Duality via truth for distributive interlaced bilattices

Anna Mućka, Anna Maria Radzikowska Faculty of Mathematics and Information Science Warsaw University of Technology.

The 4th Novi Sad Algebraic Conference \& Semigroups and ${ }^{\circ}$ Applications 2013

Motivations

- Duality via truth (DvT): duality between classes of algebras and classes of relational systems (so called frames).

Motivations

- Duality via truth (DvT): duality between classes of algebras and classes of relational systems (so called frames).
- We view algebras and frames as semantical structures for formal languages.

Motivations

- Duality via truth (DvT): duality between classes of algebras and classes of relational systems (so called frames).
- We view algebras and frames as semantical structures for formal languages.
- A duality principle: a given class of algebras and a class of frames provide equivalent semantics in the sense that a formula α (resp. a sequent $\alpha \vdash \beta$-a pair of formulas where under the assumption of α the conclusion of β is provable) is true with respect to one semantics iff it is true with respect to the other semantics.

Motivations

- Duality via truth (DvT): duality between classes of algebras and classes of relational systems (so called frames).
- We view algebras and frames as semantical structures for formal languages.
- A duality principle: a given class of algebras and a class of frames provide equivalent semantics in the sense that a formula α (resp. a sequent $\alpha \vdash-\beta$-a pair of formulas where under the assumption of α the conclusion of β is provable) is true with respect to one semantics iff it is true with respect to the other semantics.
- As a consequence, the algebras and the frames express equivalent notion of truth.

Priestley-style duality vs. DvT

We consider algebras with distributive lattice redact.
Priestley duality for distributive lattices
Priestley proved that the category of bounded distributive lattices and the categorv of compact totally order disconnec ed spaces (X, \leq, τ) (Priestley spaces) are dually equivalent.

DvT for distributive lattices
In contrast we have onlv a discrete representation (with a
discrete topology) for algebras and frames. It suffices to show duality via truth for formal languages under considerations.

Priestley-style duality vs. DvT

We consider algebras with distributive lattice redact.
Priestley duality for distributive lattices
Priestley proved that the category of bounded distributive lattices and the category of compact totally order disconnected spaces (X, \leq, τ) (Priestley spaces) are dually equivalent.

```
DvT for distributive lattices
In contrast, we have only a discrete representation (with a
discrete topology) for algebras and frames. It suffices to show
duality via truth for formal languages under considerations.
```


Priestley-style duality vs. DvT

We consider algebras with distributive lattice redact.
Priestley duality for distributive lattices
Priestley proved that the category of bounded distributive lattices and the category of compact totally order disconnected spaces (X, \leq, τ) (Priestley spaces) are dually equivalent.

DVT for distributive lattices In contrast, we have only a discrete representation (with a discrete topology) for algebras and frames. It suffices to show duality via truth for formal languages under considerations.

The general method [Orłowska, Radzikowska]

Let \mathcal{A} / g be a class of algebras and let $\mathcal{F} r m$ be a class of frames.

The general method [Orłowska, Radzikowska]

Let $\mathcal{A l g}$ be a class of algebras and let $\mathcal{F} r m$ be a class of frames.
Step 1. With every frame $X \in \mathcal{F r m}$ associate its complex algebra $\mathfrak{C} m(X)$ of X and show that $\mathfrak{C} m(X) \in \mathcal{A l g}$.

Representation theorem for algebras and frames

1. Every algebra $L \in \mathcal{A l g}$ is embeddable into the cornplex algebra of its canonical frame, $\mathfrak{C C m}(\mathbb{C} f(L))$. 2. Every frame $X \in \mathcal{F} r m$ is embeddable into the canonical frame of its complex algebra, $\mathfrak{C f}(\mathbb{C} m(X))$

The general method [Orłowska, Radzikowska]

Let \mathcal{A} / g be a class of algebras and let $\mathcal{F} r m$ be a class of frames.
Step 1. With every frame $X \in \mathcal{F r m}$ associate its complex algebra $\mathfrak{C m}(X)$ of X and show that $\mathfrak{C} m(X) \in \mathcal{A l g}$. Step 2. With every algebra $L \in \mathcal{A l g}$ associate its canonical frame $\mathfrak{C} f(L)$ and show that $\mathfrak{C} f(L) \in \mathcal{F} r m$.

```
Representation theorem for algebras and frames
1. Every algebra L\in\mathcal{Alg}\mathrm{ is embeddable into the complex}
algebra of its canonical frame, CCm(Cff(L)).
2. Every frame X GFrm is embeddable into the canonical
frame of its complex algebra, \mathscr{Cf(Cm}(X))
```


The general method [Orłowska, Radzikowska]

Let \mathcal{A} / g be a class of algebras and let $\mathcal{F} r m$ be a class of frames.
Step 1. With every frame $X \in \mathcal{F r m}$ associate its complex algebra $\mathfrak{C} m(X)$ of X and show that $\mathfrak{C} m(X) \in \mathcal{A l g}$.
Step 2. With every algebra $L \in \mathcal{A} / g$ associate its canonical frame $\mathfrak{C} f(L)$ and show that $\mathfrak{C} f(L) \in \mathcal{F} r m$.

Step 3. Prove

Representation theorem for algebras and frames

1. Every algebra $L \in \mathcal{A l g}$ is embeddable into the complex algebra of its canonical frame, $\mathfrak{C} m(\mathfrak{C} f(L))$.
2. Every frame $X \in \mathcal{F r m}$ is embeddable into the canonical frame of its complex algebra, $\mathfrak{C} f(\mathfrak{C} m(X))$.

The general method (cont.)

Step 4. Duality via truth
(1) Define a propositional language $\mathcal{L} a n_{\mathcal{A l g}}$ over the set Var of propositional variables.

The general method (cont.)

Step 4. Duality via truth
(1) Define a propositional language $\mathcal{L} a n_{\mathcal{A l g}}$ over the set Var of propositional variables.
(2) A sequent $\alpha \vdash \beta$ is true in an algebra L whenever $v(\alpha) \leq \boldsymbol{v}(\beta)$ for any assignment $v: \operatorname{Var} \rightarrow L$ extended for all the formulas of \mathcal{L} an ${ }_{\mathcal{A l g}}$; it is \mathcal{A} / g-valid whenever it is true in every $L \in \mathcal{A} / g$.

The general method (cont.)

Step 4. Duality via truth
(1) Define a propositional language $\mathcal{L} a n_{\mathcal{A l g}}$ over the set Var of propositional variables.
(2) A sequent $\alpha \vdash \beta$ is true in an algebra L whenever $v(\alpha) \leq \boldsymbol{v}(\beta)$ for any assignment $v: \operatorname{Var} \rightarrow L$ extended for all the formulas of $\mathcal{L} a n_{\mathcal{A} / g}$; it is \mathcal{A} / g-valid whenever it is true in every $L \in \mathcal{A} / g$.
(3) For any $X \in \mathcal{F} r m$, define $\mathcal{M}=(X, m)$ where m : Var $\rightarrow 2^{X}$. Extend m to all formulas in such a way that m is a valuation in the complex algebra $c m(X)$ of X.

The general method (cont.)

Step 4. Duality via truth
(1) Define a propositional language $\mathcal{L} a n_{\mathcal{A l g}}$ over the set Var of propositional variables.
(2) A sequent $\alpha \vdash \beta$ is true in an algebra L whenever $v(\alpha) \leq \boldsymbol{v}(\beta)$ for any assignment $v: \operatorname{Var} \rightarrow L$ extended for all the formulas of $\mathcal{L} a n_{\mathcal{A} / g}$; it is \mathcal{A} / g-valid whenever it is true in every $L \in \mathcal{A} / g$.
(3) For any $X \in \mathcal{F} r m$, define $\mathcal{M}=(X, m)$ where $m: \operatorname{Var} \rightarrow 2^{X}$. Extend m to all formulas in such a way that m is a valuation in the complex algebra $c m(X)$ of X.
(4) A sequent $\alpha \vdash \beta$ is true in \mathcal{M} if $m(\alpha) \subseteq m(\beta)$; it is true in X if it is true in every $\mathcal{M}=(X, m)$ for any m; it is $\mathcal{F} r m$-valid if it is true in every X.

The general method (cont.)

Step 5.

Establish DvT between the classes \mathcal{A} / g and $\mathcal{F r m}$.
Duality via truth
For every sequent $\alpha \vdash \beta$ of \mathcal{L} an $_{\mathcal{A} \text { lg }}$ the following statements are equivalent:
(a) $\alpha \vdash \beta$ is \mathcal{A} / g-valid;
(b) $\alpha \vdash \beta$ is $\mathcal{F} r m$-valid.

Pre-bilattices

A pre-bilattice is an algebra $L=(L, \wedge, \vee, \sqcap, \sqcup)$ where $L=(L, \wedge, \vee)$ and $L=(L, \sqcap, \sqcup)$ are lattices with respective orders \leq_{t} and \leq_{k}.

Pre-bilattices

A pre-bilattice is an algebra $L=(L, \wedge, \vee, \sqcap, \sqcup)$ where $L=(L, \wedge, \vee)$ and $L=(L, \sqcap, \sqcup)$ are lattices with respective orders \leq_{t} and \leq_{k}.

A pre-bilattice is:

Pre-bilattices

A pre-bilattice is an algebra $L=(L, \wedge, \vee, \sqcap, \sqcup)$ where $L=(L, \wedge, \vee)$ and $L=(L, \sqcap, \sqcup)$ are lattices with respective orders \leq_{t} and \leq_{k}.

A pre-bilattice is:

- interlaced whenever each one of the four operations $\{\wedge, \vee, \sqcap, \sqcup\}$ is monotonic with respect to both orders \leq_{t}. and \leq_{k}.

Pre-bilattices

A pre-bilattice is an algebra $L=(L, \wedge, \vee, \sqcap, \sqcup)$ where $L=(L, \wedge, \vee)$ and $L=(L, \sqcap, \sqcup)$ are lattices with respective orders \leq_{t} and \leq_{k}.

A pre-bilattice is:

- interlaced whenever each one of the four operations $\{\wedge, \vee, \sqcap, \sqcup\}$ is monotonic with respect to both orders and \leq_{k}.
- distributive whenever each one of twelve lattice redacts is distributive.

Pre-bilattices

A pre-bilattice is an algebra $L=(L, \wedge, \vee, \sqcap, \sqcup)$ where $L=(L, \wedge, \vee)$ and $L=(L, \sqcap, \sqcup)$ are lattices with respective orders \leq_{t} and \leq_{k}.

A pre-bilattice is:

- interlaced whenever each one of the four operations $\{\wedge, \vee, \sqcap, \sqcup\}$ is monotonic with respect to both orders and \leq_{k}.
- distributive whenever each one of twelve lattice redacts is distributive.
- bounded whenever each one of two lattice $\left(L, \leq_{t}\right)$ and (L, \leq_{k}) is bounded.

Examples of bilattices

SEVEN

pB-lattices

Any bounded distributive interlaced pre-bilattice $(L, \wedge, \vee, \sqcap, \sqcup, 0,1, \perp, T)$ may be viewed as a bounded distributive lattice [Avron] endowed with two complementary constants, that is a structure of the form $(L, \wedge, \vee, 0,1, \perp, T)$ where

$$
\begin{aligned}
& T \wedge \perp=0 \\
& T \vee \perp=1 .
\end{aligned}
$$

This structure will be referred to as $p B$-lattice.

pB-frames

A pB-frame is a system (X, \leq, Δ) where (X, \leq) is a poset, $\Delta \subseteq X$, and for all $x, y \in X$,

$$
x \leq y \Rightarrow(x \in \Delta \Leftrightarrow y \in \Delta)
$$

pB-frames

A pB-frame is a system (X, \leq, Δ) where (X, \leq) is a poset, $\Delta \subseteq X$, and for all $x, y \in X$,

$$
x \leq y \Rightarrow(x \in \Delta \Leftrightarrow y \in \Delta) .
$$

The complex algebra of a $p B$-frame (X, \leq, Δ) is a system ($L_{X}, \cap, \cup, \emptyset, X, \perp_{\Delta}, \top_{\Delta}$) such that

$$
\begin{aligned}
L_{X} & :=\{A \subseteq X: A=\uparrow A\} \\
\perp_{\Delta} & :=\Delta \\
\top_{\Delta} & :=-\Delta .
\end{aligned}
$$

Proposition
 The complex algebra of a pB-frame is a pB-lattice

pB-frames

A pB-frame is a system (X, \leq, Δ) where (X, \leq) is a poset, $\Delta \subseteq X$, and for all $x, y \in X$,

$$
x \leq y \Rightarrow(x \in \Delta \Leftrightarrow y \in \Delta) .
$$

The complex algebra of a $p B$-frame (X, \leq, Δ) is a system ($L_{X}, \cap, \cup, \emptyset, X, \perp_{\Delta}, \top_{\Delta}$) such that

$$
\begin{aligned}
L_{X} & :=\{A \subseteq X: A=\uparrow A\} \\
\perp_{\Delta} & :=\Delta \\
\top_{\Delta} & :=-\Delta .
\end{aligned}
$$

Proposition

The complex algebra of a pB -frame is a pB -lattice.

Canonical frames of pB-lattices

The canonical frame of a $p B$-lattice $(L, \wedge, \vee, 0,1, \perp, T)$ is a relational system $\left(X_{L}, \subseteq, \Delta_{L}\right)$ such that X_{L} is a set of all prime filters of $(L, \wedge, \vee, 0,1)$ and

$$
\Delta_{L}:=\left\{F \in X_{L}: \top \in F\right\} .
$$

Proposition
The canonical frame of a pB-lattice is a pB-frame.

Canonical frames of pB-lattices

The canonical frame of a $p B$-lattice $\left(L, \wedge, \vee, 0,1, \perp, T_{1}\right)$ is a relational system $\left(X_{L}, \subseteq, \Delta_{L}\right)$ such that X_{L} is a set of all prime filters of $(L, \wedge, \vee, 0,1)$ and

$$
\Delta_{L}:=\left\{F \in X_{L}: T \in F\right\} .
$$

Proposition

The canonical frame of a pB-lattice is a pB-frame.

Representations for pB-lattices and pB-frames

Let $h: L \rightarrow L_{X_{L}}$ be defined as $h(a):=\left\{F \in X_{L}: a \in F\right\}$ and let $k: X \rightarrow X_{L_{X}}$ be defined as $k(x):=\{A \subseteq X: x \in A\}$.
Theorem
(a) Every pB-lattice is embeddable into the complex algebra of its canonical frame.
(b) Every pB-frame is embeddable into the canonical frame of its complex algebra.

Representations for pB-lattices and pB-frames

Let $h: L \rightarrow L_{X_{L}}$ be defined as $h(a):=\left\{F \in X_{L}: a \in F\right\}$ and let $k: X \rightarrow X_{L_{X}}$ be defined as $k(x):=\{A \subseteq X: x \in A\}$.

Theorem

(a) Every pB -lattice is embeddable into the complex algebra of its canonical frame.
(b) Every pB-frame is embeddable into the canonical frame of its complex algebra.

DvT for pB-lattices

Let $L a n_{p B}$ be a propositional language built up from a countable set of propositional variables Var using conjunction \wedge and disjunction \vee and four constants t, f, T and F.

DvT for pB-lattices

Let $L a n_{p B}$ be a propositional language built up from a countable set of propositional variables Var using conjunction \wedge and disjunction \vee and four constants t, f, T and F.

Let $\mathcal{A} / g_{p B}$ be the class of pB -lattices and let $L \in \mathcal{A} / g_{p B}$. A valuation in L is a mapping $v: \operatorname{Var} \rightarrow L$ such that $v(t)=1$, $v(T)=\mathrm{T}, v(f)=0$ and $v(F)=\perp$ extended to the set of all formulas as usual:

$$
\begin{aligned}
& v(\alpha \wedge \beta)=v(\alpha) \wedge v(\beta) \\
& v(\alpha \vee \beta)=v(\alpha) \vee v(\beta) .
\end{aligned}
$$

DvT for pB-lattices

Let $L a n_{p B}$ be a propositional language built up from a countable set of propositional variables Var using conjunction \wedge and disjunction \vee and four constants t, f, T and F.

Let $\mathcal{A} / g_{p B}$ be the class of pB -lattices and let $L \in \mathcal{A} / g_{p B}$. A valuation in L is a mapping $v: \operatorname{Var} \rightarrow L$ such that $v(t)=1$, $v(T)=\mathrm{T}, v(f)=0$ and $v(F)=\perp$ extended to the set of all formulas as usual:

$$
\begin{aligned}
& v(\alpha \wedge \beta)=v(\alpha) \wedge v(\beta) \\
& v(\alpha \vee \beta)=v(\alpha) \vee v(\beta) .
\end{aligned}
$$

A sequent $\alpha \vdash \beta$ is $\mathcal{A} / g_{p B}$-valid iff for every $L \in \mathcal{A} / g_{p B}$ and for every valuation v in $L, v(\alpha) \leq v(\beta)$.

DvT for pB-lattices (cont.)

Let $X=(X, \leqslant, \Delta)$ be a pB -frame. A model based on X is a system $M=(X, m)$ where $m: \operatorname{Var} \rightarrow L_{X}$ is such that $m(t)=X$, $m(f)=\emptyset, m(T)=\Delta$ and $m(F)=-\Delta$.
$\alpha \vdash \beta$ is $\mathcal{F r m}_{p B}$-valid iff for every $X \in \mathcal{F r m} m_{p B}$ a. $m(\alpha) \subset m(\beta)$.

DvT for pB-lattices (cont.)

Let $X=(X, \leqslant, \Delta)$ be a pB -frame. A model based on X is a system $M=(X, m)$ where $m: \operatorname{Var} \rightarrow L_{X}$ is such that $m(t)=X$, $m(f)=\emptyset, m(T)=\Delta$ and $m(F)=-\Delta$.

The satisfaction relation $=$ is defined for all formulas of $\mathcal{L} a n_{p B}$

$$
\begin{aligned}
& M, x \models p \Leftrightarrow x \in m(p) \text { for every } p \in \operatorname{Var} \\
& M, x \models \alpha \wedge \beta \Leftrightarrow M, x \models \alpha \text { and } M, x \vDash \beta \\
& M, x \models \alpha \vee \beta \Leftrightarrow M, x \models \alpha \text { or } M, x \models \beta .
\end{aligned}
$$

Put $m(\alpha)=\{x \in X: M, x \models \alpha\}$.

DvT for pB-lattices (cont.)

Let $X=(X, \leqslant, \Delta)$ be a pB -frame. A model based on X is a system $M=(X, m)$ where $m: \operatorname{Var} \rightarrow L_{X}$ is such that $m(t)=X$, $m(f)=\emptyset, m(T)=\Delta$ and $m(F)=-\Delta$.

The satisfaction relation \models is defined for all formulas of $\mathcal{L} a n_{p B}$

$$
\begin{aligned}
& M, x \models p \Leftrightarrow x \in m(p) \text { for every } p \in \operatorname{Var} \\
& M, x \models \alpha \wedge \beta \Leftrightarrow M, x \models \alpha \text { and } M, x=\beta \\
& M, x \models \alpha \vee \beta \Leftrightarrow M, x \models \alpha \text { or } M, x \models \beta .
\end{aligned}
$$

Put $m(\alpha)=\{x \in X: M, x \models \alpha\}$.
Note: m is a valuation in the complex algebra $\mathfrak{C m}(X)$ of X.

DvT for pB-lattices (cont.)

Let $X=(X, \leqslant, \Delta)$ be a pB -frame. A model based on X is a system $M=(X, m)$ where $m: \operatorname{Var} \rightarrow L_{X}$ is such that $m(t)=X$, $m(f)=\emptyset, m(T)=\Delta$ and $m(F)=-\Delta$.

The satisfaction relation $=$ is defined for all formulas of $\mathcal{L} a n_{p B}$

$$
\begin{aligned}
& M, x \models p \Leftrightarrow x \in m(p) \text { for every } p \in \operatorname{Var} \\
& M, x \models \alpha \wedge \beta \Leftrightarrow M, x \models \alpha \text { and } M, x=\beta \\
& M, x \models \alpha \vee \beta \Leftrightarrow M, x \models \alpha \text { or } M, x \models \beta .
\end{aligned}
$$

Put $m(\alpha)=\{x \in X: M, x \models \alpha\}$.
Note: m is a valuation in the complex algebra $\mathfrak{C} m(X)$ of X.
 $m(\alpha) \subseteq m(\beta)$.

DvT for pB-lattices (cont.)

Duality via truth
For all formulas α and β of $\mathcal{L} a n_{p B}$ the following conditions are equivalent:
(a) A sequent $\alpha \vdash \beta$ is $\mathcal{A} / g_{p B}$-valid;
(b) A sequent $\alpha \vdash \beta$ is $\mathcal{F} r m_{p B}$-valid.

Further works

- We also developed DvT for

Further works

- We also developed DvT for
- bilattices (pre-bilattices + true order reversing and knowledge order preserving involution)
- bilattices with conflation (bilattices + knowledge order reversing and true order preserving involution).

Further works

- We also developed DvT for
- bilattices (pre-bilattices + true order reversing and knowledge order preserving involution)
- bilattices with conflation (bilattices + knowledge order reversing and true order preserving involution).
- In work: DvT for bilattices with Heyting implication and residuated bilattices.

Further works

- We also developed DvT for
- bilattices (pre-bilattices + true order reversing and knowledge order preserving involution)
- bilattices with conflation (bilattices + knowledge order reversing and true order preserving involution).
- In work: DvT for bilattices with Heyting implication and residuated bilattices.
- Future work: DvT for various classes of bilattices of significience in CS.

