Algebraic Models of Computation Monoids Are Omnipotent

Nick Loughlin

Newcastle University

Novi Sad Conference June 2013

History

Automata

An automaton consists of:

- A digraph of *states* and *transition*;
- Edge labels in a finite alphabet Σ;
- A distinguished start vertex (arrow in);
- A set of distinguished end vertices (drawn with double outlines).

M-automata

An *M*-automaton \mathcal{A} consists of:

- ► An *underlying* automaton B;
- ► A register with values in *M* (initialises to 1);
- A *transition valence* in M for each transition arrow in \mathcal{B} .

Transition: right-multiply transition valence onto register. Accept on \mathcal{B} -accept state *only* with 1 on register.

Rational Transductions

The following relations in $\Sigma^*\times \Xi^*$ are rational transductions:

- The finite relations;
- Finite unions of rational transductions;
- Products in $\Sigma^* \times \Xi^*$ of rational transductions;
- Submonoids in $\Sigma^* \times \Xi^*$ generated by rational transductions.

Nivat's Theorem Let $\tau : \Sigma^* \to \Xi^*$ (be a rational transduction). Then there exists an alphabet Θ and letter-to-letter morphisms $f : \Theta^* \to \Sigma^*$, $g : \Theta^* \to \Xi^*$ and a local regular language $K \subseteq \Theta^*$ such that

$$\tau(x) = g(f^{-1}(x) \cap K)$$

M-Languages

Proposition(Kambites–Render '06) The following are equivalent for $L \subseteq \Sigma^*$, if M is finitely generated:

- L is accepted by an M-automaton;
- L is a rational transduction of M's identity language w.r.t. some finite A ⊂ M;
- L is a rational transduction of M's identity language w.r.t. any finite A ⊂ M.

Corollary Let N and M be finitely generated monoids. Then the identity language of N is accepted by an Mautomaton precisely if every language accepted by an N-automaton is accepted by an M-automaton.

Equivalence of M and N

Proposition(KR '06) Let L be decided by an M-automaton. Then L is recognised by an N-automaton for some finitely generated $N \le M$.

Proposition(KR '07) Let $I \leq M$ be an ideal. If L is recognised by an M-automaton then L is recognised by M/I.

Corollary "It suffices to consider 0-simple monoids when computing with monoids."

Determinism

An *M*-automaton is (strongly) deterministic if no letter labels two transitions from a given state, and determinisable if it decides the same language as some deterministic *M*-automaton.

Proposition(*Zetzsche*) *The following are equivalent for a fixed monoid M:*

- ► Each finitely generated submonoid N ≤ M has finitely many elements in [1]_{J_N} (equiv. [1]_{R_N}, [1]_{L_N});
- M-automata are determinisable;
- M-automata recognise precisely the regular languages.

Theorem Let L be a language. There exists a monoid $M := M_L$ and an M-automaton that recognises it.

Corollary Let \mathcal{L} be a class of languages. There exists a monoid $M_{\mathcal{L}}$ recognising each language in \mathcal{L} . If \mathcal{L} is a rational cone then \mathcal{L} is precisely the class of languages recognised by $M_{\mathcal{L}}$.