Reconstructing functions from identification minors

Erkko Lehtonen

University of Luxembourg erkko.lehtonen@uni.lu

joint work with Miguel Couceiro (Université Paris-Dauphine) Karsten Schölzel (University of Luxembourg)

The 4th Novi Sad Algebraic Conference Novi Sad, June 5–9, 2013

Identification minors

Assume that $n \ge 2$, and let $f : A^n \to B$. For each $I \in \binom{n}{2}$, define the function $f_I : A^{n-1} \to B$ as

 $f_{I}(a_{1},\ldots,a_{n-1})=f(a_{1},\ldots,a_{\max I-1},a_{\min I},a_{\max I},\ldots,a_{n-1}),$

for all
$$a_1, \ldots, a_{n-1} \in A$$
.

The function f_l is referred to as an identification minor of f.

Functions $f: A^n \to B$ and $g: A^n \to B$ are equivalent if there exists a permutation $\sigma: [n] \to [n]$ such that

$$f(a_1,\ldots,a_n)=g(a_{\sigma(1)},\ldots,a_{\sigma(n)})$$

for all $a_1, \ldots, a_n \in A^n$.

Assume that $n \ge 2$, and let $f \colon A^n \to B$.

For each $I \in \binom{n}{2}$, define the function $f_I \colon A^{n-1} \to B$ as

$$f_{I}(a_{1},\ldots,a_{n-1})=f(a_{1},\ldots,a_{\max I-1},a_{\min I},a_{\max I},\ldots,a_{n-1}),$$

for all $a_1, \ldots, a_{n-1} \in A$.

The function f_l is referred to as an identification minor of f.

Functions $f: A^n \to B$ and $g: A^n \to B$ are equivalent if there exists a permutation $\sigma: [n] \to [n]$ such that

$$f(a_1,\ldots,a_n)=g(a_{\sigma(1)},\ldots,a_{\sigma(n)})$$

for all $a_1, \ldots, a_n \in A^n$.

Example

Let
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, $f(x_1, x_2, x_3) = x_1 x_2 - x_1 x_3$.

The identification minors of f are the following:

$$\begin{split} f_{\{1,2\}}(x_1,x_2) &= x_1^2 - x_1 x_2, \\ f_{\{1,3\}}(x_1,x_2) &= x_1 x_2 - x_1^2, \\ f_{\{2,3\}}(x_1,x_2) &= 0. \end{split}$$

Example

Let $n \ge 2$ and let $f \colon \{0,1\}^n \to \{0,1\}$ be given by the rule

$$f(x_1,\ldots,x_n)=x_1+x_2+\cdots+x_n$$

(addition modulo 2).

For every $I \in \binom{n}{2}$, the identification minor f_I is equivalent to the function $g: \{0, 1\}^{n-1} \to \{0, 1\}$,

$$g(x_1,\ldots,x_{n-1})=x_1+\cdots+x_{n-2}.$$

Assume that $n \ge 2$ and $f : A^n \to B$.

- The deck of *f*, denoted deck *f*, is the multiset $\{f_I | \equiv I \in {n \choose 2}\}$. Any element of the deck of *f* is called a card of *f*.
- **2** A function $g: A^n \to B$ is a reconstruction of f, if deck f = deck g.
- A function is reconstructible if it is equivalent to all of its reconstructions.
- A class $C \subseteq \mathcal{F}_{AB}$ of functions is reconstructible, if all members of C are reconstructible.
- So A class $C \subseteq \mathcal{F}_{AB}$ is weakly reconstructible, if for every $f \in C$, all reconstructions of *f* that are members of *C* are equivalent to *f*.
- A class $C \subseteq \mathcal{F}_{AB}$ is recognizable, if all reconstructions of members of C are members of C.

Question

Let A and B be sets with at least two elements, and let n be an integer greater than or equal to 2. Is every function $f: A^n \to B$ reconstructible?

$$m{A}_{
eq}^n := \{(m{a}_1, \dots, m{a}_n) \in m{A}^n : m{a}_i
eq m{a}_j ext{ whenever } i
eq j\}$$

is nonempty.

The points in A^n_{\neq} play no role in the identification minors of *f*.

Therefore, if $g: A^n \to B$ is another function such that $f(\mathbf{a}) = g(\mathbf{a})$ for all $\mathbf{a} \in A^n \setminus A^n_{\neq}$, then deck $f = \operatorname{deck} g$. Thus, for every $f: A^n \to B$, it is easy to devise a function $g: A^n \to B$ such that $f \neq g$ and deck $f = \operatorname{deck} g$.

Thus, the answer to the Question is negative unless n > |A|.

$$m{A}_{
eq}^n := \{(m{a}_1,\ldots,m{a}_n) \in m{A}^n : m{a}_i
eq m{a}_j ext{ whenever } i
eq j\}$$

is nonempty.

The points in A_{\neq}^n play no role in the identification minors of *f*.

Therefore, if $g: A^n \to B$ is another function such that $f(\mathbf{a}) = g(\mathbf{a})$ for all $\mathbf{a} \in A^n \setminus A_{\neq}^n$, then deck $f = \operatorname{deck} g$. Thus, for every $f: A^n \to B$, it is easy to devise a function $g: A^n \to B$ such that $f \neq g$ and deck $f = \operatorname{deck} g$.

Thus, the answer to the Question is negative unless n > |A|.

$$m{A}_{
eq}^n := \{(m{a}_1,\ldots,m{a}_n) \in m{A}^n : m{a}_i
eq m{a}_j ext{ whenever } i
eq j\}$$

is nonempty.

The points in A_{\neq}^n play no role in the identification minors of *f*.

Therefore, if $g: A^n \to B$ is another function such that $f(\mathbf{a}) = g(\mathbf{a})$ for all $\mathbf{a} \in A^n \setminus A^n_{\neq}$, then deck $f = \operatorname{deck} g$. Thus, for every $f: A^n \to B$, it is easy to devise a function $g: A^n \to B$ such that $f \neq g$ and deck $f = \operatorname{deck} g$.

Thus, the answer to the Question is negative unless n > |A|.

$$m{A}_{
eq}^n := \{(m{a}_1,\ldots,m{a}_n) \in m{A}^n : m{a}_i
eq m{a}_j ext{ whenever } i
eq j\}$$

is nonempty.

The points in A_{\neq}^n play no role in the identification minors of *f*.

Therefore, if $g: A^n \to B$ is another function such that $f(\mathbf{a}) = g(\mathbf{a})$ for all $\mathbf{a} \in A^n \setminus A^n_{\neq}$, then deck $f = \operatorname{deck} g$. Thus, for every $f: A^n \to B$, it is easy to devise a function $g: A^n \to B$ such that $f \neq g$ and deck $f = \operatorname{deck} g$.

Thus, the answer to the Question is negative unless n > |A|.

$$m{A}^n_{
eq} := \{(m{a}_1,\ldots,m{a}_n) \in m{A}^n: m{a}_i
eq m{a}_j ext{ whenever } i
eq j\}$$

is nonempty.

The points in A_{\neq}^n play no role in the identification minors of *f*.

Therefore, if $g: A^n \to B$ is another function such that $f(\mathbf{a}) = g(\mathbf{a})$ for all $\mathbf{a} \in A^n \setminus A^n_{\neq}$, then deck $f = \operatorname{deck} g$. Thus, for every $f: A^n \to B$, it is easy to devise a function $g: A^n \to B$ such that $f \neq g$ and deck $f = \operatorname{deck} g$.

Thus, the answer to the Question is negative unless n > |A|.

Functions with a unique identification minor

A function $f: A^n \to B$ has a unique identification minor, if $f_I \equiv f_J$ for all $I, J \in \binom{n}{2}$.

Example

Functions with a unique identification minor:

- 2-set-transitive functions,
- functions weakly determined by the order of first occurrence.

Problem

Determine all functions with a unique identification minor.

Functions with a unique identification minor

A function $f: A^n \to B$ has a unique identification minor, if $f_I \equiv f_J$ for all $I, J \in \binom{n}{2}$.

Example

Functions with a unique identification minor:

- 2-set-transitive functions,
- functions weakly determined by the order of first occurrence.

Problem

Determine all functions with a unique identification minor.

Functions with a unique identification minor

A function $f: A^n \to B$ has a unique identification minor, if $f_I \equiv f_J$ for all $I, J \in \binom{n}{2}$.

Example

Functions with a unique identification minor:

- 2-set-transitive functions,
- functions weakly determined by the order of first occurrence.

Problem

Determine all functions with a unique identification minor.

$$f(a_1,\ldots,a_n)=f(a_{\sigma(1)},\ldots,a_{\sigma(n)}).$$

The set of all permutations under which f is invariant is denoted by Inv f.

(Inv f; \circ) is a group, called the invariance group of f.

A function *f* is totally symmetric, if Inv $f = \Sigma_n$.

A permutation group G is 2-set-transitive if for all $I, J \in \binom{n}{2}$, there exists a permutation $\sigma \in G$ such that $\sigma[I] = J$.

$$f(a_1,\ldots,a_n)=f(a_{\sigma(1)},\ldots,a_{\sigma(n)}).$$

The set of all permutations under which f is invariant is denoted by Inv f.

(Inv f; \circ) is a group, called the invariance group of f.

A function *f* is totally symmetric, if Inv $f = \Sigma_n$.

A permutation group G is 2-set-transitive if for all $I, J \in {n \choose 2}$, there exists a permutation $\sigma \in G$ such that $\sigma[I] = J$.

$$f(a_1,\ldots,a_n)=f(a_{\sigma(1)},\ldots,a_{\sigma(n)}).$$

The set of all permutations under which f is invariant is denoted by Inv f.

(Inv f; \circ) is a group, called the invariance group of f.

A function *f* is totally symmetric, if Inv $f = \Sigma_n$.

A permutation group G is 2-set-transitive if for all $I, J \in \binom{n}{2}$, there exists a permutation $\sigma \in G$ such that $\sigma[I] = J$.

$$f(a_1,\ldots,a_n)=f(a_{\sigma(1)},\ldots,a_{\sigma(n)}).$$

The set of all permutations under which f is invariant is denoted by Inv f.

(Inv f; \circ) is a group, called the invariance group of f.

A function *f* is totally symmetric, if $Inv f = \Sigma_n$.

A permutation group *G* is 2-set-transitive if for all $I, J \in \binom{n}{2}$, there exists a permutation $\sigma \in G$ such that $\sigma[I] = J$.

We define the map ofo: $\bigcup_{n\geq 1} A^n \to \bigcup_{n\geq 1} A^n_{\neq}$ as follows:

given a tuple $\mathbf{a} \in A^n$, ofo(\mathbf{a}) is the tuple obtained from \mathbf{a} by removing all repeated occurrences of elements in \mathbf{a} , retaining only the first occurrence of each element.

Example

 $\begin{array}{l} \mathsf{ofo}(1,3,5,7,9) = (1,3,5,7,9) \\ \mathsf{ofo}(2,0,1,3,0,6,0,7) = (2,0,1,3,6,7) \\ \mathsf{ofo}(3,5,2,4,6,6,6,4,4,6,8,4,8) = (3,5,2,4,6,8) \end{array}$

We say that $f: A^n \to B$ is determined by the order of first occurrence if there exists a map $f^*: \bigcup_{n \ge 1} A^n_{\neq} \to B$ such that $f = f^* \circ ofo|_{A^n}$.

We say that $f: A^n \to B$ is weakly determined by the order of first occurrence if there exists a function $g: A^n \to B$ that is determined by the order of first occurrence and $f \equiv g$.

We say that $f: A^n \to B$ is determined by the order of first occurrence if there exists a map $f^*: \bigcup_{n \ge 1} A^n_{\neq} \to B$ such that $f = f^* \circ ofo|_{A^n}$.

We say that $f: A^n \to B$ is weakly determined by the order of first occurrence if there exists a function $g: A^n \to B$ that is determined by the order of first occurrence and $f \equiv g$.

Some reconstructible families of functions

Theorem

Assume that $n \ge k + 2$ and |A| = k. If $f : A^n \to B$ is totally symmetric, then f is reconstructible.

Theorem

Assume that $n \ge k + 2$ and |A| = k. If $f : A^n \to B$ is determined by (pr, supp), then f is reconstructible.

Theorem

Assume that n and k are positive integers such that

- $k \equiv 1,2 \pmod{4}$ and $n \ge k + 2$, or
- $k \equiv 0,3 \pmod{4}$ and $n \ge k + 3$.

Let $f, g: A^n \to B$ be functions that are weakly determined by the order of first occurrence. If deck $f = \operatorname{deck} g$, then $f \equiv g$.

Theorem

Assume that $n \ge k + 2$ and |A| = k. If $f : A^n \to B$ is totally symmetric, then f is reconstructible.

Theorem

Assume that $n \ge k + 2$ and |A| = k. If $f : A^n \to B$ is determined by (pr, supp), then f is reconstructible.

Theorem

Assume that n and k are positive integers such that

- $k \equiv 1,2 \pmod{4}$ and $n \ge k + 2$, or
- $k \equiv 0,3 \pmod{4}$ and $n \ge k+3$.

Let $f, g: A^n \to B$ be functions that are weakly determined by the order of first occurrence. If deck $f = \operatorname{deck} g$, then $f \equiv g$.

Theorem

Assume that $n \ge k + 2$ and |A| = k. If $f : A^n \to B$ is totally symmetric, then f is reconstructible.

Theorem

Assume that $n \ge k + 2$ and |A| = k. If $f : A^n \to B$ is determined by (pr, supp), then f is reconstructible.

Theorem

Assume that n and k are positive integers such that

- $k \equiv 1,2 \pmod{4}$ and $n \ge k + 2$, or
- $k \equiv 0,3 \pmod{4}$ and $n \ge k + 3$.

Let $f, g: A^n \to B$ be functions that are weakly determined by the order of first occurrence. If deck f = deck g, then $f \equiv g$.

Let $(A; +, \cdot)$ be a nonassociative right semiring, i.e., an algebra such that

- (*A*; +) is a commutative monoid with neutral element 0,
- $(A; \cdot)$ is a groupoid with right identity 1,

•
$$(a+b) \cdot c = a \cdot c + b \cdot c$$
,

• $a \cdot 0 = 0$.

 $(A; +, \cdot)$ is cancellative if a + b = a + c implies b = c.

A function $f: A^n \to A$ is affine over $(A; +, \cdot)$ if

$$f(x_1,\ldots,x_n)=a_1x_2+\cdots+a_nx_n+c$$

for some $a_1, \ldots, a_n, c \in A$. If c = 0, then f is linear.

Let $(A; +, \cdot)$ be a nonassociative right semiring, i.e., an algebra such that

- (*A*; +) is a commutative monoid with neutral element 0,
- $(A; \cdot)$ is a groupoid with right identity 1,

•
$$(a+b) \cdot c = a \cdot c + b \cdot c$$
,

• $a \cdot 0 = 0$.

 $(A; +, \cdot)$ is cancellative if a + b = a + c implies b = c.

A function $f: A^n \to A$ is affine over $(A; +, \cdot)$ if

$$f(x_1,\ldots,x_n)=a_1x_2+\cdots+a_nx_n+c$$

for some $a_1, \ldots a_n, c \in A$. If c = 0, then f is linear.

An affine function is uniquely determined (up to equivalence) by the multiset of its coefficients a_1, \ldots, a_n and the constant term *c*.

The reconstruction problem for affine functions is essentially the same thing as a reconstruction problem for multisets as formulated below.

Let (A; +) be a commutative groupoid. Let $M = \langle m_1, \ldots, m_n \rangle$ be a multiset of cardinality $n \ge 2$ over A. The cards of M are the multisets of cardinality n - 1 of the form

$$M \setminus \langle m_i, m_j \rangle \uplus \langle m_i + m_j \rangle$$

for all $\{i, j\} \in \binom{n}{2}$.

Theorem

Let (A; +) be a commutative groupoid, and let M and M' be multisets of cardinality n over A. Then deck M =deck M' if and only if M = M' or

- n = 2 and $M = \langle r, s \rangle$, $M' = \langle t, u \rangle$ for some $r, s, t, u \in A$ satisfying r + s = t + u;
- n = 3 and M = ⟨r, s, t⟩, M' = ⟨r, r + s, r + t⟩ for some r, s, t ∈ A satisfying r + (r + s) = s, r + (r + t) = t, (r + s) + (r + t) = s + t;
- n = 3 and $M = \langle r, s, t \rangle$, $M' = \langle r + s, r + t, s + t \rangle$ for some $r, s, t \in A$ satisfying (r + s) + (r + t) = r, (r + s) + (s + t) = s, (r + t) + (s + t) = t;
- n = 4 and M = ⟨r, s, t, u⟩, M' = ⟨r, s, t, v⟩ for some r, s, t, u, v ∈ A satisfying x + u = v and x + v = u for all x ∈ {r, s, t} and

r + s = s, s + t = t, t + r = r.

Theorem

Let $f, g: A^n \to A$ be affine functions over a nonassociative right semiring $(A; +, \cdot)$ with $n \ge 4$. If f and g are linear or if $(G; +, \cdot)$ is cancellative, then deck f = deck g if and only if $f \equiv g$.

Theorem

Let $(A; +, \cdot)$ be a finite field of order q. The class of affine functions over $(A; +, \cdot)$ of arity at least $\max(q, 3) + 1$ is reconstructible.

An important special case of monotone functions are the term operations of a distributive lattice. Each such operation has a unique representation of the form

$$\bigvee_{S\in\mathcal{S}} \left(\bigwedge_{i\in S} x_i\right)$$

where $S \subseteq \mathcal{P}([n])$ satisfies the condition that no member of S is a subset of another member of S.

Monotone Boolean functions are precisely the term operations of the two-element lattice.

It is useful to formulate the reconstruction problem of monotone functions in terms of Sperner systems, i.e., antichains in the power set lattice $(\mathcal{P}(A); \subseteq)$.

Example

Let $f = (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3)$. This corresponds to the Sperner system

$$\mathcal{A} = \{\{1,2\},\{1,3\},\{2,3\}\}$$

over the set $\{1, 2, 3\}$.

The cards of \mathcal{A} are

 $\mathcal{A}_{12} = \{\{1\}\}, \quad \mathcal{A}_{13} = \{\{1\}\}, \quad \mathcal{A}_{23} = \{\{2\}\},$

all of which are isomorphic to the Sperner system $\{\{1\}\}\$ over $\{1,2\}$. These correspond to projections, which are identification minors of *f*.

- We have constructed infinite families of nonreconstructible Sperner systems.
- These translate into families of nonreconstructible distributive lattice polynomial operations, in particular, monotone Boolean functions.
- This was done in different ways so that for one of our families the associated Boolean functions are members of the clone *SM*, and for another family they are members of $M_c U_{\infty}$.

Reconstructibility of the clones on $\{0, 1\}$

Theorem

Let C be a clone on $\{0, 1\}$. If C contains SM, $M_c U_{\infty}$ or $M_c W_{\infty}$, then $C^{(\geq n)}$ is not weakly reconstructible for every $n \geq 1$.

Otherwise (i.e., C is contained in L, Λ or V) $C^{(\geq 4)}$ is reconstructible.

Thank you for your attention!