A Characterization of 2-supernilpotent Mal'cev Algebras

Nebojša Mudrinski

Department of Mathematics and Informatics University of Novi Sad

NSAC 2013, June 8, 2013, Novi Sad, Serbia

Nebojša Mudrinski A Characterization of 2-supernilpotent Mal'cev Algebras

< □ > < 同 > < 回 > < 回

Mal'cev Algebras

Definition

Mal'cev term: d(x, y, y) = d(y, y, x) = x

Expanded groups

An algebra (V, +, -, 0, F) is called an expanded group if (V, +, -, 0) is a group and *F* is a set of operations on *V*.

Examples of Mal'cev algebras

Groups, rings, modules, expanded groups, quasigroups,...

イロト イポト イヨト イヨト 一臣

Mal'cev Algebras

Definition

Mal'cev term:
$$d(x, y, y) = d(y, y, x) = x$$

Expanded groups

An algebra (V, +, -, 0, F) is called an expanded group if (V, +, -, 0) is a group and *F* is a set of operations on *V*.

Examples of Mal'cev algebras

Groups, rings, modules, expanded groups, quasigroups,...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Mal'cev Algebras

Definition

Mal'cev term:
$$d(x, y, y) = d(y, y, x) = x$$

Expanded groups

An algebra (V, +, -, 0, F) is called an expanded group if (V, +, -, 0) is a group and *F* is a set of operations on *V*.

Examples of Mal'cev algebras

Groups, rings, modules, expanded groups, quasigroups,...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Absorbing Polynomials

Definition

Let **A** be an algebra and let $n \in \mathbb{N}$, $(a_1, \ldots, a_n) \in A^n$, $a \in A$. An *n*-ary polynomial *p* is absorbing at (a_1, \ldots, a_n) with value *a* if $p(x_1, \ldots, x_n) = a$ whenever there exists an $i \in \{1, \ldots, n\}$ such that $x_i = a_i$.

Absorbing polynomials in expanded groups

Let $n \in \mathbb{N}$. An *n*-ary polynomial *f* of an expanded group (V, +, -, 0, F) is absorbing if $f(a_1, \ldots, a_n) = 0$ whenever there exists an $i \in \{1, \ldots, n\}$ such that $a_i = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Absorbing Polynomials

Definition

Let **A** be an algebra and let $n \in \mathbb{N}$, $(a_1, \ldots, a_n) \in A^n$, $a \in A$. An *n*-ary polynomial *p* is absorbing at (a_1, \ldots, a_n) with value *a* if $p(x_1, \ldots, x_n) = a$ whenever there exists an $i \in \{1, \ldots, n\}$ such that $x_i = a_i$.

Absorbing polynomials in expanded groups

Let $n \in \mathbb{N}$. An *n*-ary polynomial *f* of an expanded group (V, +, -, 0, F) is absorbing if $f(a_1, \ldots, a_n) = 0$ whenever there exists an $i \in \{1, \ldots, n\}$ such that $a_i = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Absorbing Polynomials of a Small Arity

Definition

Let **A** be an algebra and let $a, b, c \in A^3$, $d \in A$. A ternary polynomial p is absorbing at (a, b, c) with value d if p(x, y, z) = d whenever x = a or y = b or y = c.

Ternary absorbing polynomials in expanded groups

A ternary polynomial *f* of an expanded group (V, +, -, 0, F) is absorbing if f(x, y, z) = 0 whenever x = 0 or y = 0 or z = 0.

Commutator polynomials in expanded groups

A binary absorbing polynomial f of an expanded group (V, +, -, 0, F) is commutator polynomial.

イロト イポト イヨト イヨト

Absorbing Polynomials of a Small Arity

Definition

Let **A** be an algebra and let $a, b, c \in A^3$, $d \in A$. A ternary polynomial p is absorbing at (a, b, c) with value d if p(x, y, z) = d whenever x = a or y = b or y = c.

Ternary absorbing polynomials in expanded groups

A ternary polynomial *f* of an expanded group (V, +, -, 0, F) is absorbing if f(x, y, z) = 0 whenever x = 0 or y = 0 or z = 0.

Commutator polynomials in expanded groups

A binary absorbing polynomial f of an expanded group (V, +, -, 0, F) is commutator polynomial.

イロト イポト イヨト イヨト

ъ

Absorbing Polynomials of a Small Arity

Definition

Let **A** be an algebra and let $a, b, c \in A^3$, $d \in A$. A ternary polynomial p is absorbing at (a, b, c) with value d if p(x, y, z) = d whenever x = a or y = b or y = c.

Ternary absorbing polynomials in expanded groups

A ternary polynomial *f* of an expanded group (V, +, -, 0, F) is absorbing if f(x, y, z) = 0 whenever x = 0 or y = 0 or z = 0.

Commutator polynomials in expanded groups

A binary absorbing polynomial f of an expanded group (V, +, -, 0, F) is commutator polynomial.

イロト イポト イヨト イヨト

э

Polynomially Equivalent Algebras

Definition

Algebras A and B are polynomially equivalent if Pol A = Pol B.

Theorem (R. Freese, R.N. McKenzie)

Every nilpotent Mal'cev algebra is polynomially equivalent to an expanded loop.

Nebojša Mudrinski A Characterization of 2-supernilpotent Mal'cev Algebras

イロト イポト イヨト イヨト

3

Polynomially Equivalent Algebras

Definition

Algebras A and B are polynomially equivalent if Pol A = Pol B.

Theorem (R. Freese, R.N. McKenzie)

Every nilpotent Mal'cev algebra is polynomially equivalent to an expanded loop.

ヘロト ヘアト ヘビト ヘビト

1

Commutators

In Groups

If *H*, *K* are normal subgroups of a group **G** then [H, K] is a normal subgroup generated by $\{[h, k] | h \in H, k \in K\}$, where $[h, k] := h^{-1}k^{-1}hk$ for all $h \in H$ and $k \in K$.

TC commutator (R. Freese, R.N. McKenzie)

The term condition commutator $[\bullet, \bullet]$ in a Mal'cev algebra **A** is a binary operation on Con **A**, defined by the centralizing relation.

Proposition (E. Aichinger, N. M., 2010)

The binary commutator [1, 1] of a Mal'cev algebra **A** is the congruence of **A** generated by $\{(p(a_1, b_1), p(a_2, b_2)) \mid a_1, a_2, b_1, b_2 \in A, p \text{ is absorbing at } (a_2, b_2) \text{ with value } p(a_2, b_2) \}.$

Commutators

In Groups

If *H*, *K* are normal subgroups of a group **G** then [H, K] is a normal subgroup generated by $\{[h, k] | h \in H, k \in K\}$, where $[h, k] := h^{-1}k^{-1}hk$ for all $h \in H$ and $k \in K$.

TC commutator (R. Freese, R.N. McKenzie)

The term condition commutator $[\bullet, \bullet]$ in a Mal'cev algebra **A** is a binary operation on Con **A**, defined by the centralizing relation.

Proposition (E. Aichinger, N. M., 2010)

The binary commutator [1, 1] of a Mal'cev algebra **A** is the congruence of **A** generated by $\{(p(a_1, b_1), p(a_2, b_2)) \mid a_1, a_2, b_1, b_2 \in A, p \text{ is absorbing at } (a_2, b_2) \text{ with value } p(a_2, b_2)\}.$

Commutators

In Groups

If *H*, *K* are normal subgroups of a group **G** then [H, K] is a normal subgroup generated by $\{[h, k] | h \in H, k \in K\}$, where $[h, k] := h^{-1}k^{-1}hk$ for all $h \in H$ and $k \in K$.

TC commutator (R. Freese, R.N. McKenzie)

The term condition commutator $[\bullet, \bullet]$ in a Mal'cev algebra **A** is a binary operation on Con **A**, defined by the centralizing relation.

Proposition (E. Aichinger, N. M., 2010)

The binary commutator [1, 1] of a Mal'cev algebra **A** is the congruence of **A** generated by $\{(p(a_1, b_1), p(a_2, b_2)) \mid a_1, a_2, b_1, b_2 \in A, p \text{ is absorbing at } (a_2, b_2) \text{ with value } p(a_2, b_2)\}.$

Higher Commutators

A. Bulatov, 2001

The term condition *n*-ary commutator $[\bullet, \dots, \bullet]$ in a Mal'cev

algebra is an *n*-ary operation on Con **A**, defined by the higher centralizing relation.

Special case (E. Aichinger, N. M., 2010)

The ternary commutator [1, 1, 1] of a Mal'cev algebra **A** is the congruence of **A** generated by $\{(p(a_1, b_1, c_1), p(a_2, b_2, c_2)) | a_1, a_2, b_1, b_2, c_1, c_2 \in A, p \text{ is absorbing at } (a_2, b_2, c_2) \text{ with value } p(a_2, b_2, c_2) \}.$

イロト 不得 トイヨト イヨト

ъ

Higher Commutators

A. Bulatov, 2001

The term condition *n*-ary commutator $[\underbrace{\bullet, \ldots, \bullet}_{n}]$ in a Mal'cev algebra is an *n*-ary operation on Con **A**, defined by the higher centralizing relation.

Special case (E. Aichinger, N. M., 2010)

The ternary commutator [1, 1, 1] of a Mal'cev algebra **A** is the congruence of **A** generated by $\{(p(a_1, b_1, c_1), p(a_2, b_2, c_2)) | a_1, a_2, b_1, b_2, c_1, c_2 \in A, p \text{ is absorbing at } (a_2, b_2, c_2) \text{ with value } p(a_2, b_2, c_2) \}.$

ヘロン 人間 とくほ とくほ とう

1

Abelian, Nilpotent and Supernilpotent

Abelian

Algebras that satisfy [1, 1] = 0 are called abelian.

2-nilpotent (R. Freese, R.N. McKenzie)

Algebras that satisfy [1, [1, 1]] = 0 are called 2-nilpotent. **Remark**: All 2-nilpotent algebras are nilpotent by definition.

2-supernilpotent

Mal'cev algebras that satisfy [1, 1, 1] = 0 are called **2-supernilpotent**.

Example

Abelian, Nilpotent and Supernilpotent

Abelian

Algebras that satisfy [1, 1] = 0 are called abelian.

2-nilpotent (R. Freese, R.N. McKenzie)

Algebras that satisfy [1, [1, 1]] = 0 are called 2-nilpotent. **Remark**: All 2-nilpotent algebras are nilpotent by definition.

2-supernilpotent

Mal'cev algebras that satisfy [1, 1, 1] = 0 are called **2-supernilpotent**.

Example

Abelian, Nilpotent and Supernilpotent

Abelian

Algebras that satisfy [1, 1] = 0 are called abelian.

2-nilpotent (R. Freese, R.N. McKenzie)

Algebras that satisfy [1, [1, 1]] = 0 are called 2-nilpotent. **Remark**: All 2-nilpotent algebras are nilpotent by definition.

2-supernilpotent

Mal'cev algebras that satisfy [1, 1, 1] = 0 are called 2-supernilpotent.

Example

Abelian, Nilpotent and Supernilpotent

Abelian

Algebras that satisfy [1, 1] = 0 are called abelian.

2-nilpotent (R. Freese, R.N. McKenzie)

Algebras that satisfy [1, [1, 1]] = 0 are called 2-nilpotent. **Remark**: All 2-nilpotent algebras are nilpotent by definition.

2-supernilpotent

Mal'cev algebras that satisfy [1, 1, 1] = 0 are called 2-supernilpotent.

Example

Some Properties of Ternary Commutators

Proposition (E. Aichinger, N. M., 2010)

 $\begin{array}{l} (\text{HC3}) \; [1,1,1] \leq [1,1] \\ (\text{HC8}) \; [1,[1,1]] \leq [1,1,1] \end{array}$

Remark

In groups: [1, [1, 1]] = [1, 1, 1]

Corollary of (HC8)

Every 2-supernilpotent Mal'cev algebra is 2-nilpotent.

Corollary of (HC3)

Every abelian Mal'cev algebra is 2-supernilpotent.

イロト イポト イヨト イヨト

э

Some Properties of Ternary Commutators

Proposition (E. Aichinger, N. M., 2010)

 $\begin{array}{l} (\text{HC3}) \; [1,1,1] \leq [1,1] \\ (\text{HC8}) \; [1,[1,1]] \leq [1,1,1] \end{array}$

Remark

In groups: [1, [1, 1]] = [1, 1, 1]

Corollary of (HC8)

Every 2-supernilpotent Mal'cev algebra is 2-nilpotent.

Corollary of (HC3)

Every abelian Mal'cev algebra is 2-supernilpotent.

イロト イポト イヨト イヨト

ъ

Some Properties of Ternary Commutators

Proposition (E. Aichinger, N. M., 2010)

 $\begin{array}{l} (\text{HC3}) \; [1,1,1] \leq [1,1] \\ (\text{HC8}) \; [1,[1,1]] \leq [1,1,1] \end{array}$

Remark

In groups: [1, [1, 1]] = [1, 1, 1]

Corollary of (HC8)

Every 2-supernilpotent Mal'cev algebra is 2-nilpotent.

Corollary of (HC3)

Every abelian Mal'cev algebra is 2-supernilpotent.

イロト イポト イヨト イヨト

э

Some Properties of Ternary Commutators

Proposition (E. Aichinger, N. M., 2010)

 $\begin{array}{l} (\text{HC3}) \; [1,1,1] \leq [1,1] \\ (\text{HC8}) \; [1,[1,1]] \leq [1,1,1] \end{array}$

Remark

In groups: [1, [1, 1]] = [1, 1, 1]

Corollary of (HC8)

Every 2-supernilpotent Mal'cev algebra is 2-nilpotent.

Corollary of (HC3)

Every abelian Mal'cev algebra is 2-supernilpotent.

・ロト ・ 一下・ ・ ヨト・

When is the commutator 0?

1. What does [1, 1] = 0 mean in groups?

Answer: Holds iff the group is commutative.

2. What does [1, 1] = 0 mean in Mal'cev algebras?

Theorem (Gumm, Hagemann, Herrmann)

Answer: [1, 1] = 0 holds iff the algebra is polynomially equivalent to a module over a ring.

イロト イポト イヨト イヨト

When is the commutator 0?

1. What does [1, 1] = 0 mean in groups?

Answer: Holds iff the group is commutative.

2. What does [1, 1] = 0 mean in Mal'cev algebras?

Theorem (Gumm, Hagemann, Herrmann)

Answer: [1, 1] = 0 holds iff the algebra is polynomially equivalent to a module over a ring.

ヘロン ヘアン ヘビン ヘビン

When is the commutator 0?

1. What does [1, 1] = 0 mean in groups?

Answer: Holds iff the group is commutative.

2. What does [1, 1] = 0 mean in Mal'cev algebras?

Theorem (Gumm, Hagemann, Herrmann)

Answer: [1, 1] = 0 holds iff the algebra is polynomially equivalent to a module over a ring.

・ロト ・ 理 ト ・ ヨ ト ・

When is the commutator 0?

1. What does [1, 1] = 0 mean in groups?

Answer: Holds iff the group is commutative.

2. What does [1, 1] = 0 mean in Mal'cev algebras?

Theorem (Gumm, Hagemann, Herrmann)

Answer: [1,1] = 0 holds iff the algebra is polynomially equivalent to a module over a ring.

イロト イポト イヨト イヨト

When is the ternary commutator 0?

3. What does [1, 1, 1] = 0 mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra **A** the following are equivalent:

• A is 2-supernilpotent
$$([1, 1, 1] = 0)$$

A is polynomially equivalent to an expanded group
V = (A, +, -, 0, F) such that

 Fis.a.set of at most binary absorbing operations on V.
every absorbing operation in Poly(V) is distributive with responsible 1, on both provingence.

(ii) V is 2-nilpotent

・ロト ・ 理 ト ・ ヨ ト ・

ъ

When is the ternary commutator 0?

3. What does [1, 1, 1] = 0 mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra **A** the following are equivalent:

A is polynomially equivalent to an expanded group V = (A, +, -, 0, F) such that

F is a set of at most binary absorbing operations on V.

- every absorbing operation in Pol₂(V) is distributive with respect to 1 on both arguments, and
 - respect to + on both arguments, and
- iii) V is 2-nilpotent.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

When is the ternary commutator 0?

3. What does [1, 1, 1] = 0 mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra A the following are equivalent:

A is 2-supernilpotent (
$$[1, 1, 1] = 0$$
)

A is polynomially equivalent to an expanded group V = (A, +, -, 0, F) such that

) F is a set of at most binary absorbing operations on V.

- every absorbing operation in Pol₂(V) is distributive with respect to 1 on both arguments, and
 - respect to + on both arguments,
- ii) V is 2-nilpotent.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

When is the ternary commutator 0?

3. What does [1, 1, 1] = 0 mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra A the following are equivalent:

(
$$[1, 1, 1] = 0$$
) **A** is 2-supernilpotent ([1, 1, 1] = 0)

- **2** A is polynomially equivalent to an expanded group $\mathbf{V} = (A, +, -, 0, F)$ such that
 - i) F is a set of at most binary absorbing operations on V,
 - ii) every absorbing operation in $\mathsf{Pol}_2(V)$ is distributive with respect to + on both arguments, and
 - iii) V is 2-nilpotent.

イロト イポト イヨト イヨト

When is the ternary commutator 0?

3. What does [1, 1, 1] = 0 mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra A the following are equivalent:

(
$$[1, 1, 1] = 0$$
) **(** $[1, 1, 1] = 0$)

- **2** A is polynomially equivalent to an expanded group $\mathbf{V} = (A, +, -, 0, F)$ such that
 - i) F is a set of at most binary absorbing operations on V,
 - ii) every absorbing operation in $Pol_2(V)$ is distributive with respect to + on both arguments, and
 - iii) V is 2-nilpotent.

ヘロト 人間 ト ヘヨト ヘヨト

When is the ternary commutator 0?

3. What does [1, 1, 1] = 0 mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra A the following are equivalent:

(
$$[1, 1, 1] = 0$$
) **(** $[1, 1, 1] = 0$

- **2** A is polynomially equivalent to an expanded group $\mathbf{V} = (A, +, -, 0, F)$ such that
 - i) F is a set of at most binary absorbing operations on V,
 - ii) every absorbing operation in $\text{Pol}_2(\textbf{V})$ is distributive with respect to + on both arguments, and

iii) V is 2-nilpotent.

ヘロト 人間 ト ヘヨト ヘヨト

When is the ternary commutator 0?

3. What does [1, 1, 1] = 0 mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra A the following are equivalent:

(
$$[1, 1, 1] = 0$$
) **(** $[1, 1, 1] = 0$

- **2** A is polynomially equivalent to an expanded group $\mathbf{V} = (A, +, -, 0, F)$ such that
 - i) F is a set of at most binary absorbing operations on V,
 - ii) every absorbing operation in $\text{Pol}_2(\textbf{V})$ is distributive with respect to + on both arguments, and
 - iii) V is 2-nilpotent.

イロト イポト イヨト イヨト

Some Useful Statements

Theorem (R. Freese, R.N. McKenzie)

Let **A** be a nilpotent Mal'cev algebra with a Mal'cev term *d*. Then, the function $x \mapsto d(x, a, b)$ is bijective for all $a, b \in A$.

Corollary

Let **A** be a nilpotent Mal'cev algebra with a Mal'cev term *d* and let $o \in A$. Then, for all $a_1, a_2, b_1, b_2 \in A$ there exist $x, y \in A$ such that $d(x, o, a_1) = b_1$ and $d(a_2, o, y) = b_2$.

Theorem (M. Suzuki)

Every semigroup (G, +) such that the equations $a_1 + x = b_1$ and $y + a_2 = b_2$ are solvable, for all $a_1, a_2, b_1, b_2 \in A$, is a group.

イロト イポト イヨト イヨト

Some Useful Statements

Theorem (R. Freese, R.N. McKenzie)

Let **A** be a nilpotent Mal'cev algebra with a Mal'cev term *d*. Then, the function $x \mapsto d(x, a, b)$ is bijective for all $a, b \in A$.

Corollary

Let **A** be a nilpotent Mal'cev algebra with a Mal'cev term *d* and let $o \in A$. Then, for all $a_1, a_2, b_1, b_2 \in A$ there exist $x, y \in A$ such that $d(x, o, a_1) = b_1$ and $d(a_2, o, y) = b_2$.

Theorem (M. Suzuki)

Every semigroup (G, +) such that the equations $a_1 + x = b_1$ and $y + a_2 = b_2$ are solvable, for all $a_1, a_2, b_1, b_2 \in A$, is a group.

ヘロト ヘアト ヘビト ヘビト

Some Useful Statements

Theorem (R. Freese, R.N. McKenzie)

Let **A** be a nilpotent Mal'cev algebra with a Mal'cev term *d*. Then, the function $x \mapsto d(x, a, b)$ is bijective for all $a, b \in A$.

Corollary

Let **A** be a nilpotent Mal'cev algebra with a Mal'cev term *d* and let $o \in A$. Then, for all $a_1, a_2, b_1, b_2 \in A$ there exist $x, y \in A$ such that $d(x, o, a_1) = b_1$ and $d(a_2, o, y) = b_2$.

Theorem (M. Suzuki)

Every semigroup (G, +) such that the equations $a_1 + x = b_1$ and $y + a_2 = b_2$ are solvable, for all $a_1, a_2, b_1, b_2 \in A$, is a group.

イロト イ理ト イヨト イヨト

э

The Group Operation

Let us suppose that **A** is 2-supernilpotent. We show briefly that **A** has a polynomial group operation.

Let $o \in A$ and let d be a Mal'cev term of a Mal'cev algebra **A**. We define $+ : A^2 \to A$ by

x+y:=d(x,o,y),

for all $x, y \in A$.

The idea

To prove that + is a group operation we have to show that + is associative.

イロト イポト イヨト イヨト

The Group Operation

Let us suppose that **A** is 2-supernilpotent. We show briefly that **A** has a polynomial group operation.

Let $o \in A$ and let *d* be a Mal'cev term of a Mal'cev algebra **A**. We define $+ : A^2 \to A$ by

$$\mathbf{x} + \mathbf{y} := \mathbf{d}(\mathbf{x}, \mathbf{o}, \mathbf{y}),$$

for all $x, y \in A$.

The idea

To prove that + is a group operation we have to show that + is associative.

ヘロト 人間 ト ヘヨト ヘヨト

э

The Group Operation

Let us suppose that **A** is 2-supernilpotent. We show briefly that **A** has a polynomial group operation.

Let $o \in A$ and let *d* be a Mal'cev term of a Mal'cev algebra **A**. We define $+ : A^2 \to A$ by

$$\mathbf{x} + \mathbf{y} := \mathbf{d}(\mathbf{x}, \mathbf{o}, \mathbf{y}),$$

for all $x, y \in A$.

The idea

To prove that + is a group operation we have to show that + is associative.

イロト イポト イヨト イヨト

A Special Absorbing Polynomial

We define a ternary polynomial p of A such that

p(x, y, z) := d(d(d(x, o, y), o, z), d(x, o, d(y, o, z)), o),

for all $x, y, z \in A$.

Proposition

p is an absorbing polynomial at (o, o, o) with value o.

Corollary

 $(p(a, b, c), o) = (p(a, b, c), p(o, o, o)) \in [1, 1, 1] = 0$ for all $a, b, c \in A$.

イロト 不得 とくほ とくほ とうほう

A Special Absorbing Polynomial

We define a ternary polynomial p of A such that

p(x, y, z) := d(d(d(x, o, y), o, z), d(x, o, d(y, o, z)), o),

for all $x, y, z \in A$.

Proposition

p is an absorbing polynomial at (o, o, o) with value o.

Corollary

 $(p(a, b, c), o) = (p(a, b, c), p(o, o, o)) \in [1, 1, 1] = 0$ for all $a, b, c \in A$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

A Special Absorbing Polynomial

We define a ternary polynomial p of A such that

p(x, y, z) := d(d(d(x, o, y), o, z), d(x, o, d(y, o, z)), o),

for all $x, y, z \in A$.

Proposition

p is an absorbing polynomial at (o, o, o) with value o.

Corollary

$$(p(a, b, c), o) = (p(a, b, c), p(o, o, o)) \in [1, 1, 1] = 0$$
 for all $a, b, c \in A$.

(日)

Associativity

We take $a, b, c \in A$.

p(a, b, c) = o or equivalently

d(d(d(a, o, b), o, c), d(a, o, d(b, o, c)), o) = o.

d(d(a, o, b), o, c) = d(a, o, d(b, o, c)), because

 $\mathbf{x}\mapsto \mathbf{d}(\mathbf{x},\mathbf{d}(\mathbf{a},\mathbf{o},\mathbf{d}(\mathbf{b},\mathbf{o},\mathbf{c})),\mathbf{o}).$

is bijective. (A is 2-nilpotent by (HC8))

(a+b)+c=a+(b+c)

イロン イロン イヨン イヨン

Associativity

We take $a, b, c \in A$.

p(a, b, c) = o or equivalently

d(d(d(a,o,b),o,c),d(a,o,d(b,o,c)),o)=o.

$$d(d(a, o, b), o, c) = d(a, o, d(b, o, c))$$
, because

 $x \mapsto d(x, d(a, o, d(b, o, c)), o).$

is bijective. (A is 2-nilpotent by (HC8))

(a+b)+c=a+(b+c)

イロン イボン イヨン イヨン

Associativity

We take $a, b, c \in A$.

p(a, b, c) = o or equivalently

d(d(d(a, o, b), o, c), d(a, o, d(b, o, c)), o) = o.

d(d(a, o, b), o, c) = d(a, o, d(b, o, c)), because

 $x \mapsto d(x, d(a, o, d(b, o, c)), o).$

is bijective. (A is 2-nilpotent by (HC8))

(a+b) + c = a + (b+c)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Associativity

We take $a, b, c \in A$.

p(a, b, c) = o or equivalently

d(d(d(a, o, b), o, c), d(a, o, d(b, o, c)), o) = o.

d(d(a, o, b), o, c) = d(a, o, d(b, o, c)), because

 $x \mapsto d(x, d(a, o, d(b, o, c)), o).$

is bijective. (A is 2-nilpotent by (HC8))

(a+b)+c=a+(b+c)

3

イロト イ押ト イヨト イヨトー

Thank You for the Attention!

Nebojša Mudrinski A Characterization of 2-supernilpotent Mal'cev Algebras

イロト イポト イヨト イヨト

ъ