Asymmetric regular types

Slavko Moconja Joint work with Predrag Tanović

Faculty of Mathematics, Belgrade, Serbia

Let $p(x) \in S_1(\overline{M})$ be a global type, and small $A \subset \overline{M}$. Type p(x) is A-invariant if f(p) = p, for every $f \in Aut_A(\overline{M})$.

イロト 不得 トイヨト イヨト 二日

Let $p(x) \in S_1(\overline{M})$ be a global type, and small $A \subset \overline{M}$. Type p(x) is A-invariant if f(p) = p, for every $f \in Aut_A(\overline{M})$. Fact. If p(x) is A-invariant and $B \supseteq A$, then p(x) is B-invariant.

Let $p(x) \in S_1(\overline{M})$ be a global non-algebraic type and small $A \subset \overline{M}$.

Pair (p(x), A) is regular if:

- p(x) is A-invariant and
- for every a ⊨ p | A and every small B ⊇ A: either a ⊨ p | B or p | B ⊢ p | Ba.

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $p(x) \in S_1(\overline{M})$ be a global non-algebraic type and small $A \subset \overline{M}$.

- Pair (p(x), A) is regular if:
 - p(x) is A-invariant and
 - for every a ⊨ p | A and every small B ⊇ A: either a ⊨ p | B or p | B ⊢ p | Ba.

Fact. If (p(x), A) is a regular pair and $B \supseteq A$, then (p(x), B) is a regular pair.

Asymmetric types

Let $p(x) \in S_1(\overline{M})$ be a global non-algebraic A-invariant type.

Type p(x) is asymmetric if for some $B \supseteq A$ and Morley sequence (a, b) in p over B: $ab \neq ba(B)$.

イロト 不得下 イヨト イヨト 二日

Asymmetric types

Let $p(x) \in S_1(\overline{M})$ be a global non-algebraic A-invariant type.

Type p(x) is asymmetric if for some $B \supseteq A$ and Morley sequence (a, b) in p over B: $ab \neq ba(B)$.

Theorem

Suppose that pair (p(x), A) is regular and p(x) is asymmetric. Then there exists a finite extension A_0 of A and A_0 -definable partial order \leq such that every Morley sequence in p over A_0 is strictly increasing.

A. Pillay, P. Tanović, Generic stability, regularity and quasiminimality

イロト 不得下 イヨト イヨト 二日

Let (p(x), A) be a regular pair. Assume that p(x) is asymmetric over A. For $X \subseteq (p|A)(\overline{M})$ we define closure $\operatorname{cl}_{p,A}(X) \subseteq (p|A)(\overline{M})$ with: $\operatorname{cl}_{p,A}(X) = \{a \vDash p | A \mid a \nvDash p | AX\}.$

For small $B \subset (p|A)(\overline{M})$ we set:

$$\operatorname{cl}_{p,A,B}(X) = \operatorname{cl}_{p,A}(BX).$$

Also, if M is some small model that contains A we define:

$$\mathrm{cl}_{\rho,\mathcal{A}}^{\mathsf{M}}(X)=\mathrm{cl}_{\rho,\mathcal{A}}(X)\cap\mathsf{M}\text{ and }\mathrm{cl}_{\rho,\mathcal{A},\mathcal{B}}^{\mathsf{M}}(X)=\mathrm{cl}_{\rho,\mathcal{A},\mathcal{B}}(X)\cap\mathsf{M}.$$

Slavko Moconja (Belgrade)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 $\mathrm{scl}_{p,A}$

For $a \vDash p | A$ we define symmetric closure $\operatorname{scl}_{p,A}(a) \subseteq (p|A)(\overline{M})$ with:

$$\operatorname{scl}_{p,A}(a) = \{ b \in \operatorname{cl}_{p,A}(a) \mid a \in \operatorname{cl}_{p,A}(b) \}.$$

For $X \subseteq (p|A)(\overline{M})$ we define symmetric closure $\operatorname{scl}_{p,A}(X) \subseteq (p|A)(\overline{M})$ with:

$$\operatorname{scl}_{p,\mathcal{A}}(X) = \bigcup_{a \in X} \operatorname{scl}_{p,\mathcal{A}}(a).$$

We also define $\operatorname{scl}_{p,A,B}$, $\operatorname{scl}_{p,A}^{\mathsf{M}}$ and $\operatorname{scl}_{p,A,B}^{\mathsf{M}}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Some facts about $cl_{\rho,A}$ and $scl_{\rho,A}$

- $1 p|AX \vdash p|Acl_{p,A}(X);$
- \bigcirc $\operatorname{cl}_{p,A}(\operatorname{cl}_{p,A,B})$ is closure operator on $(p|A)(\overline{\mathsf{M}})$;
- $cl_{p,A}(a_1, a_2, ..., a_n) = cl_{p,A}(a)$, where a is any maximal element in $\{a_1, a_2, ..., a_n\}$;
- (a, b) is Morley sequence in p over AB iff a ∉ cl_{p,A}(B) and b ∉ cl_{p,A}(Ba);

 $(p|A)(\overline{\mathsf{M}})/\mathrm{scl}_{p,A} = \{\mathrm{scl}_{p,A}(a) \mid a \vDash p|A\} \text{ is a partition of } (p|A)(\overline{\mathsf{M}});$

(p|A)(M)/scl^M_{p,A} = {scl^M_{p,A}(a) | a ⊨ p|A} is a partition of (p|A)(M) (M is small model that contains A).

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Order on $(p|A)(\overline{M})/\mathrm{scl}_{p,A}$

Lemma

Suppose that $\operatorname{scl}_{p,A}(a) \neq \operatorname{scl}_{p,A}(b)$ and a < b. Then for every $x \in \operatorname{scl}_{p,A}(a)$ and $y \in \operatorname{scl}_{p,A}(b)$ is x < y. If $\operatorname{scl}_{p,A}(a) \neq \operatorname{scl}_{p,A}(b)$ and $a \not < b$, then b < a.

Corollary. Set $(p|A)(\overline{M})/\operatorname{scl}_{p,A}$ is linearly ordered.

▲圖▶ ▲圖▶ ▲圖▶

Order on $(p|A)(\overline{\mathsf{M}})/\mathrm{scl}_{p,A}$

Lemma

Suppose that $\operatorname{scl}_{p,A}(a) \neq \operatorname{scl}_{p,A}(b)$ and a < b. Then for every $x \in \operatorname{scl}_{p,A}(a)$ and $y \in \operatorname{scl}_{p,A}(b)$ is x < y. If $\operatorname{scl}_{p,A}(a) \neq \operatorname{scl}_{p,A}(b)$ and $a \not < b$, then b < a.

Corollary. Set $(p|A)(\overline{M})/\operatorname{scl}_{p,A}$ is linearly ordered.

Lemma

Maximal Morley sequence in p over A in some small model M that contains A is exactly any set of representatives of $(p|A)(M)/\operatorname{scl}_{p,A}^{M}$ partition.

Corollary. Any two maximal Morley sequences in p over A in M have the same order-type.

Theorem

Assume that $\operatorname{scl}_{p,A}(a)$ is not Aa-definable, for some (every) $a \in (p|A)(\overline{M})$. Then, for every countably order type there exists a countable model M such that the maximal Morley sequence in p over A in M has that order type.

Corollary. If there exists global A-invariant, regular and asymmetric type whose $\operatorname{scl}_{p,A}$ is not Aa-definable, then there are 2^{\aleph_0} non-isomorphic countable models.

- 4 週 ト - 4 三 ト - 4 三 ト

Example of asymmetric regular types

Let M be a model of small o-minimal theory, $p \in S_1(A)$ non-algebraic type, and \overline{M} monster model.

Fact. $p(\overline{M})$ is convex set.

We have four kinds of *p*:

- (isolated type) there exist $c, d \in dcl(A)$ such that $c < x < d \vdash p(x)$;
- (non-cut) there exist c ∈ dcl(A) and strictly decreasing sequence (d_n) in dcl(A) such that {c < x < d_n | n ∈ ω} ⊢ p(x);
- (non-cut) there exist strictly increasing sequence (c_n) in dcl(A) and $d \in dcl(A)$ such that $\{c_n < x < d \mid n \in \omega\} \vdash p(x);$
- (cut) there exist strictly increasing sequence (c_n) and strictly decreasing sequence (d_n) in dcl(A) such that {c_n < x < d_n | n ∈ ω} ⊢ p(x).

Assume that there exists $c \in dcl(A)$ such that c determines p "on the left side". Then for every \overline{M} -formula ϕ , either ϕ or $\neg \phi$ has interval that contains (c, t), for some $t \in p(\overline{M})$.

We define left global extension of p: $p_L(x) = \{\phi(x) \mid \phi(\overline{M}) \text{ contains } (c, t), \text{ for some } t \in p(\overline{M})\} \in S_1(\overline{M}).$

Similarly we define right global extension p_R of p, if there exists $d \in dcl(A)$ such that d determines p "on the right side".

イロト 不得下 イヨト イヨト 二日

Assume that there exists strictly increasing sequence (c_n) such that (c_n) determines p "on the left side". Then for every \overline{M} -formula ϕ , either ϕ or $\neg \phi$ has interval that contains all but finitely many c_n .

We define left global extension of p: $p_L(x) = \{\phi(x) \mid \phi(\overline{M}) \text{ contains all but finitely many } c_n\} \in S_1(\overline{M}).$

Similarly we define right global extension p_R of p, if there exists strictly decreasing sequence (d_n) such that (d_n) determines p "on the right side".

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Theorem

Both p_L and p_R are A-invariant, regular and asymmetric extensions of p.

Moreover, p_L and p_R are the only two global A-invariant extensions of p.

Any Morley sequence in p_R is strictly increasing, and any Morley sequence in p_L is strictly decreasing.

Lemma

Let $a \in p(\overline{M})$. Then: $\operatorname{scl}_{p_L,A}(a) = \operatorname{scl}_{p_R,A}(a) = \text{convex closure } (\operatorname{dcl}(Aa) \cap p(\overline{M})).$

Corollary. $I \subset p(\overline{M})$ is a Morley sequence in p_L over A in \overline{M} iff it is Morley sequence in p_R over A in \overline{M} . Also, $I \subseteq p(M)$ is a maximal Morley sequence in p_L over A in M iff it is maximal Morley sequence in p_R over A in M, for any small model M that contains A.

Remark. If $p \in S_1(A)$, then for some (any) $a \in p(\overline{M})$, $\operatorname{scl}_{p_L,A}(a)$ is Aa-definable iff $\operatorname{scl}_{p_L,A}(a) = \{a\}$.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

\perp^{w} , $\not\perp^{w}$, dimension

Let p, q be two complete types (with parameters). We say that $p \perp^w q$ iff $p(\overline{x}) \cup q(\overline{y}) \vdash \operatorname{tp}(\overline{xy})$.

 $\not\perp^w$ is equivalence relation on $S_1(\emptyset)$. Let $\{p_i \mid i \in I\}$ be the set of non-algebraic representatives of this equivalence relation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

$\perp^{w}, \not\perp^{w}$, dimension

Let p, q be two complete types (with parameters). We say that $p \perp^w q$ iff $p(\overline{x}) \cup q(\overline{y}) \vdash \operatorname{tp}(\overline{xy})$.

 $\not\perp^w$ is equivalence relation on $S_1(\emptyset)$. Let $\{p_i \mid i \in I\}$ be the set of non-algebraic representatives of this equivalence relation.

Let M be any countable model, A_i = maximal Morley sequence in p_{iL} , and $A = \bigcup_{i \in I} A_i$.

Theorem

M is prime over A.

M and N are isomorphic iff maximal Morley sequence in p_{iL} in M, and maximal Morley sequence in p_{iL} in N have the same order-type, for every $i \in I$.

Additional assumption

Assume that there are $< 2^{\aleph_0}$ countable models.

Then $\operatorname{scl}_{p_{iL},\emptyset}(a) = \{a\}$, for every type p_i .

Let M be a countable model. Under this assumption if p is:

- **1** algebraic type, then p(M) is a point;
- 2 isolated type, then p(M) is \mathbb{Q} ;
- If non-cut, then there are 3 possibilities for p(M);
- cut, then there are 6 possibilities for p(M).

Since there are $< 2^{\aleph_0}$ countable models, there are only finitely many non-isolated types in $\{p_i \mid \in I\}$. If *m* of them are cuts, and *n* of them are non-cuts, then there are exactly $6^m 3^n$ countable models.

Additional assumption

Assume that there are $< 2^{\aleph_0}$ countable models.

Then $\operatorname{scl}_{p_{iL},\emptyset}(a) = \{a\}$, for every type p_i .

Let M be a countable model. Under this assumption if p is:

- **1** algebraic type, then p(M) is a point;
- 2 isolated type, then p(M) is \mathbb{Q} ;
- If non-cut, then there are 3 possibilities for p(M);
- cut, then there are 6 possibilities for p(M).

Since there are $< 2^{\aleph_0}$ countable models, there are only finitely many non-isolated types in $\{p_i \mid \in I\}$. If *m* of them are cuts, and *n* of them are non-cuts, then there are exactly $6^m 3^n$ countable models.

Laura Mayer, Vaught's Conjecture for o-Minimal Theories

Slavko Moconja (Belgrade)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Thank you for your attention!

2

イロン イヨン イヨン イヨン