Algebraic Models of Computation
 Monoids Are Omnipotent

Nick Loughlin

Newcastle University
Novi Sad Conference June 2013

History

Automata

An automaton consists of:

- A digraph of states and transition;
- Edge labels in a finite alphabet Σ;
- A distinguished start vertex (arrow in);
- A set of distinguished end vertices (drawn with double outlines).

M-automata

An M-automaton \mathcal{A} consists of:

- An underlying automaton \mathcal{B};
- A register with values in M (initialises to 1);
- A transition valence in M for each transition arrow in \mathcal{B}.

Transition: right-multiply transition valence onto register. Accept on \mathcal{B}-accept state only with 1 on register.

Rational Transductions

The following relations in $\Sigma^{*} \times$ Е＊* are rational transductions：
－The finite relations；
－Finite unions of rational transductions；
－Products in $\Sigma^{*} \times$ E＊* of rational transductions；
－Submonoids in $\Sigma^{*} \times$ ミ＊* generated by rational transductions．
Nivat＇s Theorem Let $\tau: \Sigma^{*} \rightharpoonup$ ミ＊*（be a rational transduction）．Then there exists an alphabet Θ and letter－to－letter morphisms $f: \Theta^{*} \rightarrow \Sigma^{*}, g: \Theta^{*} \rightarrow$ ミ＊* and a local regular language $K \subseteq \Theta^{*}$ such that

$$
\tau(x)=g\left(f^{-1}(x) \cap K\right)
$$

M-Languages

Proposition(Kambites-Render '06) The following are equivalent for $L \subseteq \Sigma^{*}$, if M is finitely generated:

- L is accepted by an M-automaton;
- L is a rational transduction of M's identity language w.r.t. some finite $A \subset M$;
- L is a rational transduction of M 's identity language w.r.t. any finite $A \subset M$.

Corollary Let N and M be finitely generated monoids. Then the identity language of N is accepted by an M automaton precisely if every language accepted by an N-automaton is accepted by an M-automaton.

Equivalence of M and N

Proposition(KR '06) Let L be decided by an
M-automaton. Then L is recognised by an N-automaton for some finitely generated $N \leq M$.

Proposition(KR '07) Let $I \unlhd M$ be an ideal. If L is recognised by an M-automaton then L is recognised by M / I.

Corollary "It suffices to consider 0-simple monoids when computing with monoids."

Determinism

An M-automaton is (strongly) deterministic if no letter labels two transitions from a given state, and determinisable if it decides the same language as some deterministic M-automaton.

Proposition(Zetzsche) The following are equivalent for a fixed monoid M :

- Each finitely generated submonoid $N \leq M$ has finitely many elements in $[1]_{\mathcal{J}_{N}}$ (equiv. $[1]_{\mathcal{R}_{N}},[1]_{\mathcal{L}_{N}}$);
- M-automata are determinisable;
- M-automata recognise precisely the regular languages.

Decision Power

Theorem Let L be a language. There exists a monoid $M:=M_{L}$ and an M-automaton that recognises it.

Corollary Let \mathcal{L} be a class of languages. There exists a monoid $M_{\mathcal{L}}$ recognising each language in \mathcal{L}. If \mathcal{L} is a rational cone then \mathcal{L} is precisely the class of languages recognised by $M_{\mathcal{L}}$.

