Quasivarietes of symmetric, idempotent and entropic groupoids

Katarzyna Matczak Faculty of Civil Engineering, Mechanics and Petrochemistry in Płock Warsaw University of Technology 09-400 Płock. Poland

> The 4th Novi Sad Algebraic Conference Novi Sad 5-9.06.2013

・ロト ・同ト ・ヨト ・ヨト

2 Quasivarieties of cancellative SIE-groupoids

Quasivarieties of SIE-groupoids

Definition

A symmetric, idempotent and entropic groupoid (G, \cdot) is an algebra satisfying the identities

$$(x \cdot y) \cdot y = x,$$

$$x \cdot x = x,$$

$$(x \cdot y) \cdot (z \cdot t) = (x \cdot z) \cdot (y \cdot t).$$

$$(E)$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A symmetric, idempotent and entropic groupoid (G, \cdot) is an algebra satisfying the identities

$$(x \cdot y) \cdot y = x,$$

$$x \cdot x = x,$$

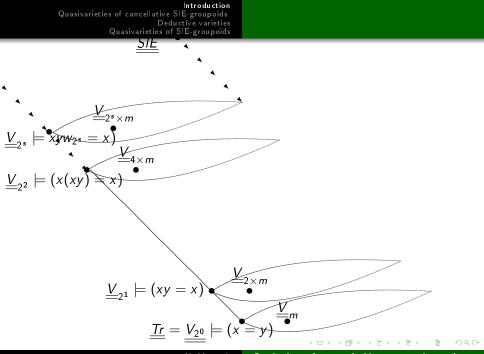
$$(x \cdot y) \cdot (z \cdot t) = (x \cdot z) \cdot (y \cdot t).$$

$$(E)$$

Theorem B. Roszkowska-Lech

The lattice $\mathcal{L}(\underline{SIE})$ of all the subvarieties of the variety \underline{SIE} of symmetric, idempotent and entropic groupoids is isomorphic to the lattice $(\mathbb{N} \cup \{\infty\}, |)$ of positive integers ordered by the divisibility relation with the greatest element ∞ .

・ロト ・同ト ・ヨト ・ヨト



K. Matczak Quasi

Quasivarietes of symmetric, idempotent and entropic group

A SIE-groupoid (G, \cdot) is cancellative if it satisfies the cancellation quasi-identities

(Cl)
$$\begin{cases} (xy = xz) \Rightarrow (y = z) \\ (yx = zx) \Rightarrow (y = z) \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

A SIE-groupoid (G, \cdot) is cancellative if it satisfies the cancellation quasi-identities

(Cl)
$$\begin{cases} (xy = xz) \Rightarrow (y = z) \\ (yx = zx) \Rightarrow (y = z) \end{cases}$$

Denote by $Q(\alpha)$ the quasivariety of *SIE*-groupoids defined by the quasi-identity α . Let \mathbb{Z}_2 be the two-element left zero band with elements 0, 1.

Denote by $N(\mathbb{Z}_2)$ the class of SIE-groupoids with no subalgebra isomorphic to \mathbb{Z}_2 .

$$(\alpha) \quad x \cdot y = x \Rightarrow x = y.$$

Lemma

The following two classes coincide

$$\mathsf{Q}(\alpha) = \mathsf{N}(\mathbb{Z}_2).$$

K. Matczak Quasivarietes of symmetric, idempotent and entropic group

イロト イポト イヨト イヨト

э

$$(\alpha) \quad x \cdot y = x \Rightarrow x = y.$$

Lemma

The following two classes coincide

$$\mathsf{Q}(\alpha) = \mathsf{N}(\mathbb{Z}_2).$$

Theorem

The class \underline{SIE}_{cl} of cancellative SIE-groupoids is a subquasivariety of the variety \underline{SIE} of symmetric, idempotent and entropic groupoids satisfying the quasi-identity:

$$(\alpha) \quad x \cdot y = x \Rightarrow x = y.$$

Belkin's construction of the lattice $K(\omega)$ for the cardinal ω .

Let ω^+ denote $\omega \cup \{\infty\}$. Let $K(\omega)$ be the set of functions

 $f:\omega^+\to\omega^+,$

where $f(\infty) \in \{0, \infty\}$ and $f(\infty) = 0$ implies that $f(\omega) \subseteq \omega$ and f(i) = 0 for almost all $i \in \omega$. Then $\mathcal{K}(\omega)$ is a distributive lattice with respect to the following operations:

 $(f \lor g)(i) = max\{f(i), g(i)\}, \ (f \land g)(i) = min\{f(i), g(i)\},$ where $i < \infty$ for all $i \in \omega$.

Theorem

The lattice $\mathcal{L}_q(\underline{SIE}_{cl})$ of quasivarieties of cancellative symmetric, idempotent and entropic groupoids is isomorphic to the lattice $K(\omega)$:

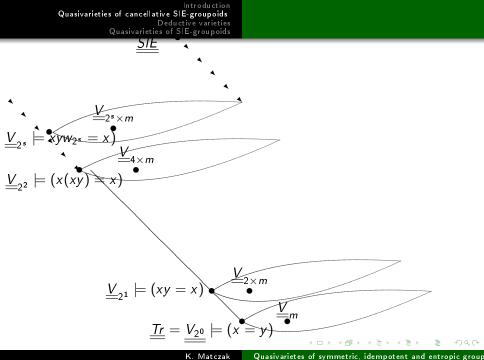
$$\mathcal{L}_q(\underline{\underline{SIE}}_{cl}) \cong K(\omega).$$

Theorem

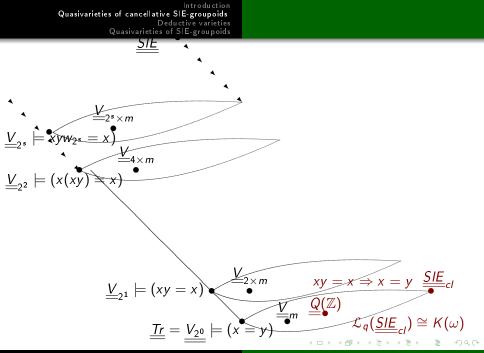
The lattice $\mathcal{L}_q(\underline{SIE}_{cl})$ of quasivarieties of cancellative symmetric, idempotent and entropic groupoids is isomorphic to the lattice $K(\omega)$:

$$\mathcal{L}_q(\underline{\underline{SIE}}_{cl}) \cong K(\omega).$$

The quasivariety $\underline{Q}(\mathbb{Z})$ is a **minimal** quasivariety of the variety <u>SIE</u> and a **minimal** quasivariety of the variety \underline{SIE}_{cl} . It is the minimal quasivariety not contained in any minimal variety.



Quasivarietes of symmetric, idempotent and entropic group



K. Matczak

Quasivarietes of symmetric, idempotent and entropic group

A variety of universal algebras is called **deductive** if every subquasivariety is a variety.

A variety of universal algebras is called **deductive** if every subquasivariety is a variety.

Theorem L.Hogben and C.Bergman

Let $\underline{\underline{V}}$ be residually finite and of finite type, or residually and locally finite. Then $\underline{\underline{V}}$ is deductive if and only if every subdirectly irreducible algebra in $\underline{\underline{V}}$ is primitive.

A variety of universal algebras is called **deductive** if every subquasivariety is a variety.

Theorem L.Hogben and C.Bergman

Let $\underline{\underline{V}}$ be residually finite and of finite type, or residually and locally finite. Then $\underline{\underline{V}}$ is deductive if and only if every subdirectly irreducible algebra in $\underline{\underline{V}}$ is primitive.

An algebra $\mathbf{P} \in \underline{V}$ is **primitive** iff \mathbf{P} is finite, subdirectly irreducible and, for all $\mathbf{A} \in \underline{V}$, $\mathbf{P} \in H(\mathbf{A}) \Rightarrow \mathbf{P} \in IS(\mathbf{A})$.

Lemma

A variety $\underline{\underline{V}}_{m}$ is deductive for any odd natural numer m.

・ロト ・同ト ・ヨト ・ヨト

э

Lemma

A variety $\underline{\underline{V}}_{m}$ is deductive for any odd natural numer m.

Lemma

Let s be a natural number. Then the variety \underline{V}_{2^s} is deductive iff s = 1.

<ロト < 同ト < ヨト < ヨト -

э

Lemma

A variety
$$\underline{\underline{V}}_{m}$$
 is deductive for any odd natural numer m.

Lemma

Let s be a natural number. Then the variety \underline{V}_{2^s} is deductive iff s = 1.

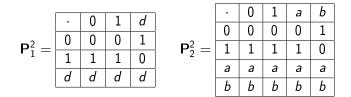
Theorem

Let *m* be an odd natural number and *s* a natural number. Then the variety $\underline{\underline{V}}_{2^sm}$ is deductive iff s = 0 or s = 1.

A variety \underline{V}_{2^sm} for an odd natural number m and a natural number s>1 is not deductive.

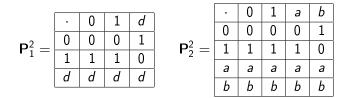
・ロト ・ 同ト ・ ヨト ・ ヨー

Subdirectly irreducible *SIE*-grupoids in \underline{V}_4 were described by J.Plonka. They are two subdirectly irreducible groupoids in \underline{V}_4 . There are $\mathbf{P}_1^2 = (\{0, 1, , d\}, \cdot)$ and $\mathbf{P}_2^2 = (\{0, 1, a, b\}, \cdot)$ with operations defined as follows:



(日) (同) (三) (三)

Subdirectly irreducible *SIE*-grupoids in $\underline{\underline{V}}_4$ were described by J.Plonka. They are two subdirectly irreducible groupoids in $\underline{\underline{V}}_4$. There are $\mathbf{P}_1^2 = (\{0, 1, , d\}, \cdot)$ and $\mathbf{P}_2^2 = (\{0, 1, a, b\}, \cdot)$ with operations defined as follows:



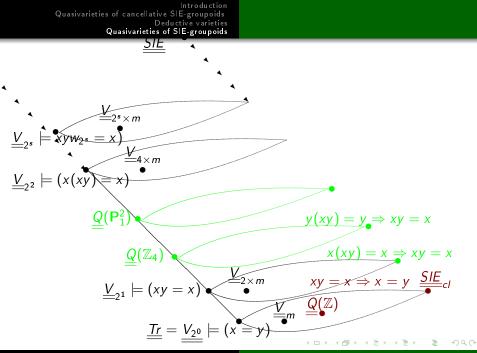
Theorem

The following quasivarieties form a strictly increasing chain:

$$\underline{\underline{V}}_2 \lneq \underline{\underline{Q}}(\mathbb{Z}_4) \lneq \underline{\underline{Q}}(\mathsf{P}_1^2) \lneq \underline{\underline{V}}_4$$

K. Matczak Quasi

Quasivarietes of symmetric, idempotent and entropic group



K. Matczak Quasivarietes of symmetric, idempotent and entropic group

Theorem

The following quasivarieties form a strictly increasing chain:

$$\underline{\underline{Q}}(\mathbb{Z}_2) = \underline{\underline{V}}_2 \lneq \underline{\underline{Q}}(\mathbb{Z}_{2^2}) \lneq \ldots \lneq \underline{\underline{Q}}(\mathbb{Z}_{2^s}) \lneq \ldots$$

Theorem

The following quasivarieties form a strictly increasing chain:

$$\underline{\underline{Q}}(\mathbb{Z}_2) = \underline{\underline{V}}_2 \lneq \underline{\underline{Q}}(\mathbb{Z}_{2^2}) \lneq \ldots \lneq \underline{\underline{Q}}(\mathbb{Z}_{2^s}) \lneq \ldots$$

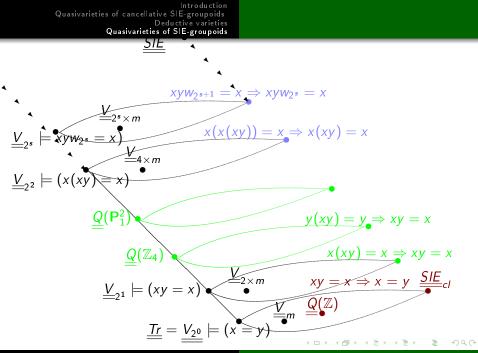
Theorem

The following quasivarieties form a strictly increasing chain:

$$\underline{\underline{Q}}(\mathsf{P}_1^2) \leq \underline{\underline{Q}}(\mathsf{P}_1^{2^2}) \leq \ldots \leq \underline{\underline{Q}}(\mathsf{P}_1^{2^s}) \leq \ldots,$$

where $\mathbf{P}_1^{2^s}$ is a subdirectly irreducible groupoid in $\underline{\underline{V}}_{2^s}$ and $\mathbf{P}_1^{2^s} \notin \underline{\underline{V}}_{2^{s+1}}$, for natural number $s \ge 1$.

・ロト ・ 一日 ト ・ 日 ト ・



K. Matczak Quasivarietes of symmetric, idempotent and entropic group

Introduction Quasivarieties of cancellative SIE-groupoids Deductive varieties

K. Matczak

Quasivarietes of symmetric, idempotent and entropic group