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Identification minors

Assume that n ≥ 2, and let f : An → B.

For each I ∈
(n

2

)
, define the function fI : An−1 → B as

fI(a1, . . . ,an−1) = f (a1, . . . ,amax I−1,amin I ,amax I , . . . ,an−1),

for all a1, . . . ,an−1 ∈ A.

The function fI is referred to as an identification minor of f .

Functions f : An → B and g : An → B are equivalent if there exists a
permutation σ : [n]→ [n] such that

f (a1, . . . ,an) = g(aσ(1), . . . ,aσ(n))

for all a1, . . . ,an ∈ An.
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Identification minors – examples

Example

Let f : R3 → R, f (x1, x2, x3) = x1x2 − x1x3.
The identification minors of f are the following:

f{1,2}(x1, x2) = x2
1 − x1x2,

f{1,3}(x1, x2) = x1x2 − x2
1 ,

f{2,3}(x1, x2) = 0.
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Identification minors – examples

Example
Let n ≥ 2 and let f : {0,1}n → {0,1} be given by the rule

f (x1, . . . , xn) = x1 + x2 + · · ·+ xn

(addition modulo 2).
For every I ∈

(n
2

)
, the identification minor fI is equivalent to the function

g : {0,1}n−1 → {0,1},

g(x1, . . . , xn−1) = x1 + · · ·+ xn−2.
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Reconstruction problem for functions

Assume that n ≥ 2 and f : An → B.

1 The deck of f , denoted deck f , is the multiset {fI/≡ : I ∈
(n

2

)
}. Any

element of the deck of f is called a card of f .
2 A function g : An → B is a reconstruction of f , if deck f = deck g.
3 A function is reconstructible if it is equivalent to all of its

reconstructions.
4 A class C ⊆ FAB of functions is reconstructible, if all members of C

are reconstructible.
5 A class C ⊆ FAB is weakly reconstructible, if for every f ∈ C, all

reconstructions of f that are members of C are equivalent to f .
6 A class C ⊆ FAB is recognizable, if all reconstructions of members

of C are members of C.
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Reconstruction problem for functions

Question
Let A and B be sets with at least two elements, and let n be an integer
greater than or equal to 2. Is every function f : An → B reconstructible?
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Reconstruction problem for functions

Let f : An → B. If n ≤ |A|, then the set

An
6= := {(a1, . . . ,an) ∈ An : ai 6= aj whenever i 6= j}

is nonempty.

The points in An
6= play no role in the identification minors of f .

Therefore, if g : An → B is another function such that f (a) = g(a) for all
a ∈ An \ An

6=, then deck f = deck g. Thus, for every f : An → B, it is easy
to devise a function g : An → B such that f 6≡ g and deck f = deck g.

Thus, the answer to the Question is negative unless n > |A|.

This also shows that if A is infinite, then no function f : An → B is
reconstructible.
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Functions with a unique identification minor

A function f : An → B has a unique identification minor, if fI ≡ fJ for all
I, J ∈

(n
2

)
.

Example
Functions with a unique identification minor:

2-set-transitive functions,
functions weakly determined by the order of first occurrence.

Problem
Determine all functions with a unique identification minor.
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Invariance groups

A function f : An → B is invariant under a permutation σ ∈ Σn, if for all
a1, . . . ,an ∈ A, it holds that

f (a1, . . . ,an) = f (aσ(1), . . . ,aσ(n)).

The set of all permutations under which f is invariant is denoted by
Inv f .
(Inv f ; ◦) is a group, called the invariance group of f .

A function f is totally symmetric, if Inv f = Σn.

A permutation group G is 2-set-transitive if for all I, J ∈
(n

2

)
, there exists

a permutation σ ∈ G such that σ[I] = J.
A function f is 2-set-transitive if Inv f is 2-set-transitive.
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Functions determined by the order of first occurrence

We define the map ofo :
⋃
n≥1

An →
⋃
n≥1

An
6= as follows:

given a tuple a ∈ An, ofo(a) is the tuple obtained from a by removing all
repeated occurrences of elements in a, retaining only the first
occurrence of each element.

Example
ofo(1,3,5,7,9) = (1,3,5,7,9)
ofo(2,0,1,3,0,6,0,7) = (2,0,1,3,6,7)
ofo(3,5,2,4,6,6,6,4,4,6,8,4,8) = (3,5,2,4,6,8)
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Functions determined by the order of first occurrence

We say that f : An → B is determined by the order of first occurrence if
there exists a map f ∗ :

⋃
n≥1

An
6= → B such that f = f ∗ ◦ ofo|An .

We say that f : An → B is weakly determined by the order of first
occurrence if there exists a function g : An → B that is determined by
the order of first occurrence and f ≡ g.
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Some reconstructible families of functions

Theorem
Assume that n ≥ k + 2 and |A| = k. If f : An → B is totally symmetric,
then f is reconstructible.

Theorem
Assume that n ≥ k + 2 and |A| = k. If f : An → B is determined by
(pr, supp), then f is reconstructible.

Theorem
Assume that n and k are positive integers such that

k ≡ 1,2 (mod 4) and n ≥ k + 2, or
k ≡ 0,3 (mod 4) and n ≥ k + 3.

Let f ,g : An → B be functions that are weakly determined by the order
of first occurrence. If deck f = deck g, then f ≡ g.
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Linear and affine functions

Let (A; +, ·) be a nonassociative right semiring, i.e., an algebra such
that

(A; +) is a commutative monoid with neutral element 0,
(A; ·) is a groupoid with right identity 1,
(a + b) · c = a · c + b · c,
a · 0 = 0.

(A; +, ·) is cancellative if a + b = a + c implies b = c.

A function f : An → A is affine over (A; +, ·) if

f (x1, . . . , xn) = a1x2 + · · ·+ anxn + c

for some a1, . . .an, c ∈ A. If c = 0, then f is linear.
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Linear and affine functions

An affine function is uniquely determined (up to equivalence) by the
multiset of its coefficients a1, . . . ,an and the constant term c.
The reconstruction problem for affine functions is essentially the same
thing as a reconstruction problem for multisets as formulated below.

Let (A; +) be a commutative groupoid. Let M = 〈m1, . . . ,mn〉 be a
multiset of cardinality n ≥ 2 over A. The cards of M are the multisets of
cardinality n − 1 of the form

M \ 〈mi ,mj〉 ] 〈mi + mj〉

for all {i , j} ∈
(n

2

)
.
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Linear and affine functions

Theorem
Let (A; +) be a commutative groupoid, and let M and M ′ be multisets
of cardinality n over A. Then deck M = deck M ′ if and only if M = M ′ or

n = 2 and M = 〈r , s〉, M ′ = 〈t ,u〉 for some r , s, t ,u ∈ A satisfying
r + s = t + u;
n = 3 and M = 〈r , s, t〉, M ′ = 〈r , r + s, r + t〉 for some r , s, t ∈ A
satisfying r + (r + s) = s, r + (r + t) = t , (r + s) + (r + t) = s + t ;
n = 3 and M = 〈r , s, t〉, M ′ = 〈r + s, r + t , s + t〉 for some
r , s, t ∈ A satisfying (r + s) + (r + t) = r , (r + s) + (s + t) = s,
(r + t) + (s + t) = t ;
n = 4 and M = 〈r , s, t ,u〉, M ′ = 〈r , s, t , v〉 for some r , s, t ,u, v ∈ A
satisfying x + u = v and x + v = u for all x ∈ {r , s, t} and
r + s = s, s + t = t , t + r = r .
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Linear and affine functions

Theorem
Let f ,g : An → A be affine functions over a nonassociative right
semiring (A; +, ·) with n ≥ 4. If f and g are linear or if (G; +, ·) is
cancellative, then deck f = deck g if and only if f ≡ g.

Theorem
Let (A; +, ·) be a finite field of order q. The class of affine functions
over (A; +, ·) of arity at least max(q,3) + 1 is reconstructible.
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Monotone functions

An important special case of monotone functions are the term
operations of a distributive lattice. Each such operation has a unique
representation of the form ∨

S∈S

(∧
i∈S

xi
)

where S ⊆ P([n]) satisfies the condition that no member of S is a
subset of another member of S.

Monotone Boolean functions are precisely the term operations of the
two-element lattice.

It is useful to formulate the reconstruction problem of monotone
functions in terms of Sperner systems, i.e., antichains in the power set
lattice (P(A);⊆).
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Monotone functions

Example
Let f = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).
This corresponds to the Sperner system

A = {{1,2}, {1,3}, {2,3}}

over the set {1,2,3}.
The cards of A are

A12 = {{1}}, A13 = {{1}}, A23 = {{2}},

all of which are isomorphic to the Sperner system {{1}} over {1,2}.
These correspond to projections, which are identification minors of f .
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Monotone functions

We have constructed infinite families of nonreconstructible Sperner
systems.

These translate into families of nonreconstructible distributive lattice
polynomial operations, in particular, monotone Boolean functions.

This was done in different ways so that for one of our families the
associated Boolean functions are members of the clone SM, and for
another family they are members of McU∞.
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Reconstructibility of the clones on {0,1}

Ω

T0 T1

Tc

M

M0 M1Mc

L

L0 L1

Lc

LS

S

Sc

SM

Ω(1)

I∗

I

I0 I1

Ic

U2

TcU2

MU2

McU2
U3

TcU3

MU3

McU3

U∞

TcU∞
MU∞

McU∞

Λ

Λ1Λ0

Λc

W2

TcW2

MW2

McW2
W3

TcW3

MW3

McW3

W∞

TcW∞

MW∞

McW∞

V

V0 V1

Vc

Theorem
Let C be a clone on {0,1}.
If C contains SM, McU∞ or
McW∞, then C(≥n) is not
weakly reconstructible for
every n ≥ 1.
Otherwise (i.e., C is contained
in L, Λ or V) C(≥4) is
reconstructible.
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Thank you for your attention!
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