Supernilpotence prevents dualizability

Peter Mayr

JKU Linz, Austria

Novi Sad, June 2013
$\left.\begin{aligned} & \text { JOHANNES KEPLER } \\ & \text { UNIVERSITY LINZ }\end{aligned} \right\rvert\, \mathrm{KU}$
ए \downarrow Г Der Wissenschaftsfonds.

What is a natural duality?

General idea (cf. Clark, Davey, 1998):
(1) A duality is a correspondence between a category of algebras and a category of relational structures with topology.
(2) Representation: Elements of the algebras are represented as continuous, structure preserving maps.
(3) Classical example: Stone duality between Boolean algebras and Boolean spaces (totally disconnected, compact, Hausdorff)
(9) Application, e.g., completions of lattices

\mathbf{A} is dualized by \mathbf{A} if $\forall \mathbf{B} \in \operatorname{ISP}(\mathbf{A})$:

$$
\begin{aligned}
& E D(\mathbf{B})=\left\{e_{b}: \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \rightarrow A, h \mapsto h(b) \mid b \in B\right\} \\
& \text { "Every morphism from } D(B) \text { to } A \text { is an evaluation." }
\end{aligned}
$$

\mathbf{A} is dualized by \mathbf{A} if $\forall \mathbf{B} \in \operatorname{ISP}(\mathbf{A})$:

$$
\begin{aligned}
& E D(\mathbf{B})=\left\{e_{b}: \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \rightarrow A, h \mapsto h(b) \mid b \in B\right\} \\
& \text { "Every morphism from } D(B) \text { to } A \text { is an evaluation." }
\end{aligned}
$$

For a finite algebra $\mathbf{A}=\langle A, F\rangle$, let $\underset{\sim}{\mathbf{A}}=\left\langle A, \mathcal{R}, \tau_{d}\right\rangle$ be an alter ego.

- $\mathcal{R} \subseteq \bigcup_{n \in \mathbb{N}}\left\{B \leq \mathbf{A}^{n}\right\}=: \operatorname{Inv}(\mathbf{A})$
- $\tau_{d} \ldots$ discrete topology on A

\mathbf{A} is dualized by \mathbf{A} if $\forall \mathbf{B} \in \operatorname{ISP}(\mathbf{A})$

$$
\begin{aligned}
& E D^{\prime}(\mathbf{B})=\left\{e_{b}: \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \rightarrow A, h \mapsto h(b) \mid b \in B\right\} \\
& \text { "Every morphism from } D(B) \text { to } A \text { is an evaluation." }
\end{aligned}
$$

For a finite algebra $\mathbf{A}=\langle A, F\rangle$, let $\underset{\sim}{\mathbf{A}}=\left\langle A, \mathcal{R}, \tau_{d}\right\rangle$ be an alter ego.

- $\mathcal{R} \subseteq \bigcup_{n \in \mathbb{N}}\left\{B \leq \mathbf{A}^{n}\right\}=: \operatorname{Inv}(\mathbf{A})$
- $\tau_{d} \ldots$ discrete topology on A

\mathbf{A} is dualized by \mathbf{A} if $\forall \mathbf{B} \in I S P(\mathbf{A})$

\square
"Every mornhism from $D(\mathbb{B})$ to \boldsymbol{A} is an evaluation

For a finite algebra $\mathbf{A}=\langle A, F\rangle$, let $\underset{\sim}{\mathbf{A}}=\left\langle A, \mathcal{R}, \tau_{d}\right\rangle$ be an alter ego.

- $\mathcal{R} \subseteq \bigcup_{n \in \mathbb{N}}\left\{B \leq \mathbf{A}^{n}\right\}=: \operatorname{Inv}(\mathbf{A})$
- $\tau_{d} \ldots$ discrete topology on A

A is dualized by A if $\forall \mathrm{B} \in \operatorname{ISP}(\mathbf{A})$
$E D(\mathbf{B})=\left\{e_{b}: \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \rightarrow A, h \mapsto h(b) \mid b \in B\right\}$
"Every mornhism from $D(\mathbb{B})$ to \boldsymbol{A} is an evaluation.

For a finite algebra $\mathbf{A}=\langle A, F\rangle$, let $\underset{\sim}{\mathbf{A}}=\left\langle A, \mathcal{R}, \tau_{d}\right\rangle$ be an alter ego.

- $\mathcal{R} \subseteq \bigcup_{n \in \mathbb{N}}\left\{B \leq \mathbf{A}^{n}\right\}=: \operatorname{Inv}(\mathbf{A})$
- $\tau_{d} \ldots$ discrete topology on A

A is dualized by A if $\forall \mathrm{B} \in \operatorname{ISP}(\mathbf{A})$
$E D(\mathbf{B})=\left\{e_{b}: \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \rightarrow A, h \mapsto h(b) \mid b \in B\right\}$
"Every morphism from $D(\mathbb{B})$ to \boldsymbol{A} is an evaluation.

For a finite algebra $\mathbf{A}=\langle A, F\rangle$, let $\underset{\sim}{\mathbf{A}}=\left\langle A, \mathcal{R}, \tau_{d}\right\rangle$ be an alter ego.

- $\mathcal{R} \subseteq \bigcup_{n \in \mathbb{N}}\left\{B \leq \mathbf{A}^{n}\right\}=: \operatorname{Inv}(\mathbf{A})$
- $\tau_{d} \ldots$ discrete topology on A

A is dualized by $\underset{\sim}{A}$ if $\forall \mathrm{B} \in \operatorname{ISP}(\mathbf{A})$
$E D(\mathbf{B})=\left\{e_{b}: \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \rightarrow A, h \mapsto h(b) \mid b \in B\right\}$

For a finite algebra $\mathbf{A}=\langle A, F\rangle$, let $\underset{\sim}{\mathbf{A}}=\left\langle A, \mathcal{R}, \tau_{d}\right\rangle$ be an alter ego.

- $\mathcal{R} \subseteq \bigcup_{n \in \mathbb{N}}\left\{B \leq \mathbf{A}^{n}\right\}=: \operatorname{Inv}(\mathbf{A})$
- $\tau_{d} \ldots$ discrete topology on A

\mathbf{A} is dualized by \mathbf{A} if $\forall \mathbf{B} \in \operatorname{ISP}(\mathbf{A})$:

$$
\begin{aligned}
& E D(\mathbf{B})=\left\{e_{b}: \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \rightarrow A, h \mapsto h(b) \mid b \in B\right\} \\
& \text { "Every morphism from } D(\mathbf{B}) \text { to } \underset{\sim}{\mathbf{A}} \text { is an evaluation." }
\end{aligned}
$$

When can \mathbf{A} be dualized by some \mathbf{A} ?

A is not dualizable iff $\exists \mathbf{B} \leq \mathbf{A}^{S}$ and a morphism α from $D(\mathbf{B}) \leq{\underset{\sim}{A}}^{B}$ to $\underset{\sim}{\mathbf{A}}:=\left\langle\boldsymbol{A}, \operatorname{Inv}(\mathbf{A}), \tau_{d}\right\rangle$ that is not an evaluation.

Theorem (Davey, Heindorf, McKenzie, 1995) Let \mathbf{A}, finite, generate a $C D$ variety. Then \mathbf{A} is dualizable iff \mathbf{A} has a NU-term.

When can \mathbf{A} be dualized by some \mathbf{A} ?

A is not dualizable iff $\exists \mathbf{B} \leq \mathbf{A}^{S}$ and a morphism α from $D(\mathbf{B}) \leq{\underset{\sim}{A}}^{B}$ to $\underset{\sim}{\mathbf{A}}:=\left\langle\boldsymbol{A}, \operatorname{Inv}(\mathbf{A}), \tau_{d}\right\rangle$ that is not an evaluation.

Theorem (Davey, Heindorf, McKenzie, 1995)
Let \mathbf{A}, finite, generate a $C D$ variety. Then \mathbf{A} is dualizable iff \mathbf{A} has a NU-term.

Problem (Clark, Davey, 1998)

Characterize dualizable (Mal'cev) algebras.

Theorem

(1) A finite group is dualizable iff its Sylow subgroups are abelian. (\Rightarrow Quackenbush, Szabó, 2002, \Leftarrow Nickodemus, 2007)
(2) A finite commutative ring with 1 is dualizable iff $J^{2}=0$. (\Rightarrow Clark, Idziak, Sabourin, Szabó, Willard, 2001, \Leftarrow Kearnes, Szendrei)
(3) A finite ring (without 1) is dualizable only if $S^{2}=0$ for all nilpotent subrings S.
(Szabó, 1999)

Show that non-abelian nilpotent Mal'cev algebras are not dualizable!

Problem (Clark, Davey, 1998)

Characterize dualizable (Mal'cev) algebras.

Theorem

(1) A finite group is dualizable iff its Sylow subgroups are abelian. (\Rightarrow Quackenbush, Szabó, 2002, \Leftarrow Nickodemus, 2007)
(2) A finite commutative ring with 1 is dualizable iff $J^{2}=0$. (\Rightarrow Clark, Idziak, Sabourin, Szabó, Willard, 2001, \Leftarrow Kearnes, Szendrei)
(3) A finite ring (without 1) is dualizable only if $S^{2}=0$ for all nilpotent subrings S.
(Szabó, 1999)

Our goal
Show that non-abelian nilpotent Mal'cev algebras are not dualizable!

Our main result

A Mal'cev algebra \mathbf{A} is supernilpotent if $\left[1_{A}, \ldots, 1_{A}\right]=0_{A}$ for some higher commutator (Bulatov, 2001; Aichinger, Mudrinski, 2010). Equivalently \mathbf{A} is pol. equivalent to a direct product of nilpotent algebras of prime power order and finite type (Freese, McKenzie).

Theorem (Bentz, M, submitted 2012)
Finite non-abelian supernilpotent Mal'cev algebras are (inherently) non-dualizable

This yields the non-dualizability results from the previous slide because supernilpotence $=$ nilpotence for groups and rings
\square Non-abelian finite loops with nilpotent multiplication group ($=$ the group generated by left and right translations) are not dualizable.

Our main result

A Mal'cev algebra \mathbf{A} is supernilpotent if $\left[1_{A}, \ldots, 1_{A}\right]=0_{A}$ for some higher commutator (Bulatov, 2001; Aichinger, Mudrinski, 2010). Equivalently \mathbf{A} is pol. equivalent to a direct product of nilpotent algebras of prime power order and finite type (Freese, McKenzie).

Theorem (Bentz, M, submitted 2012)
Finite non-abelian supernilpotent Mal'cev algebras are (inherently) non-dualizable.
\square
supernilpotence $=$ nilpotence for groups and rings.
Corollary (Bentz, M, submitted 2012)
Non-abelian finite loops with nilpotent multiplication group ($=$ the group generated by left and right translations) are not dualizable.

Our main result

A Mal'cev algebra \mathbf{A} is supernilpotent if $\left[1_{A}, \ldots, 1_{A}\right]=0_{A}$ for some higher commutator (Bulatov, 2001; Aichinger, Mudrinski, 2010). Equivalently \mathbf{A} is pol. equivalent to a direct product of nilpotent algebras of prime power order and finite type (Freese, McKenzie).

Theorem (Bentz, M, submitted 2012)
Finite non-abelian supernilpotent Mal'cev algebras are (inherently) non-dualizable.

This yields the non-dualizability results from the previous slide because supernilpotence $=$ nilpotence for groups and rings.

Corollary (Bentz, M, submitted 2012)
Non-abelian finite loops with nilpotent multiplication group (= the group generated by left and right translations) are not dualizable.

How to show that \mathbf{A} is not dualizable

Construct $\mathbf{B} \leq \mathbf{A}^{S}$ and $\alpha: \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \rightarrow A$, continuous and $\operatorname{Inv}(\mathbf{A})$ preserving such that α is not an evaluation by any element in $b \in B$.

Lemma (Ghost element method)
Let \mathbf{A} be finite, $\mathbf{B} \leq \mathbf{A}^{S}$ and $B_{0} \subseteq B$ infinite such that $\exists N \forall h \in \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \exists b_{h} \in B_{0}$:

$$
h(c)=h\left(b_{h}\right) \text { for all but at most } N \text { elements } c \in B_{0} .
$$

(1) Then $\alpha: \operatorname{Hom}(\mathbf{B}, \mathbf{A}) \rightarrow A, h \mapsto h\left(b_{h}\right)$ is continuous, preserves $\operatorname{Inv}(\mathbf{A})$. α is an evaluation on every finite subset of $\operatorname{Hom}(\mathbf{B}, \mathbf{A})$.
(2) If α is an evaluation at $g \in A^{S}$, then $g_{s}=\alpha\left(\pi_{s}\right)=\pi_{s}\left(b_{\pi_{s}}\right) \forall s \in S$.
(3) If $g \notin B$ (is a ghost), then \mathbf{A} is not dualizable.

$\mathbf{A}:=\left\langle\mathbb{Z}_{4},+, 2 x_{1} x_{2}\right\rangle$ is not dualizable

Proof by ghost element method (adapted from Szabó ...):
Consider $\mathbf{B} \leq\left(\mathbf{A}^{3}\right)^{\mathbb{Z}}$ generated by

$$
d_{i}:=(\ldots, \overline{0},\left[\begin{array}{l}
1 \\
0 \\
1 \\
i
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \underbrace{\overline{0}, \ldots, \overline{0},}_{9}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \overline{0}, \ldots) \quad(i \in \mathbb{Z}) .
$$

Then

$$
2 d_{i} d_{i-7}=\left(\ldots, \overline{0},\left[\begin{array}{l}
0 \\
0 \\
2 \\
i
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right], \overline{0}, \ldots\right) \in B
$$

and

$$
v_{i j}:=\left(\ldots, \overline{0},\left[\begin{array}{l}
0 \\
0 \\
2 \\
i
\end{array}\right], \overline{0}, \ldots, \overline{0},\left[\begin{array}{l}
0 \\
0 \\
2 \\
j
\end{array}\right], \overline{0}, \ldots\right) \in B \quad(i<j) .
$$

$\mathbf{A}:=\left\langle\mathbb{Z}_{4},+, 2 x_{1} x_{2}\right\rangle$ is not dualizable, continued
Let $B_{0}=\left\{v_{0 j} \mid j \in \mathbb{N}\right\}$.
(1) Then every $h: \mathbf{B} \rightarrow \mathbf{A}$ maps all but at most 56 elements of B_{0} to the same image (Uses explicit construction of $v_{0 j}$ by the generators d_{i}).
(2) The ghost

$$
g:=\left(\ldots, \overline{0},\left[\begin{array}{l}
0 \\
0 \\
2 \\
0
\end{array}\right], \overline{0}, \ldots\right)
$$

is not in B (By a parity argument that uses the explicit description of term operations).
Hence \mathbf{A} is not dualizable.
Remark
This approach can be generalized from $\left\langle\mathbb{Z}_{4},+, 2 x_{1} x_{2}\right\rangle$ to arbitrary supernilpotent Mal'cev algebras.

Nilpotence alone is not an obstacle

Theorem (Bentz, M, submitted 2012)
$\mathbf{A}:=\left\langle\mathbb{Z}_{4},+, 1,\left\{2 x_{1} \cdots x_{k} \mid k \in \mathbb{N}\right\}\right\rangle$ is nilpotent and dualized by
$\underset{\sim}{\mathbf{A}}:=\left\langle\mathbb{Z}_{4},\left\{R \leq \mathbf{A}^{4}\right\}, \tau_{d}\right\rangle$.

Fun fact
All reducts

$$
\left\langle\mathbb{Z}_{4},+, 2 x_{1} x_{2}, \ldots, 2 x_{1} \cdots x_{k}\right\rangle \quad(k \in \mathbb{N})
$$

of finite type are supernilpotent, hence non-dualizable.

Duality via partial clones

Partial operations on "conjunct-atomic definable" domains $\operatorname{Clo}(\mathbf{A}) \ldots$ term operations on \mathbf{A}
$\operatorname{Clo}_{\text {cad }}(\mathbf{A}):=\{\left.f\right|_{D}: f \in \operatorname{Clo}(\mathbf{A}), D \underbrace{\text { is solution set of term identities on } \mathbf{A}}_{\text {cad }}\}$ For $D \subseteq A^{k}$, a partial op $f: D \rightarrow A$ preserves a relation $R \subseteq A^{n}$ if $\forall r_{1}, \ldots, r_{k} \in R: f\left(r_{1}, \ldots, r_{k}\right) \in R$ whenever defined

Lemma (Davey, Pitkethly, Willard, 2012) Assume \mathbf{A} and $\mathcal{R} \subseteq \operatorname{Inv}(\mathbf{A})$ are finite such that $\operatorname{Clo}_{\text {cad }}(\mathbf{A})$ is the set of all \mathcal{R}-preserving operations with cad domains over \mathbf{A}. Then \mathbf{A} is dualized by $\mathbb{A}:=\left\langle A, \mathcal{R}, \tau_{d}\right\rangle$

Follows from Third Duality Theorem and Duality Compactness.

Duality via partial clones

Partial operations on "conjunct-atomic definable" domains $\operatorname{Clo}(\mathbf{A}) \ldots$ term operations on \mathbf{A}
$\operatorname{Clo}_{\text {cad }}(\mathbf{A}):=\{\left.f\right|_{D}: f \in \operatorname{Clo}(\mathbf{A}), D \underbrace{\text { is solution set of term identities on } \mathbf{A}}_{\text {cad }}\}$
For $D \subseteq A^{k}$, a partial op $f: D \rightarrow A$ preserves a relation $R \subseteq A^{n}$ if

$$
\forall r_{1}, \ldots, r_{k} \in R: f\left(r_{1}, \ldots, r_{k}\right) \in R \text { whenever defined. }
$$

\square
Follows from Third Duality Theorem and Duality Compactness

Duality via partial clones

Partial operations on "conjunct-atomic definable" domains
$\operatorname{Clo}(\mathbf{A}) \ldots$ term operations on \mathbf{A}
$\operatorname{Clo}_{\text {cad }}(\mathbf{A}):=\{\left.f\right|_{D}: f \in \operatorname{Clo}(\mathbf{A}), D \underbrace{\text { is solution set of term identities on } \mathbf{A}}_{\text {cad }}\}$
For $D \subseteq A^{k}$, a partial op $f: D \rightarrow A$ preserves a relation $R \subseteq A^{n}$ if

$$
\forall r_{1}, \ldots, r_{k} \in R: f\left(r_{1}, \ldots, r_{k}\right) \in R \text { whenever defined. }
$$

Lemma (Davey, Pitkethly, Willard, 2012)
Assume \mathbf{A} and $\mathcal{R} \subseteq \operatorname{Inv}(\mathbf{A})$ are finite such that $\operatorname{Clo}_{\text {cad }}(\mathbf{A})$ is the set of all \mathcal{R}-preserving operations with cad domains over \mathbf{A}.
Then \mathbf{A} is dualized by $\underset{\sim}{\mathbf{A}}:=\left\langle A, \mathcal{R}, \tau_{d}\right\rangle$.
Follows from Third Duality Theorem and Duality Compactness.

$\mathbf{A}:=\left\langle\mathbb{Z}_{4},+, 1,\left\{2 x_{1} \cdots x_{k} \mid k \in \mathbb{N}\right\}\right\rangle$ is dualizable

Proof:

(1) Solution sets $D \subseteq \mathbb{Z}_{4}^{k}$ of term identities can be explicitly described.
(2) $\mathrm{Clo}_{\text {cad }}(\mathbf{A})$ is determined by the unary term operations and the 4 -ary commutator relations (just like $\operatorname{Clo}(\mathbf{A})$).

Open

Problem

Is every finite abelian algebra in a CM variety dualizable? Every finite ring module?

Problem

Let \mathbf{A} be a finite Mal'cev algebra with a non-abelian supernilpotent congruence α, i.e., $[\alpha, \ldots, \alpha]=0$. Is \mathbf{A} necessarily non-dualizable?

Yes, if \mathbf{A} is nilpotent.
Supernilpotence is not the only obstacle for dualizability $\left\langle S_{3}, \cdot\right.$, all constants \rangle is not dualizable (Idziak, unpublished) but all its (super)nilpotent congruences are abelian.

Wild guess
A finite nilpotent \mathbf{A} is dualizable iff all supernilpotent algebras in $\operatorname{HSP}(\mathbf{A})$ are abelian.

