Alex McLeman

alexm@mcs.st-andrews.ac.uk

The 4th Novi Sad Algebraic Conference - Semigroups and Applications - 7th June 2013

Definitions

Alex McLeman Cayley Automaton Semigroups

・ロト ・日下・ ・日下

æ

Ξ.

Definition

An *automaton* is a triple $\mathcal{A} = (Q, B, \delta)$ where:

- Q is a finite set of *states*
- B is a finite alphabet
- $\delta: Q \times B \rightarrow Q \times B$ is the transition function.

æ

⊡ ► < ≣ ►

æ

∃ >

@▶ ∢ ≣▶

$$(q) \xrightarrow{x|y} (r)$$

If we are in state q and read symbol x, we move to state r and output y. That is, $\delta(q, x) = (r, y)$.

If we are in state q and read symbol x, we move to state r and output y. That is, $\delta(q, x) = (r, y)$.

If we're in state q_0 and read a sequence $\alpha_1 \alpha_2 \dots \alpha_n$ we output $\beta_1 \beta_2 \dots \beta_n$ where $\delta(q_{i-1}, \alpha_i) = (q_i, \beta_i)$.

If we are in state q and read symbol x, we move to state r and output y. That is, $\delta(q, x) = (r, y)$.

If we're in state q_0 and read a sequence $\alpha_1 \alpha_2 \dots \alpha_n$ we output $\beta_1 \beta_2 \dots \beta_n$ where $\delta(q_{i-1}, \alpha_i) = (q_i, \beta_i)$.

Starting in state q and reading α gives an endomorphism of the |B|-ary rooted tree. Extending this to several states gives a homomorphism $\phi : Q^+ \to End(B^*)$.

If we are in state q and read symbol x, we move to state r and output y. That is, $\delta(q, x) = (r, y)$.

If we're in state q_0 and read a sequence $\alpha_1 \alpha_2 \dots \alpha_n$ we output $\beta_1 \beta_2 \dots \beta_n$ where $\delta(q_{i-1}, \alpha_i) = (q_i, \beta_i)$.

Starting in state q and reading α gives an endomorphism of the |B|-ary rooted tree. Extending this to several states gives a homomorphism $\phi: Q^+ \to End(B^*)$.

We say that $\Sigma(\mathcal{A}) \cong im(\phi)$ is the *automaton semigroup*.

C(S) is the automaton arising from the Cayley Table of S. Each element $s \in S$ gives a state \overline{s} . Transitions are defined by right-multiplication in S: reading symbol t in state \overline{s} moves us to state \overline{st} and outputs symbol st.

C(S) is the automaton arising from the Cayley Table of S. Each element $s \in S$ gives a state \overline{s} . Transitions are defined by right-multiplication in S: reading symbol t in state \overline{s} moves us to state \overline{st} and outputs symbol st.

A typical edge looks like

C(S) is the automaton arising from the Cayley Table of S. Each element $s \in S$ gives a state \overline{s} . Transitions are defined by right-multiplication in S: reading symbol t in state \overline{s} moves us to state \overline{st} and outputs symbol st.

A typical edge looks like

$$(s) \xrightarrow{t|st} (st)$$

More formally:

$$C(S) = (\overline{S}, S, \delta), \delta(\overline{s}, t) = (\overline{st}, st)$$

where we denote states by \overline{s} to avoid confusion.

C(S) is the automaton arising from the Cayley Table of S. Each element $s \in S$ gives a state \overline{s} . Transitions are defined by right-multiplication in S: reading symbol t in state \overline{s} moves us to state \overline{st} and outputs symbol st.

A typical edge looks like

$$s \xrightarrow{t|st} st$$

More formally:

$$C(S) = (\overline{S}, S, \delta), \delta(\overline{s}, t) = (\overline{st}, st)$$

where we denote states by \overline{s} to avoid confusion.

 $\Sigma(\mathcal{C}(S))$ is the Cayley Automaton Semigroup.

Alex McLeman Cayley Automaton Semigroups

⊡ ► < ≣ ►

æ

Let
$$x \in S, \alpha \in S^*, \overline{q_i} \in \overline{S}$$
. Then
 $\overline{q} \cdot (x\alpha) = (qx)(\overline{qx} \cdot \alpha), (\overline{q_1} \cdot \overline{q_2}) \cdot \alpha = \overline{q_1} \cdot (\overline{q_2} \cdot \alpha).$

⊡ ► < ≣ ►

æ

Let
$$x \in S, \alpha \in S^*, \overline{q_i} \in \overline{S}$$
. Then
 $\overline{q} \cdot (x\alpha) = (qx)(\overline{qx} \cdot \alpha), (\overline{q_1} \cdot \overline{q_2}) \cdot \alpha = \overline{q_1} \cdot (\overline{q_2} \cdot \alpha).$

For $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ we have

$$\overline{q} \cdot \alpha = (q\alpha_1)(\overline{q\alpha_1} \cdot \alpha_2 \dots \alpha_n)$$

= $(q\alpha_1)(q\alpha_1\alpha_2)(\overline{q\alpha_1\alpha_2} \cdot \alpha_3 \dots \alpha_2)$
:
= $(q\alpha_1)(q\alpha_1\alpha_2)\dots(q\alpha_1\dots\alpha_n)$

-

Let
$$x \in S, \alpha \in S^*, \overline{q_i} \in \overline{S}$$
. Then
 $\overline{q} \cdot (x\alpha) = (qx)(\overline{qx} \cdot \alpha), (\overline{q_1} \cdot \overline{q_2}) \cdot \alpha = \overline{q_1} \cdot (\overline{q_2} \cdot \alpha).$

For $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ we have

$$\overline{q} \cdot \alpha = (q\alpha_1)(\overline{q\alpha_1} \cdot \alpha_2 \dots \alpha_n)$$

= $(q\alpha_1)(q\alpha_1\alpha_2)(\overline{q\alpha_1\alpha_2} \cdot \alpha_3 \dots \alpha_2)$
:
= $(q\alpha_1)(q\alpha_1\alpha_2)\dots(q\alpha_1\dots\alpha_n)$

So we can think of \overline{q} as a function $\overline{q}: \alpha_1 \alpha_2 \dots \alpha_n \mapsto (q \alpha_1)(q \alpha_1 \alpha_2) \dots (q \alpha_1 \dots \alpha_n).$

Some properties

æ

- (Mintz 2009) Let S be finite. The following are equivalent:
 - S is aperiodic
 - $\Sigma(\mathcal{C}(S))$ is finite
 - $\Sigma(\mathcal{C}(S))$ is aperiodic

< ∃ →

• (Mintz 2009) Let S be finite. The following are equivalent:

- S is aperiodic
- $\Sigma(\mathcal{C}(S))$ is finite
- $\Sigma(\mathcal{C}(S))$ is aperiodic
- (Silva and Steinberg 2005) Let G be a non-trivial finite group. Then $\Sigma(\mathcal{C}(G))\cong F_{|G|}$

- (Mintz 2009) Let S be finite. The following are equivalent:
 - S is aperiodic
 - $\Sigma(\mathcal{C}(S))$ is finite
 - $\Sigma(\mathcal{C}(S))$ is aperiodic
- (Silva and Steinberg 2005) Let G be a non-trivial finite group. Then $\Sigma(\mathcal{C}(G)) \cong F_{|G|}$
- (Mintz 2009) Let T ≤ S. The Σ(C(T)) divides Σ(C(S)). If T is a non-trivial group then Σ(C(T)) ≤ Σ(C(S)).

Zeros

・ロト ・聞ト ・ヨト ・ヨト

æ

æ

≣ ।•

⊡ ► < ≣ ►

 $\overline{z} \cdot \alpha = (z\alpha_1)(z\alpha_1\alpha_2)\dots(z\alpha_1\dots\alpha_n) = (z)^n.$

A 10

* E > * E >

э

Zeros

Let $z \in S$ be a left-zero. The \overline{z} is a left-zero in $\Sigma(\mathcal{C}(S))$.

 $\overline{z} \cdot \alpha = (z\alpha_1)(z\alpha_1\alpha_2)\dots(z\alpha_1\dots\alpha_n) = (z)^n$. Let $a \in S$. Then $\overline{a} \cdot \alpha = \beta_1\beta_2\dots\beta_n$.

() <) <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <

э

Zeros

Let $z \in S$ be a left-zero. The \overline{z} is a left-zero in $\Sigma(\mathcal{C}(S))$.

$$\overline{z} \cdot \alpha = (z\alpha_1)(z\alpha_1\alpha_2)\dots(z\alpha_1\dots\alpha_n) = (z)^n$$
. Let $a \in S$. Then
 $\overline{a} \cdot \alpha = \beta_1\beta_2\dots\beta_n$. So $\overline{z} \cdot \overline{a} \cdot \alpha = \overline{z} \cdot \beta_1\beta_2\dots\beta_n = (z)^n$.

æ

≣ ।•

⊡ ► < ≣ ►

$$\overline{z} \cdot \alpha = (z\alpha_1)(z\alpha_1\alpha_2)\dots(z\alpha_1\dots\alpha_n) = (z)^n$$
. Let $a \in S$. Then
 $\overline{a} \cdot \alpha = \beta_1\beta_2\dots\beta_n$. So $\overline{z} \cdot \overline{a} \cdot \alpha = \overline{z} \cdot \beta_1\beta_2\dots\beta_n = (z)^n$.

Consequently, $\Sigma(\mathcal{C}(L_n)) \cong L_n$ after noting $\overline{y} \cdot \alpha = (y)^n \neq (z)^n = \overline{z} \cdot \alpha$.

< ∃ >

$$\overline{z} \cdot \alpha = (z\alpha_1)(z\alpha_1\alpha_2)\dots(z\alpha_1\dots\alpha_n) = (z)^n$$
. Let $a \in S$. Then
 $\overline{a} \cdot \alpha = \beta_1\beta_2\dots\beta_n$. So $\overline{z} \cdot \overline{a} \cdot \alpha = \overline{z} \cdot \beta_1\beta_2\dots\beta_n = (z)^n$.

Consequently, $\Sigma(\mathcal{C}(L_n)) \cong L_n$ after noting $\overline{y} \cdot \alpha = (y)^n \neq (z)^n = \overline{z} \cdot \alpha$.

Let $0 \in S$ be the zero element. Then $\overline{0}$ is the zero element in $\Sigma(\mathcal{C}(S))$.

$$\overline{z} \cdot \alpha = (z\alpha_1)(z\alpha_1\alpha_2)\dots(z\alpha_1\dots\alpha_n) = (z)^n$$
. Let $a \in S$. Then
 $\overline{a} \cdot \alpha = \beta_1\beta_2\dots\beta_n$. So $\overline{z} \cdot \overline{a} \cdot \alpha = \overline{z} \cdot \beta_1\beta_2\dots\beta_n = (z)^n$.

Consequently, $\Sigma(\mathcal{C}(L_n)) \cong L_n$ after noting $\overline{y} \cdot \alpha = (y)^n \neq (z)^n = \overline{z} \cdot \alpha$.

Let $0 \in S$ be the zero element. Then $\overline{0}$ is the zero element in $\Sigma(\mathcal{C}(S))$.

Let $z \in S$ be a right zero. Then \overline{z} is a right-zero in $\Sigma(\mathcal{C}(S))$.

$$\overline{z} \cdot \alpha = (z\alpha_1)(z\alpha_1\alpha_2)\dots(z\alpha_1\dots\alpha_n) = (z)^n$$
. Let $a \in S$. Then
 $\overline{a} \cdot \alpha = \beta_1\beta_2\dots\beta_n$. So $\overline{z} \cdot \overline{a} \cdot \alpha = \overline{z} \cdot \beta_1\beta_2\dots\beta_n = (z)^n$.

Consequently, $\Sigma(\mathcal{C}(L_n)) \cong L_n$ after noting $\overline{y} \cdot \alpha = (y)^n \neq (z)^n = \overline{z} \cdot \alpha$.

Let $0 \in S$ be the zero element. Then $\overline{0}$ is the zero element in $\Sigma(\mathcal{C}(S))$.

Let $z \in S$ be a right zero. Then \overline{z} is a right-zero in $\Sigma(\mathcal{C}(S))$.

Consider R_n . Then $\overline{x} \cdot \alpha = (x\alpha_1)(x\alpha_1\alpha_2)\dots(x\alpha_1\dots\alpha_n) = \alpha_1\alpha_2\dots\alpha_n$ and $\overline{y} \cdot \alpha = \alpha_1\alpha_2\dots\alpha_n$. So $\overline{x} = \overline{y}$ but $x \neq y$.

When does $\overline{x} = \overline{y}$?

æ

@▶ ∢ ≣▶

Let $x \neq y \in S$. Then $\overline{x} = \overline{y} \in \Sigma(\mathcal{C}(S))$ if and only if xa = ya for all $a \in S$.

э

< ∃ >

Let $x \neq y \in S$. Then $\overline{x} = \overline{y} \in \Sigma(\mathcal{C}(S))$ if and only if xa = ya for all $a \in S$.

Proof.

Alex McLeman Cayley Automaton Semigroups

□→ < □→</p>

3

Let $x \neq y \in S$. Then $\overline{x} = \overline{y} \in \Sigma(\mathcal{C}(S))$ if and only if xa = ya for all $a \in S$.

Proof.

(⇒) Let $a\alpha \in S^*$. Then $\overline{x} \cdot a\alpha = (xa)(\overline{xa} \cdot \alpha)$ and $\overline{y} \cdot a\alpha = (ya)(\overline{ya} \cdot \alpha)$. The first symbols of the outputs must be equal and so xa = ya for all $a \in S$.

Let $x \neq y \in S$. Then $\overline{x} = \overline{y} \in \Sigma(\mathcal{C}(S))$ if and only if xa = ya for all $a \in S$.

Proof.

(⇒) Let $a\alpha \in S^*$. Then $\overline{x} \cdot a\alpha = (xa)(\overline{xa} \cdot \alpha)$ and $\overline{y} \cdot a\alpha = (ya)(\overline{ya} \cdot \alpha)$. The first symbols of the outputs must be equal and so xa = ya for all $a \in S$. (⇐) Let xa = ya. Then $\overline{x} \cdot a\alpha = (xa)(\overline{xa} \cdot \alpha) = (ya)(\overline{ya} \cdot \alpha) = \overline{y} \cdot a\alpha$ and so $\overline{x} = \overline{y}$.

Nilpotent Semigroups

æ

A semigroup S is *nilpotent of class n* if there exists n such that $S^n = \{0\}$ and $S^{n-1} \neq \{0\}$. Note that such a semigroup must necessarily contain a zero element. By definition a semigroup is nilpotent of class 1 if and only if it is trivial.

A semigroup S is *nilpotent of class n* if there exists n such that $S^n = \{0\}$ and $S^{n-1} \neq \{0\}$. Note that such a semigroup must necessarily contain a zero element. By definition a semigroup is nilpotent of class 1 if and only if it is trivial.

Lemma (Cain 2009)

Let S be finite and nilpotent of class n. Then $\Sigma(\mathcal{C}(S))$ is finite and nilpotent of class n - 1.

A semigroup S is *nilpotent of class n* if there exists n such that $S^n = \{0\}$ and $S^{n-1} \neq \{0\}$. Note that such a semigroup must necessarily contain a zero element. By definition a semigroup is nilpotent of class 1 if and only if it is trivial.

Lemma (Cain 2009)

Let S be finite and nilpotent of class n. Then $\Sigma(\mathcal{C}(S))$ is finite and nilpotent of class n - 1.

Proof.

We have $\overline{w_1} \cdot \overline{w_2} \cdot \ldots \cdot \overline{w_{n-1}} \cdot \alpha = (w_1 w_2 \ldots w_{n-1} \alpha_1) \ldots = 0^{\omega}$ since S is nilpotent of class n. Hence $\Sigma(\mathcal{C}(S))$ is nilpotent of class at most n-1.

A semigroup S is *nilpotent of class n* if there exists n such that $S^n = \{0\}$ and $S^{n-1} \neq \{0\}$. Note that such a semigroup must necessarily contain a zero element. By definition a semigroup is nilpotent of class 1 if and only if it is trivial.

Lemma (Cain 2009)

Let S be finite and nilpotent of class n. Then $\Sigma(\mathcal{C}(S))$ is finite and nilpotent of class n - 1.

Proof.

We have $\overline{w_1} \cdot \overline{w_2} \cdot \ldots \cdot \overline{w_{n-1}} \cdot \alpha = (w_1 w_2 \ldots w_{n-1} \alpha_1) \ldots = 0^{\omega}$ since S is nilpotent of class n. Hence $\Sigma(\mathcal{C}(S))$ is nilpotent of class at most n-1. Now let w_1, \ldots, w_{n-1} be such that $w_1 w_2 \ldots w_{n-1} \neq 0$. Then $\overline{w_1} \cdot \ldots \cdot \overline{w_{n-2}} \cdot w_{n-1} = (w_1 w_2 \ldots w_{n-2} w_{n-1}) \neq 0^{\omega}$. Hence $\overline{w_1} \cdot \ldots \cdot \overline{w_{n-2}} \neq \overline{0}$. So $\Sigma(\mathcal{C}(S))$ is nilpotent of class n-1.

A B > A B >

Other known classes of Semigroups

Alex McLeman Cayley Automaton Semigroups

Lemma (M 2012)

Let S be cancellative (and not necessarily finite). Then $\Sigma(\mathcal{C}(S))$ is free of rank equal to the order of S.

Lemma (M 2012)

Let S be cancellative (and not necessarily finite). Then $\Sigma(C(S))$ is free of rank equal to the order of S.

Lemma (M 2011)

Let S be a finite monogenic semigroup with a non-trivial subgroup. Then $\Sigma(C(S))$ is a small extension of a free semigroup of rank equal to the order of the subgroup.

Lemma (M 2012)

Let S be cancellative (and not necessarily finite). Then $\Sigma(\mathcal{C}(S))$ is free of rank equal to the order of S.

Lemma (M 2011)

Let S be a finite monogenic semigroup with a non-trivial subgroup. Then $\Sigma(C(S))$ is a small extension of a free semigroup of rank equal to the order of the subgroup.

Lemma (Maltcev 2008)

Let S be finite. Then $\Sigma(\mathcal{C}(S))$ is free if and only if the minimal ideal K of S consists of a single \mathcal{R} -class in which every \mathcal{H} -class is non-trivial and there exists k such that st = skt for all $s, t \in S$.

Self-Automaton Semigroups

Alex McLeman Cayley Automaton Semigroups

æ

• A monoid is self automaton if and only if it is a band

- A monoid is self automaton if and only if it is a band
- Left-zero semigroups

- A monoid is self automaton if and only if it is a band
- Left-zero semigroups
- Semilattices

- A monoid is self automaton if and only if it is a band
- Left-zero semigroups
- Semilattices
- Zero-unions of left-zero semigroups

- A monoid is self automaton if and only if it is a band
- Left-zero semigroups
- Semilattices
- Zero-unions of left-zero semigroups
- $L_n \cup B$ where L_n acts trivially on the band B

- A monoid is self automaton if and only if it is a band
- Left-zero semigroups
- Semilattices
- Zero-unions of left-zero semigroups
- $L_n \cup B$ where L_n acts trivially on the band B
- If S is regular and self-automaton then it is a band

Theorem

Let B be a band. Then the map $b \mapsto \overline{b}$ is a homomorphism.

∃ >

Theorem

Let B be a band. Then the map $b \mapsto \overline{b}$ is a homomorphism.

We can classify which bands are self-automaton.

Theorem

Let B be a band. Then the map $b \mapsto \overline{b}$ is a homomorphism.

We can classify which bands are self-automaton.

Theorem (M 2012)

Let B be a band. Then $B \cong \Sigma(C(B))$ under the map $b \mapsto \overline{b}$ if and only if the left-regular representation of B is faithful.

So are all self-automaton semigroups bands?

So are all self-automaton semigroups bands? NO!

So are all self-automaton semigroups bands? NO!

The semigroup defined by the following Cayley Table is not a band but is self-automaton:

	а	b	С	d
a b	b	b	b	С
b	b b	b	b	b
С		С	С	С
d	d	d	d	d

What if the states acted on the right of a sequence rather than the left? This is the approach taken by Cain.

What if the states acted on the right of a sequence rather than the left? This is the approach taken by Cain.

$$\alpha \cdot \overline{x} = (x\alpha_1)(x\alpha_1\alpha_2)(x\alpha_1\alpha_2\alpha_3)\dots$$
$$\alpha \cdot (\overline{x_1} \cdot \overline{x_2}) = (\alpha \cdot \overline{x_1}) \cdot \overline{x_2}.$$

What if the states acted on the right of a sequence rather than the left? This is the approach taken by Cain.

$$\alpha \cdot \overline{x} = (x\alpha_1)(x\alpha_1\alpha_2)(x\alpha_1\alpha_2\alpha_3)..$$
$$\alpha \cdot (\overline{x_1} \cdot \overline{x_2}) = (\alpha \cdot \overline{x_1}) \cdot \overline{x_2}.$$

Denote the semigroup generated by the states with this right action by $\Pi(\mathcal{C}(S))$.

Cain conjectures the following:

Conjecture

 $S \cong \Pi(\mathcal{C}(S))$ if and only if S is a band in which every \mathcal{D} -class is square and every maximal \mathcal{D} -class is a singleton.

Cain conjectures the following:

Conjecture

 $S \cong \Pi(\mathcal{C}(S))$ if and only if S is a band in which every \mathcal{D} -class is square and every maximal \mathcal{D} -class is a singleton.

How does this right action construction relate to the previously defined left actions?

Cain conjectures the following:

Conjecture

 $S \cong \Pi(\mathcal{C}(S))$ if and only if S is a band in which every \mathcal{D} -class is square and every maximal \mathcal{D} -class is a singleton.

How does this right action construction relate to the previously defined left actions?

Theorem

 $S \cong \Pi(\mathcal{C}(S))$ if and only if S is self-dual and $S \cong \Sigma(\mathcal{C}(S))$.

To tackle Cain's conjecture we should look at self-dual self-automaton semigroups.

To tackle Cain's conjecture we should look at self-dual self-automaton semigroups.

Theorem (M 2013)

Let S be self-dual and self-automaton. If $S^2 = S$ then S is a band.

To tackle Cain's conjecture we should look at self-dual self-automaton semigroups.

Theorem (M 2013)

Let S be self-dual and self-automaton. If $S^2 = S$ then S is a band.

A complete classification of self-automaton semigroups (both self-dual and otherwise) remains an open question.

Thanks for listening!

æ

Э

A ►