Asymmetric regular types

Slavko Moconja
Joint work with Predrag Tanović
Faculty of Mathematics, Belgrade, Serbia

Invariant types

Let $p(x) \in \mathrm{S}_{1}(\overline{\mathrm{M}})$ be a global type, and small $A \subset \overline{\mathrm{M}}$.
Type $p(x)$ is A-invariant if $f(p)=p$, for every $f \in \operatorname{Aut}_{A}(\bar{M})$.

Invariant types

Let $p(x) \in \mathrm{S}_{1}(\overline{\mathrm{M}})$ be a global type, and small $A \subset \overline{\mathrm{M}}$.
Type $p(x)$ is A-invariant if $f(p)=p$, for every $f \in \operatorname{Aut}_{A}(\bar{M})$.
Fact. If $p(x)$ is A-invariant and $B \supseteq A$, then $p(x)$ is B-invariant.

Regular types

Let $p(x) \in \mathrm{S}_{1}(\overline{\mathrm{M}})$ be a global non-algebraic type and small $A \subset \overline{\mathrm{M}}$.
Pair $(p(x), A)$ is regular if:
(1) $p(x)$ is A-invariant and
(2) for every $a \vDash p \mid A$ and every small $B \supseteq A$: either $a \vDash p \mid B$ or $p|B \vdash p| B a$.

Regular types

Let $p(x) \in \mathrm{S}_{1}(\overline{\mathrm{M}})$ be a global non-algebraic type and small $A \subset \overline{\mathrm{M}}$.
Pair $(p(x), A)$ is regular if:
(1) $p(x)$ is A-invariant and
(2) for every $a \vDash p \mid A$ and every small $B \supseteq A$: either $a \vDash p \mid B$ or $p|B \vdash p| B a$.

Fact. If $(p(x), A)$ is a regular pair and $B \supseteq A$, then $(p(x), B)$ is a regular pair.

Asymmetric types

Let $p(x) \in \mathrm{S}_{1}(\overline{\mathrm{M}})$ be a global non-algebraic A-invariant type.
Type $p(x)$ is asymmetric if for some $B \supseteq A$ and Morley sequence (a, b) in p over $B: a b \not \equiv b a(B)$.

Asymmetric types

Let $p(x) \in \mathrm{S}_{1}(\overline{\mathrm{M}})$ be a global non-algebraic A-invariant type.
Type $p(x)$ is asymmetric if for some $B \supseteq A$ and Morley sequence (a, b) in p over $B: a b \not \equiv b a(B)$.

Theorem

Suppose that pair $(p(x), A)$ is regular and $p(x)$ is asymmetric. Then there exists a finite extension A_{0} of A and A_{0}-definable partial order \leq such that every Morley sequence in p over A_{0} is strictly increasing.
A. Pillay, P. Tanović, Generic stability, regularity and quasiminimality
$\mathrm{cl}_{p, A}$

Let $(p(x), A)$ be a regular pair. Assume that $p(x)$ is asymmetric over A.
For $X \subseteq(p \mid A)(\overline{\mathrm{M}})$ we define closure $\mathrm{cl}_{p, A}(X) \subseteq(p \mid A)(\overline{\mathrm{M}})$ with:

$$
\operatorname{cl}_{p, A}(X)=\{a \vDash p|A| a \not \vDash p \mid A X\} .
$$

For small $B \subset(p \mid A)(\overline{\mathrm{M}})$ we set:

$$
\operatorname{cl}_{p, A, B}(X)=\operatorname{cl}_{p, A}(B X)
$$

Also, if M is some small model that contains A we define:

$$
\operatorname{cl}_{p, A}^{\mathrm{M}}(X)=\operatorname{cl}_{p, A}(X) \cap \mathrm{M} \text { and } \operatorname{cl}_{p, A, B}^{\mathrm{M}}(X)=\operatorname{cl}_{p, A, B}(X) \cap \mathrm{M} .
$$

For $a \vDash p \mid A$ we define symmetric closure $\operatorname{scl}_{p, A}(a) \subseteq(p \mid A)(\overline{\mathrm{M}})$ with:

$$
\operatorname{scl}_{p, A}(a)=\left\{b \in \operatorname{cl}_{p, A}(a) \mid a \in \operatorname{cl}_{p, A}(b)\right\} .
$$

For $X \subseteq(p \mid A)(\overline{\mathrm{M}})$ we define symmetric closure $\operatorname{scl}_{p, A}(X) \subseteq(p \mid A)(\overline{\mathrm{M}})$ with:

$$
\operatorname{scl}_{p, A}(X)=\bigcup_{a \in X} \operatorname{scl}_{p, A}(a)
$$

We also define $\operatorname{scl}_{p, A, B}, \operatorname{scl}_{p, A}^{\mathrm{M}}$ and $\operatorname{scl}_{p, A, B}^{\mathrm{M}}$.

Some facts about $\mathrm{cl}_{p, A}$ and $\operatorname{scl}_{p, A}$

(1) $p|A X \vdash p| \operatorname{Acl}_{p, A}(X)$;
(2) $\operatorname{cl}_{p, A}\left(\mathrm{cl}_{p, A, B}\right)$ is closure operator on $(p \mid A)(\overline{\mathrm{M}})$;
(3) $\operatorname{cl}_{p, A}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\operatorname{cl}_{p, A}(a)$, where a is any maximal element in $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$;
(9) (a, b) is Morley sequence in p over $A B$ iff $a \notin \operatorname{cl}_{p, A}(B)$ and $b \notin \mathrm{cl}_{p, A}(B a)$;
(c) $\operatorname{cl}_{p, A}(X)=\bigcup \operatorname{scl}_{p, A}(a)$;

$$
(\exists x \in X) a \leq x
$$

(0) $(p \mid A)(\overline{\mathrm{M}}) / \operatorname{scl}_{p, A}=\left\{\operatorname{scl}_{p, A}(a)|a \vDash p| A\right\}$ is a partition of $(p \mid A)(\overline{\mathrm{M}})$;
(1) $(p \mid A)(\mathrm{M}) / \operatorname{scl}_{p, A}^{\mathrm{M}}=\left\{\operatorname{scl}_{p, A}^{M}(a)|a \vDash p| A\right\}$ is a partition of $(p \mid A)(\mathrm{M})$ (M is small model that contains A).

Order on $(p \mid A)(\overline{\mathrm{M}}) / \operatorname{scl}_{p, A}$

Lemma

Suppose that $\operatorname{scl}_{p, A}(a) \neq \operatorname{scl}_{p, A}(b)$ and $a<b$. Then for every $x \in \operatorname{scl}_{p, A}(a)$ and $y \in \operatorname{scl}_{p, A}(b)$ is $x<y$. If $\operatorname{scl}_{p, A}(a) \neq \operatorname{scl}_{p, A}(b)$ and $a \nless b$, then $b<a$.

Corollary. Set $(p \mid A)(\overline{\mathrm{M}}) / \mathrm{scl}_{p, A}$ is linearly ordered.

Order on $(p \mid A)(\overline{\mathrm{M}}) / \operatorname{scl}_{p, A}$

Lemma

Suppose that $\operatorname{scl}_{p, A}(a) \neq \operatorname{scl}_{p, A}(b)$ and $a<b$. Then for every $x \in \operatorname{scl}_{p, A}(a)$ and $y \in \operatorname{scl}_{p, A}(b)$ is $x<y$. If $\operatorname{scl}_{p, A}(a) \neq \operatorname{scl}_{p, A}(b)$ and $a \nless b$, then $b<a$.

Corollary. Set $(p \mid A)(\overline{\mathrm{M}}) / \mathrm{scl}_{p, A}$ is linearly ordered.

Lemma

Maximal Morley sequence in p over A in some small model M that contains A is exactly any set of representatives of $(p \mid A)(\mathrm{M}) / \mathrm{scl}_{p, A}^{\mathrm{M}}$ partition.

Corollary. Any two maximal Morley sequences in p over A in M have the same order-type.

Non-definable $\operatorname{scl}_{p, A}$

Theorem

Assume that $\operatorname{scl}_{p, A}(a)$ is not $A a$-definable, for some (every) $a \in(p \mid A)(\overline{\mathrm{M}})$. Then, for every countably order type there exists a countable model M such that the maximal Morley sequence in pover A in M has that order type.

Corollary. If there exists global A-invariant, regular and asymmetric type whose $\operatorname{scl}_{p, A}$ is not $A a$-definable, then there are $2^{\aleph_{0}}$ non-isomorphic countable models.

Example of asymmetric regular types

Let M be a model of small o-minimal theory, $p \in \mathrm{~S}_{1}(A)$ non-algebraic type, and $\overline{\mathrm{M}}$ monster model.

Fact. $p(\bar{M})$ is convex set.
We have four kinds of p :

- (isolated type) there exist $c, d \in \operatorname{dcl}(A)$ such that $c<x<d \vdash p(x)$;
- (non-cut) there exist $c \in \operatorname{dcl}(A)$ and strictly decreasing sequence $\left(d_{n}\right)$ in $\operatorname{dcl}(A)$ such that $\left\{c<x<d_{n} \mid n \in \omega\right\} \vdash p(x)$;
- (non-cut) there exist strictly increasing sequence $\left(c_{n}\right)$ in $\operatorname{dcl}(A)$ and $d \in \operatorname{dcl}(A)$ such that $\left\{c_{n}<x<d \mid n \in \omega\right\} \vdash p(x)$;
- (cut) there exist strictly increasing sequence $\left(c_{n}\right)$ and strictly decreasing sequence $\left(d_{n}\right)$ in $\operatorname{dcl}(A)$ such that $\left\{c_{n}<x<d_{n} \mid n \in \omega\right\} \vdash p(x)$.

Left and right global extensions: Case I

Assume that there exists $c \in \operatorname{dcl}(A)$ such that c determines p " on the left side". Then for every $\overline{\mathrm{M}}$-formula ϕ, either ϕ or $\neg \phi$ has interval that contains (c, t), for some $t \in p(\overline{\mathrm{M}})$.

We define left global extension of p :
$p_{L}(x)=\{\phi(x) \mid \phi(\overline{\mathrm{M}})$ contains (c, t), for some $t \in p(\overline{\mathrm{M}})\} \in \mathrm{S}_{1}(\overline{\mathrm{M}})$.
Similarly we define right global extension p_{R} of p, if there exists $d \in \operatorname{dcl}(A)$ such that d determines p "on the right side".

Left and right global extensions: Case II

Assume that there exists strictly increasing sequence $\left(c_{n}\right)$ such that $\left(c_{n}\right)$ determines p "on the left side". Then for every $\overline{\mathrm{M}}$-formula ϕ, either ϕ or $\neg \phi$ has interval that contains all but finitely many c_{n}.

We define left global extension of p : $p_{L}(x)=\left\{\phi(x) \mid \phi(\overline{\mathrm{M}})\right.$ contains all but finitely many $\left.c_{n}\right\} \in \mathrm{S}_{1}(\overline{\mathrm{M}})$.

Similarly we define right global extension p_{R} of p, if there exists strictly decreasing sequence $\left(d_{n}\right)$ such that $\left(d_{n}\right)$ determines p "on the right side".

p_{L} and p_{R}

Theorem

Both p_{L} and p_{R} are A-invariant, regular and asymmetric extensions of p.
Moreover, p_{L} and p_{R} are the only two global A-invariant extensions of p.
Any Morley sequence in p_{R} is strictly increasing, and any Morley sequence in p_{L} is strictly decreasing.
$\operatorname{scl}_{p_{L}, A}, \operatorname{scl}_{p_{R}, A}$

Lemma

Let $a \in p(\overline{\mathrm{M}})$. Then:
$\operatorname{scl}_{p_{L}, A}(a)=\operatorname{scl}_{p_{R}, A}(a)=$ convex closure $(\operatorname{dcl}(A a) \cap p(\bar{M}))$.

Corollary. $I \subset p(\overline{\mathrm{M}})$ is a Morley sequence in p_{L} over A in $\overline{\mathrm{M}}$ iff it is Morley sequence in p_{R} over A in $\overline{\mathrm{M}}$. Also, $I \subseteq p(M)$ is a maximal Morley sequence in p_{L} over A in M iff it is maximal Morley sequence in p_{R} over A in M , for any small model M that contains A.

Remark. If $p \in \mathrm{~S}_{1}(A)$, then for some (any) $a \in p(\overline{\mathrm{M}}), \operatorname{scl}_{p_{L}, A}(a)$ is $A a-$ definable iff $\operatorname{scl}_{p_{L}, A}(a)=\{a\}$.

Let p, q be two complete types (with parameters). We say that $p \perp^{w} q$ iff $p(\bar{x}) \cup q(\bar{y}) \vdash \operatorname{tp}(\overline{x y})$.
$\not \underline{L}^{w}$ is equivalence relation on $S_{1}(\emptyset)$. Let $\left\{p_{i} \mid i \in I\right\}$ be the set of non-algebraic representatives of this equivalence relation.

Let p, q be two complete types (with parameters). We say that $p \perp^{w} q$ iff $p(\bar{x}) \cup q(\bar{y}) \vdash \operatorname{tp}(\overline{x y})$.
$\not \underline{L}^{w}$ is equivalence relation on $S_{1}(\emptyset)$. Let $\left\{p_{i} \mid i \in I\right\}$ be the set of non-algebraic representatives of this equivalence relation.

Let M be any countable model, $A_{i}=$ maximal Morley sequence in $p_{i L}$, and $A=\bigcup_{i \in I} A_{i}$.

Theorem

M is prime over A.
M and N are isomorphic iff maximal Morley sequence in $p_{i L}$ in M , and maximal Morley sequence in $p_{i L}$ in N have the same order-type, for every $i \in I$.

Additional assumption

Assume that there are $<2^{\aleph_{0}}$ countable models.
Then $\operatorname{scl}_{p_{i L}, \emptyset}(a)=\{a\}$, for every type p_{i}.
Let M be a countable model. Under this assumption if p is:
(1) algebraic type, then $p(\mathrm{M})$ is a point;
(2) isolated type, then $p(\mathrm{M})$ is \mathbb{Q};
(3) non-cut, then there are 3 possibilities for $p(\mathrm{M})$;
(9) cut, then there are 6 possibilities for $p(M)$.

Since there are $<2^{\aleph_{0}}$ countable models, there are only finitely many non-isolated types in $\left\{p_{i} \mid \in I\right\}$. If m of them are cuts, and n of them are non-cuts, then there are exactly $6^{m} 3^{n}$ countable models.

Additional assumption

Assume that there are $<2^{\aleph_{0}}$ countable models.
Then $\operatorname{scl}_{p_{i L}, \emptyset}(a)=\{a\}$, for every type p_{i}.
Let M be a countable model. Under this assumption if p is:
(1) algebraic type, then $p(\mathrm{M})$ is a point;
(2) isolated type, then $p(\mathrm{M})$ is \mathbb{Q};
(3) non-cut, then there are 3 possibilities for $p(\mathrm{M})$;
(9) cut, then there are 6 possibilities for $p(M)$.

Since there are $<2^{\aleph_{0}}$ countable models, there are only finitely many non-isolated types in $\left\{p_{i} \mid \in I\right\}$. If m of them are cuts, and n of them are non-cuts, then there are exactly $6^{m} 3^{n}$ countable models.

Laura Mayer, Vaught's Conjecture for o-Minimal Theories

Thank you for your attention!

