $\operatorname{VCSP}(\Gamma)$ is **NP**-hard.

- submodularity wrt -1 < 0 < 1 = having binary fractional polymorphism with $Pr[\lor] = Pr[\land] = 1/2$ (where $\lor = max$ and $\land = min wrt -1 < 0 < 1$)
- α -bisubmodularity wrt -1 > 0 < 1 = having binary fractional polymorphism with $\Pr[\lor_0] = \alpha/2$, $\Pr[\lor_1] = (1 \alpha)/2$, $\Pr[\land_0] = 1/2$, where
 - $1 \vee_0 -1 = -1 \vee_0 1 = 0$ and $x \vee_0 y = \max(x, y)$ otherwise
 - $1 \vee_1 1 = -1 \vee_1 1 = 1$ and $x \vee_1 y = \max(x, y)$ otherwise
 - $1 \wedge_0 -1 = -1 \wedge_0 1 = 0$ and $x \wedge_0 y = \min(x, y)$ otherwise

here max and min are wrt the order -1 > 0 < 1.

VCSP: The general case

- Recall: minimize $R_i(x_1, \ldots, x_n) = \sum_{i=1}^q R_i(\mathbf{x}_i)$
- Computational issues: both feasibility and optimisation
- Tractability of $\mathrm{VCSP}(\Gamma)$ is determined by weighted polymorphisms of Γ
- An *n*-ary weighted polymorphism of Γ is a probability distribution on the set of *n*-ary polymorphisms of Γ

$$\begin{array}{cccc} f & \dots & f \\ R & (a_{11}, & \dots & , a_{1m}) & < \infty \\ \vdots & \vdots & & \vdots & \vdots \\ R & (a_{n1}, & \dots & , a_{nm}) & < \infty \end{array}$$

R $(b_1, \ldots, b_m) < \infty$

satisfying the same inequality as for fractional polymorphisms.

- Galois correspondence between general-valued functions and weighted operations [Cohen,Cooper,Creed,Jeavons,Živný '13]
- Dichotomies known for special cases:
 - $D = \{0, 1\}$ [Cohen, Cooper, Jeavons, AK '06]
 - Γ contains all 0-1 valued unaries [Kolmogorov, Živný '12]

Fractional universal algebra

- Fractional algebras: algebras with fractional operations
- New challenge: build a theory of fractional algebras
- Cohen et al. started a VCSP-oriented theory of weighted clones: they provide a Galois correspondence and characterisations of Galois-closed sets
- Not much is know beyond that: this direction is wide open!