On multisemigroups

Ganna Kudryavtseva

University of Ljubljana

based on a joint work with Volodymyr Mazorchuk (Uppsala)

NSAC 2013 Novi Sad, Serbia

Definition

- *S* a set
- $m: S \times S \rightarrow \mathcal{P}(S)$ a map
- m is called 'multivalued multiplication'
- (S, m) is a multisemigroup if m is associative: for any $a, b, c \in S$

$$\bigcup_{x \in m(a,b)} m(x,c) = \bigcup_{x \in m(b,c)} m(a,x)$$

- We write $a \cdot b$ or $a \circ b$ or ab etc. instead of m(a, b)
- Any semigroup is a multisemigroup whose multiplication is single-valued
- A multisemigroup (S, *) is called a hypergroup if the reproduction axiom holds: S * a = a * S = S for all a ∈ S.

- Definition of multistructures F. Marty, 1934 (at least).
- H. Campaigne, M. Dresher, O. Ore, H. S. Wall in 1930th, more recent M. Koskas, A. Hasankhani, T. Vougiouklis, M. Krasner, M. Marshall, O. Viro and many others....
- Multirings, multifields: M. Krasner, 1956, M. Marshall 2006, O. Viro, 2010.
- V Mazorchuk and V. Miemietz: multisemigroups appear naturally in higher representation theory and categorification, 2011, 2012.

First examples

One-element multisemigroups

$$S = \{a\}$$
. (i) $a * a = a$, (ii) $a * a = \emptyset$.

One-element multisemigroups

$$S = \{a\}$$
. (i) $a * a = a$, (ii) $a * a = \emptyset$.

Inflation of multisemigroups

(S, *) — a multisemigroup, X — a set, $f : X \to S$ — a surjection. For $x, y \in X$ define $x *_f y := \{z \in X \mid f(z) \in f(x) * f(y)\}$. $(X, *_f)$ is a multisemigroup called *inflation* of S with respect to f. One-element multisemigroups

$$S = \{a\}$$
. (i) $a * a = a$, (ii) $a * a = \emptyset$.

Inflation of multisemigroups

(S, *) — a multisemigroup, X — a set, $f : X \to S$ — a surjection. For $x, y \in X$ define $x *_f y := \{z \in X \mid f(z) \in f(x) * f(y)\}$. $(X, *_f)$ is a multisemigroup called *inflation* of S with respect to f.

The trivial multisemigroups

For any S there are two trivial multisemigroup structures on S: (S, \diamond) and (S, \bullet) : $s \diamond t := \emptyset$ for all $s, t \in S$ — inflation of (ii), $s \bullet t := S$ for all $s, t \in S$ — inflation of (i).

- (S, \cdot) a semigroup.
- $f: S \to \mathcal{P}(S)$ a map.
- For $a, b \in S$ define a * b := f(a)f(b).
- If for any a, b ∈ S we have f(f(a)f(b)) = f(a)f(b), then (S,*) is a multisemigroup.
- Indeed, (a * b) * c = a * (b * c) = f(a)f(b)f(c).

 (G, ·) — a group, H < G. f : G → P(G), given by a → Ha, satisfies the reproductive condition, so (G, *) is a multisemigroup.

- (G, ·) a group, H < G. f : G → P(G), given by a → Ha, satisfies the reproductive condition, so (G, *) is a multisemigroup.
- (M, \cdot) a monoid. $f : S \to \mathcal{P}(M)$, given by $a \mapsto Ma$, satisfies the reproductive condition, so (M, *) is a multisemigroup.

- (G, ·) a group, H < G. f : G → P(G), given by a → Ha, satisfies the reproductive condition, so (G, *) is a multisemigroup.
- (M, ·) a monoid. f : S → P(M), given by a → Ma, satisfies the reproductive condition, so (M, *) is a multisemigroup.
- A an alphabet. f : A^{*} → P(A^{*}), sending u to the set of all its scattered subwords, satisfies the reproductive condition, so (A^{*}, *) is a multisemigroup.

(S, ·) — a (multi)semigroup. A (multi)semigroup (S, ∘) is called an interassociate of (S, ·) if for any a, b, c ∈ S:

$$(a \cdot b) \circ c = a \cdot (b \circ c)$$
 and $(a \circ b) \cdot c = a \circ (b \cdot c)$.

- For $a, b \in S$ set $a * b := (a \cdot b) \cup (a \circ b)$. (S, *) is a multisemigroup.
- For example: (S, \bowtie) a (multi)semigroup, $X, Y \subseteq S$. For $a, b \in S$ set

$$a \cdot b := a \bowtie X \bowtie b$$
, and $a \circ b := a \bowtie Y \bowtie b$.

 (S, \cdot) and (S, \circ) are variants of (S, \bowtie) and each of them is an interassociate of the other.

Multisemigroups of positive bases of associative algebras

- A an associative algebra over some subring of real numbers.
- Assume that A has a basis $\mathbf{a} := \{a_i \mid i \in S\}$ with non-negative structure constants:

$$a_ia_j = \sum_{k\in \mathcal{S}} c_{i,j}^k a_k$$
 and $c_{i,j}^k \ge 0$ for all $i,j,k\in \mathcal{S}.$

• Define
$$*$$
: for $i, j \in S$ set

$$i * j := \{k \mid c_{i,j}^k > 0\}.$$

- (S, *) is a multisemigroup.
- A similar construction works for the Boolean semiring $\mathbb{B} := \{0, 1\}$.

Connection with quantales

(S,*) — multisemigroups. P(S) inherits the natural structure of a semigroup by setting, for A, B ∈ P(S),

$$A * B := \bigcup_{a \in A, b \in B} a * b.$$

• $(\mathcal{P}(S), *)$ — semigroup. Moreover,

 $A * (\cup_i B_i) = \cup_i (A * B_i)$ and $(\cup_i B_i) * A = \cup_i (B_i * A)$.

Connection with quantales

(S,*) — multisemigroups. P(S) inherits the natural structure of a semigroup by setting, for A, B ∈ P(S),

$$A * B := \bigcup_{a \in A, b \in B} a * b.$$

• $(\mathcal{P}(S), *)$ — semigroup. Moreover,

 $A * (\cup_i B_i) = \cup_i (A * B_i)$ and $(\cup_i B_i) * A = \cup_i (B_i * A).$

• So $(\mathcal{P}(S), *)$ is a quantale (a sup-lattice with an associative product, which distributes over arbitrary joins).

Connection with quantales

(S,*) — multisemigroups. P(S) inherits the natural structure of a semigroup by setting, for A, B ∈ P(S),

$$A * B := \bigcup_{a \in A, b \in B} a * b.$$

• $(\mathcal{P}(S), *)$ — semigroup. Moreover,

$$A*(\cup_i B_i) = \cup_i (A*B_i)$$
 and $(\cup_i B_i)*A = \cup_i (B_i*A).$

- So (P(S), *) is a quantale (a sup-lattice with an associative product, which distributes over arbitrary joins).
- Conversely, if (Q, ≤, *) is a quantale such that (Q, ≤) is a complete atomic Boolean algebra, then it induces the structure of a multisemigroup on the set S = S(Q) of atoms of Q.
- So multisemigroups can be viewed at as complete atomic Boolean algebras with quantale structure.

Homomorphisms

Let (S, *) and (T, \bullet) be multisemigroups.

 A strong homomorphism from S to T is a map φ : S → T such that for any a, b ∈ S

$$\bigcup_{s\in a*b}\varphi(s)=\varphi(a)\bullet\varphi(b).$$

A weak homomorphism from S to T is a map φ : S → P(T) such that for any a, b ∈ S we have

$$\bigcup_{s\in a*b}\varphi(s)=\varphi(a)\bullet\varphi(b).$$

The category of multisemigroups with strong (weak) homomorphisms is equivalent to the category of complete atomic Boolean quantales with frame (sup-lattice) quantale homomorphisms.

Multisemigroups of ultrafilters

- Inspired by M. Gehrke, S. Grigorieff, J.-E. Pin "A topological approach to recognition".
- M monoid, $L \subseteq M$, $s, t \in M$. The quotient $s^{-1}Lt^{-1}$ of L is

 $s^{-1}Lt^{-1} = \{x \in M \colon sxt \in M\}.$

- B Boolean algebra of subsets of M that is closed under quotients. The syntactic congruence on M: $u \sim_B v$ iff for each $L \in B$ we have $u \in L$ if and only if $v \in L$.
- M/\sim_B is the syntactic monoid of B.
- Assume *M* is the syntactic monoid of *B*. \hat{M} is the dual space of *B*. Its elements correspond to ultrafilters of *B*. Elements of *M* correspond to principal ultrafilters.
- The multiplication of *M* extends to a multisemigroup multiplication ∗ on *M*̂: If *p*, *q* ∈ *M*̂ we set

$$p * q = \{f \in \hat{M} \colon f \supseteq \{XY : X \in p, Y \in q\}^{\uparrow}\}.$$

Multisemigroups of ultrafilters: examples

(see GGP, example 3.1) M — discrete monoid. B = P(M). Its syntactic monoid is M, and M̂ = β(M). The multisemigroup multiplication * on β(M) is

$$p * q = \{f \in \beta(M) \colon f \supseteq \{XY : X \in p, Y \in q\}^{\uparrow}\}.$$

 (see GGP, example 3.2) M = (Z, +). B — the Boolean algebra of finite and cofinite subsets of M. Its syntactic monoid is M, and *M* = Z ∪ {∞}, + extends to +:

Ĥ	i	∞
j	$\{i+j\}$	$\{\infty\}$
∞	$\{\infty\}$	$\mathbb{Z}\cup\{\infty\}$

Zero elements

An element $z \in S$ is called a zero element if for every $a \in S$ a * z = z * a = z. It is unique, if exists, denote it by 0.

Let (S,*) be a multisemigroup with zero 0 and assume that S ≠ {0}. Then for any a, b ∈ S, a * b ≠ Ø. Let T := S \ {0} and for a, b ∈ T set a • b := a * b \ {0}. Then (T, •) is a multisemigroup

Zero elements

An element $z \in S$ is called a zero element if for every $a \in S$ a * z = z * a = z. It is unique, if exists, denote it by 0.

- Let (S, *) be a multisemigroup with zero 0 and assume that $S \neq \{0\}$. Then for any $a, b \in S$, $a * b \neq \emptyset$. Let $T := S \setminus \{0\}$ and for $a, b \in T$ set $a \bullet b := a * b \setminus \{0\}$. Then (T, \bullet) is a multisemigroup
- Let (S,*) be a multisemigroup without zero. Put S⁰ := S ∪ {0} (we assume 0 ∉ S) and for a, b ∈ S⁰ define

$$a \bullet b := egin{cases} a * b; & a, b \in S, \ a * b
eq arnothing; \ 0, & ext{otherwise}. \end{cases}$$

Then (S^0, \bullet) is a multisemigroup with zero 0.

• So, without loss, we can consider multisemigroups without a zero element.

- A subset $I \subset S$ is called a left ideal if for any $a \in I$ and $s \in S$, $s * a \subset I$.
- For every a ∈ S the set S¹ * a is called the principal left ideal generated by a.
- The left pre-order \leq_L : $a \leq_L b$ if and only if $S^1 * b \subset S^1 * a$.
- The definitions above can be modified to right and two-sided cases .
- One can define Green's relations \mathcal{L} , \mathcal{R} , \mathcal{D} , \mathcal{H} and \mathcal{J} .
- S is called simple if for any $a \in S$, $S^1 * a * S^1 = S$, that is S has a unique \mathcal{J} -class.

 $(2,1) \cdot (1,2) = ?$

$$(2,1) \cdot (1,2) = (2,2)$$

in a rectangular band

 $(2,1)*(1,2) = \{(2^{\downarrow},2^{\downarrow})\} \\ \{(1,1),(1,2),(2,1),(2,2)\}$

in a multisemigroup

 $\begin{array}{l} (2,1)*(1,2)=\{(2^{\downarrow},2^{\downarrow})\}\\ \{(1,1),(1,2),(2,1),(2,2)\}\end{array}$

in a multisemigroup

 $\{1, \ldots, n\} \times \{1, \ldots, n\}$: $(i, j) \cdot (k, l) = \{(p, q) : p \le i, q \le l\}$. What are the Green's relations? This finite multisemigroup is bisimple, but $S^1 * (1, 1) \subsetneq S^1 * (1, 2)$, and similarly for right principal ideals (this differs from what holds for semigroups!)

$$egin{aligned} &i,j) \cdot (k,l) = (i,j) * (k,l) \setminus (2,2) \ &\{(2,1),(1,2)\} \in \mathcal{L} \circ \mathcal{R} \ &\{(2,1),(1,2)\}
otin \mathcal{R} \circ \mathcal{L} \end{aligned}$$

Strongly simple multisemigroups

- We assume that S does not have 0 and that ideals are non-empty.
- An element $s \in S$ will be called a quark provided that $S^1 * s$ is a minimal left ideal and $s * S^1$ is a minimal right ideal.
- Q(S) the set of all quarks in (S, *) the support of S.
- A simple multisemigroup (S,*) will be called strongly simple if S = Q(S).

Proposition

Let (S, *) be a multisemigroup. If (S, *) contains only one \mathcal{H} -class, then either $S \cong \mathbf{0}$ ($\mathbf{0} = \{0\}$ with $0 * 0 = \emptyset$) or S is a hypergroup.

Proposition

Assume $Q(S) \neq \emptyset$. Then:

(a) Q(S) is a submultisemigroup.

(b) Q(S) is the disjoint union of its intersections with \mathcal{J} -classes of S.

Theorem (Structure of strongly simple multisemigroups)

Let (S, *) be a strongly simple multisemigroup.

- (a) For any $a, b \in S$: $\mathcal{L}_a \cap \mathcal{R}_b \neq \emptyset$.
- (b) If H is an H-class then either $H * H = \emptyset$ or H is a hypergroup.
- (c) For $a, b \in S$: $a * b \neq \emptyset$ if and only if $\mathcal{L}_a \cap \mathcal{R}_b$ is a hypergroup.
- (d) Assume S ≇ 0. Then every *L*-class and every *R*-class in S contains at least one hypergroup *H*-class.
- (e) Let aRb and s ∈ S¹ be such that b ∈ a * s. The map x → x * s is a multivalued surjective map from L_a to L_b that preserves both R- and H-classes.
- (f) Assume $S \not\cong \mathbf{0}$. Let I be a minimal left ideal of S and J a minimal right ideal of S. Then $I \cap J = J * I$.

A simple multisemigroup with not strongly simple support

$$(1,1) (1,2) (2,1) (2,2)$$

$$(S,*):$$

 $(i,j)*(k,l) = \{(i^{\downarrow},l^{\downarrow})\}$

A simple multisemigroup with not strongly simple support

 τ

$$(1,1) (1,2) (1,2) (2,1) (2,2)$$

$$egin{aligned} \mathcal{T} &= \mathcal{S} \cup (1',1') \ &\pi: \mathcal{T} o \mathcal{S}: \ \pi(a) &= a, a \in \mathcal{S}; \pi((1',1')) = (1,1) \end{aligned}$$

 $\circ: T \times T \to \mathcal{P}(T)$:

$$x \circ y = \begin{cases} \pi(x) * \pi(y), & x \in \{(1,1), (1',1'), (1,2)\} \text{ and} \\ y \in \{(1,1), (1',1'), (2,1)\}; \\ (\pi(x) * \pi(y)) \cup (1',1'), & \text{otherwise} . \end{cases}$$

 (T, \circ) is a multisemigroup. $Q(T) = \{(1, 1), (1', 1')\}$. But $Q(T) \circ Q(T) = \{(1, 1)\}$ and hence Q(T) is not a hypergroup.