A Characterization of 2-supernilpotent Mal'cev Algebras

Nebojša Mudrinski

Department of Mathematics and Informatics University of Novi Sad

NSAC 2013, June 8, 2013, Novi Sad, Serbia

Mal'cev Algebras

Definition

Mal'cev term: $d(x, y, y)=d(y, y, x)=x$

Expanded groups

An algebra $(V,+,-, 0, F)$ is called an expanded group if
$(V,+,-, 0)$ is a group and F is a set of operations on V.

Examples of Mal'cev algebras
Groups, rings, modules, expanded groups, quasigroups,

Mal'cev Algebras

Definition

Mal'cev term: $d(x, y, y)=d(y, y, x)=x$

Expanded groups

An algebra ($V,+,-, 0, F$) is called an expanded group if $(V,+,-, 0)$ is a group and F is a set of operations on V.

Examples of Mal'cev algebras
Groups, rings, modules, expanded groups, quasigroups,.

Mal'cev Algebras

Definition

Mal'cev term: $d(x, y, y)=d(y, y, x)=x$

Expanded groups

An algebra $(V,+,-, 0, F)$ is called an expanded group if $(V,+,-, 0)$ is a group and F is a set of operations on V.

Examples of Mal'cev algebras

Groups, rings, modules, expanded groups, quasigroups,...

Absorbing Polynomials

Definition

Let \mathbf{A} be an algebra and let $n \in \mathbb{N},\left(a_{1}, \ldots, a_{n}\right) \in A^{n}, a \in A$. An n-ary polynomial p is absorbing at $\left(a_{1}, \ldots, a_{n}\right)$ with value a if $p\left(x_{1}, \ldots, x_{n}\right)=a$ whenever there exists an $i \in\{1, \ldots, n\}$ such that $x_{i}=a_{i}$.

Absorbing polynomials in expanded groups
Let $n \in \mathbb{N}$. An n-ary polynomial f of an expanded group
$(V,+,-, 0, F)$ is absorbing if $f\left(a_{1}, \ldots, a_{n}\right)=0$ whenever there
exists an $i \in\{1, \ldots, n\}$ such that $a_{i}=0$.

Absorbing Polynomials

Definition

Let \mathbf{A} be an algebra and let $n \in \mathbb{N},\left(a_{1}, \ldots, a_{n}\right) \in A^{n}, a \in A$. An n-ary polynomial p is absorbing at $\left(a_{1}, \ldots, a_{n}\right)$ with value a if $p\left(x_{1}, \ldots, x_{n}\right)=a$ whenever there exists an $i \in\{1, \ldots, n\}$ such that $x_{i}=a_{i}$.

Absorbing polynomials in expanded groups
Let $n \in \mathbb{N}$. An n-ary polynomial f of an expanded group $(V,+,-, 0, F)$ is absorbing if $f\left(a_{1}, \ldots, a_{n}\right)=0$ whenever there exists an $i \in\{1, \ldots, n\}$ such that $a_{i}=0$.

Absorbing Polynomials of a Small Arity

Definition

Let \mathbf{A} be an algebra and let $a, b, c \in A^{3}, d \in A$. A ternary polynomial p is absorbing at (a, b, c) with value d if $p(x, y, z)=d$ whenever $x=a$ or $y=b$ or $y=c$.

Ternary absorbing polynomials in expanded groups

> A ternary polynomial f of an expanded group $(V,+,-, 0, F)$ is absorbing if $f(x, y, z)=0$ whenever $x=0$ or $y=0$ or $z=0$.

Commutator polynomials in expanded groups

A hinary absorbing nolynomial f of an exnanded group
$(V,+,-, 0, F)$ is commutator polynomial

Absorbing Polynomials of a Small Arity

Definition

Let \mathbf{A} be an algebra and let $a, b, c \in A^{3}, d \in A$. A ternary polynomial p is absorbing at (a, b, c) with value d if $p(x, y, z)=d$ whenever $x=a$ or $y=b$ or $y=c$.

Ternary absorbing polynomials in expanded groups

A ternary polynomial f of an expanded group $(V,+,-, 0, F)$ is absorbing if $f(x, y, z)=0$ whenever $x=0$ or $y=0$ or $z=0$.

Commutator polynomials in expanded groups

A binary absorbing polynomial f of an expanded group
$(V,+,-, 0, F)$ is commutator polynomial

Absorbing Polynomials of a Small Arity

Definition

Let \mathbf{A} be an algebra and let $a, b, c \in A^{3}, d \in A$. A ternary polynomial p is absorbing at (a, b, c) with value d if $p(x, y, z)=d$ whenever $x=a$ or $y=b$ or $y=c$.

Ternary absorbing polynomials in expanded groups
A ternary polynomial f of an expanded group $(V,+,-, 0, F)$ is absorbing if $f(x, y, z)=0$ whenever $x=0$ or $y=0$ or $z=0$.

Commutator polynomials in expanded groups
A binary absorbing polynomial f of an expanded group $(V,+,-, 0, F)$ is commutator polynomial.

Polynomially Equivalent Algebras

Definition
 Algebras \mathbf{A} and \mathbf{B} are polynomially equivalent if $\operatorname{Pol} \mathbf{A}=\operatorname{Pol} \mathbf{B}$.

Theorem (R. Freese, R.N. McKenzie)
Every nilpotent Mal'cev algebra is polynomially equivalent to an expanded loop.

Polynomially Equivalent Algebras

Definition

Algebras \mathbf{A} and \mathbf{B} are polynomially equivalent if $\operatorname{Pol} \mathbf{A}=\mathrm{Pol} \mathbf{B}$.

Theorem (R. Freese, R.N. McKenzie)
Every nilpotent Mal'cev algebra is polynomially equivalent to an expanded loop.

Commutators

In Groups

If H, K are normal subgroups of a group \mathbf{G} then $[H, K]$ is a normal subgroup generated by $\{[h, k] \mid h \in H, k \in K\}$, where $[h, k]:=h^{-1} k^{-1} h k$ for all $h \in H$ and $k \in K$.

TC commutator (R. Freese, R.N. McKenzie)

The term condition commutator $[\bullet, \bullet]$ in a Mal'cev algebra \mathbf{A} is a binary operation on Con \mathbf{A}, defined by the centralizing relation.

Proposition (E. Aichinger, N. M., 2010)

The binary commutator [1, 1] of a Mal'cev algebra A is the congruence of \mathbf{A} generated by
$\left\{\left(p\left(a_{1}, b_{1}\right), p\left(a_{2}, b_{2}\right)\right) \mid a_{1}, a_{2}, b_{1}, b_{2} \in A, p\right.$ is absorbing at
$\left(a_{2}, b_{2}\right)$ with value $\left.p\left(a_{2}, b_{2}\right)\right\}$

Commutators

In Groups

If H, K are normal subgroups of a group \mathbf{G} then $[H, K]$ is a normal subgroup generated by $\{[h, k] \mid h \in H, k \in K\}$, where $[h, k]:=h^{-1} k^{-1} h k$ for all $h \in H$ and $k \in K$.

TC commutator (R. Freese, R.N. McKenzie)

The term condition commutator $[\bullet, \bullet]$ in a Mal'cev algebra \mathbf{A} is a binary operation on Con \mathbf{A}, defined by the centralizing relation.

Commutators

In Groups

If H, K are normal subgroups of a group \mathbf{G} then $[H, K]$ is a normal subgroup generated by $\{[h, k] \mid h \in H, k \in K\}$, where $[h, k]:=h^{-1} k^{-1} h k$ for all $h \in H$ and $k \in K$.

TC commutator (R. Freese, R.N. McKenzie)

The term condition commutator $[\bullet, \bullet]$ in a Mal'cev algebra \mathbf{A} is a binary operation on Con \mathbf{A}, defined by the centralizing relation.

Proposition (E. Aichinger, N. M., 2010)
The binary commutator [1, 1] of a Mal'cev algebra \mathbf{A} is the congruence of \mathbf{A} generated by $\left\{\left(p\left(a_{1}, b_{1}\right), p\left(a_{2}, b_{2}\right)\right) \mid a_{1}, a_{2}, b_{1}, b_{2} \in A, p\right.$ is absorbing at $\left(a_{2}, b_{2}\right)$ with value $\left.p\left(a_{2}, b_{2}\right)\right\}$.

Higher Commutators

A. Bulatov, 2001

The term condition n-ary commutator $[\underbrace{\bullet, \ldots, \bullet}_{n}]$ in a Mal'cev algebra is an n-ary operation on $\operatorname{Con} \mathbf{A}$, defined by the higher centralizing relation.

Higher Commutators

A. Bulatov, 2001

The term condition n-ary commutator $[\underbrace{\bullet, \ldots, \bullet}_{n}]$ in a Mal'cev algebra is an n-ary operation on $\operatorname{Con} \mathbf{A}$, defined by the higher centralizing relation.

Special case (E. Aichinger, N. M., 2010)

The ternary commutator $[1,1,1]$ of a Mal'cev algebra \mathbf{A} is the congruence of \mathbf{A} generated by $\left\{\left(p\left(a_{1}, b_{1}, c_{1}\right), p\left(a_{2}, b_{2}, c_{2}\right)\right) \mid a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \in A, p\right.$ is absorbing at $\left(a_{2}, b_{2}, c_{2}\right)$ with value $\left.p\left(a_{2}, b_{2}, c_{2}\right)\right\}$.

Abelian, Nilpotent and Supernilpotent

Abstract

Abelian Algebras that satisfy $[1,1]=0$ are called abelian.

2-nilpotent (R. Freese, R.N. McKenzie)

Algebras that satisfy $[1,[1,1]]=0$ are called 2 -nilpotent.
Remark: All 2-nilpotent algebras are nilpotent by definition.

2-supernilpotent
 Mal'cev algebras that satisfy $[1,1,1]=0$ are called
 2-supernilpotent.

Example
 ($\left.\mathbb{T}_{1},+2 x y z\right)$ is 2 -nilpotent, but not 2 -supernilpotent.

Abelian, Nilpotent and Supernilpotent

Abelian

Algebras that satisfy $[1,1]=0$ are called abelian.

2-nilpotent (R. Freese, R.N. McKenzie)

Algebras that satisfy $[1,[1,1]]=0$ are called 2-nilpotent. Remark: All 2-nilpotent algebras are nilpotent by definition.

```
2-supernilpotent
Mal'cev algebras that satisfy [1, 1, 1]=0 are called
2-supernilpotent
Example
(\mathbb{T}
```


Abelian, Nilpotent and Supernilpotent

Abelian

Algebras that satisfy $[1,1]=0$ are called abelian.

2-nilpotent (R. Freese, R.N. McKenzie)

Algebras that satisfy $[1,[1,1]]=0$ are called 2-nilpotent. Remark: All 2-nilpotent algebras are nilpotent by definition.

2-supernilpotent

Mal'cev algebras that satisfy $[1,1,1]=0$ are called 2-supernilpotent.

Abelian, Nilpotent and Supernilpotent

Abelian

Algebras that satisfy $[1,1]=0$ are called abelian.

2-nilpotent (R. Freese, R.N. McKenzie)

Algebras that satisfy $[1,[1,1]]=0$ are called 2-nilpotent. Remark: All 2-nilpotent algebras are nilpotent by definition.

2-supernilpotent

Mal'cev algebras that satisfy $[1,1,1]=0$ are called 2-supernilpotent.

Example

$\left(\mathbb{Z}_{4},+, 2 x y z\right)$ is 2-nilpotent, but not 2-supernilpotent.

Some Properties of Ternary Commutators

Proposition (E. Aichinger, N. M., 2010)
(HC3) $[1,1,1] \leq[1,1]$
(HC8) $[1,[1,1]] \leq[1,1,1]$

Remark

In groups: $[1,[1,1]]=[1,1,1]$
Corollary of (HC8)
Every 2-supernilpotent Mal'cev algebra is 2-nilpotent.

Corollary of (HC3)
Every abelian Mal'cev algebra is 2-supernilpotent.

Some Properties of Ternary Commutators

Proposition (E. Aichinger, N. M., 2010)
(HC3) $[1,1,1] \leq[1,1]$
(HC8) $[1,[1,1]] \leq[1,1,1]$

Remark

In groups: $[1,[1,1]]=[1,1,1]$
Corollary of (HC8)
Every 2-supernilpotent Mal'cev algebra is 2-nilpotent.
Corollary of (HC3)
Every abelian Mal'cev algebra is 2 -supernilpotent.

Some Properties of Ternary Commutators

Proposition (E. Aichinger, N. M., 2010)
(HC3) $[1,1,1] \leq[1,1]$
(HC8) $[1,[1,1]] \leq[1,1,1]$

Remark
In groups: $[1,[1,1]]=[1,1,1]$
Corollary of (HC8)
Every 2-supernilpotent Mal'cev algebra is 2-nilpotent.
Corollary of (HC3)
Every abelian Mal'cev algebra is 2-supernilpotent.

Some Properties of Ternary Commutators

Proposition (E. Aichinger, N. M., 2010)
(HC3) $[1,1,1] \leq[1,1]$
(HC8) $[1,[1,1]] \leq[1,1,1]$

Remark
In groups: $[1,[1,1]]=[1,1,1]$
Corollary of (HC8)
Every 2-supernilpotent Mal'cev algebra is 2-nilpotent.
Corollary of (HC3)
Every abelian Mal'cev algebra is 2-supernilpotent.

When is the commutator 0 ?

1. What does $[1,1]=0$ mean in groups?

Answer: Holds iff the group is commutative.

2. What does $[1,1]=0$ mean in Mal'cev algebras?

Theorem (Gumm, Hagemann, Herrmann)
Answer: $[1,1]=0$ holds iff the algebra is polynomially
equivalent to a module over a ring.

When is the commutator 0 ?

1. What does $[1,1]=0$ mean in groups?

Answer: Holds iff the group is commutative.
2. What does $[1,1]=0$ mean in Mal'cev algebras?

Theorem (Gumm, Hagemann, Herrmann)
Answer: $[1,1]=0$ holds iff the algebra is polynomially
equivalent to a module over a ring.

When is the commutator 0 ?

1. What does $[1,1]=0$ mean in groups?

Answer: Holds iff the group is commutative.
2. What does $[1,1]=0$ mean in Mal'cev algebras?

Theorem (Gumm, Hagemann, Herrmann)
Answer: $[1,1]=0$ holds iff the algebra is polynomially
equivalent to a module over a ring.

When is the commutator 0 ?

1. What does $[1,1]=0$ mean in groups?

Answer: Holds iff the group is commutative.
2. What does $[1,1]=0$ mean in Mal'cev algebras?

Theorem (Gumm, Hagemann, Herrmann)
Answer: $[1,1]=0$ holds iff the algebra is polynomially equivalent to a module over a ring.

When is the ternary commutator 0 ?

3. What does $[1,1,1]=0$ mean in Mal'cev algebras?

Theorem
For a Mal'cev algebra \mathbf{A} the following are equivalent:

When is the ternary commutator 0 ?

3. What does $[1,1,1]=0$ mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra \mathbf{A} the following are equivalent:
(1) \mathbf{A} is 2-supernilpotent $([1,1,1]=0)$
(2) \mathbf{A} is polynomially equivalent to an expanded group $\mathbf{V}=(A,+,-, 0, F)$ such that

When is the ternary commutator 0 ?

3. What does $[1,1,1]=0$ mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra \mathbf{A} the following are equivalent:
(1) \mathbf{A} is 2-supernilpotent $([1,1,1]=0)$

(2) A is polynomially equivalent to an expanded group $\mathbf{V}=(A,+,-, 0, F)$ such that

When is the ternary commutator 0 ?

3. What does $[1,1,1]=0$ mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra \mathbf{A} the following are equivalent:
(1) \mathbf{A} is 2-supernilpotent $([1,1,1]=0)$
(2) \mathbf{A} is polynomially equivalent to an expanded group $\mathbf{V}=(A,+,-, 0, F)$ such that

$$
\begin{aligned}
& \text { i) } F \text { is a set of at most binary absorbing operations on } \mathbf{V} \text {, } \\
& \text { ii) every absorbing operation in } \mathrm{Pol}_{2}(\mathbf{V}) \text { is distributive with } \\
& \text { respect to + on both arguments, and } \\
& \text { iii) } \mathbf{V} \text { is 2-nilpotent. }
\end{aligned}
$$

When is the ternary commutator 0 ?

3. What does $[1,1,1]=0$ mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra \mathbf{A} the following are equivalent:
(1) \mathbf{A} is 2-supernilpotent $([1,1,1]=0)$
(2) \mathbf{A} is polynomially equivalent to an expanded group
$\mathbf{V}=(A,+,-, 0, F)$ such that
i) F is a set of at most binary absorbing operations on \mathbf{V}, every absorbing operation in $\mathrm{Pol}_{2}(\mathbf{V})$ is distributive with respect to + on both arguments, and
ii) \mathbf{V} is 2-nilpotent.

When is the ternary commutator 0 ?

3. What does $[1,1,1]=0$ mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra \mathbf{A} the following are equivalent:
(1) A is 2-supernilpotent $([1,1,1]=0)$
(2) A is polynomially equivalent to an expanded group $\mathbf{V}=(A,+,-, 0, F)$ such that
i) F is a set of at most binary absorbing operations on \mathbf{V},
ii) every absorbing operation in $\mathrm{Pol}_{2}(\mathbf{V})$ is distributive with respect to + on both arguments, and

When is the ternary commutator 0 ?

3. What does $[1,1,1]=0$ mean in Mal'cev algebras?

Theorem

For a Mal'cev algebra \mathbf{A} the following are equivalent:
(1) A is 2-supernilpotent $([1,1,1]=0)$
(2) A is polynomially equivalent to an expanded group $\mathbf{V}=(A,+,-, 0, F)$ such that
i) F is a set of at most binary absorbing operations on \mathbf{V},
ii) every absorbing operation in $\mathrm{Pol}_{2}(\mathbf{V})$ is distributive with respect to + on both arguments, and
iii) \mathbf{V} is 2-nilpotent.

Some Useful Statements

Theorem (R. Freese, R.N. McKenzie)

Let A be a nilpotent Mal'cev algebra with a Mal'cev term d. Then, the function $x \mapsto d(x, a, b)$ is bijective for all $a, b \in A$.

Corollary

Let A be a nilpotent Mal'cev algebra with a Mal'cev term d and let $o \in A$. Then, for all $a_{1}, a_{2}, b_{1}, b_{2} \in A$ there exist $x, y \in A$ such that $d\left(x, o, a_{1}\right)=b_{1}$ and $d\left(a_{2}, o, y\right)=b_{2}$.

Theorem (M. Suzuki)
Every semigroup $(G,+)$ such that the equations $a_{1}+x=b_{1}$ and $y+a_{2}=b_{2}$ are solvable, for all $a_{1}, a_{2}, b_{1}, b_{2} \in A$, is a group.

Some Useful Statements

Theorem (R. Freese, R.N. McKenzie)

Let A be a nilpotent Mal'cev algebra with a Mal'cev term d. Then, the function $x \mapsto d(x, a, b)$ is bijective for all $a, b \in A$.

Corollary

Let A be a nilpotent Mal'cev algebra with a Mal'cev term d and let $o \in A$. Then, for all $a_{1}, a_{2}, b_{1}, b_{2} \in A$ there exist $x, y \in A$ such that $d\left(x, o, a_{1}\right)=b_{1}$ and $d\left(a_{2}, o, y\right)=b_{2}$.

Theorem (M. Suzuki)
Every semigroup $(G,+)$ such that the equations $a_{1}+x=b_{1}$ and $y+a_{2}=b_{2}$ are solvable, for all $a_{1}, a_{2}, b_{1}, b_{2} \in A$, is a group.

Some Useful Statements

Theorem (R. Freese, R.N. McKenzie)

Let A be a nilpotent Mal'cev algebra with a Mal'cev term d. Then, the function $x \mapsto d(x, a, b)$ is bijective for all $a, b \in A$.

Corollary

Let A be a nilpotent Mal'cev algebra with a Mal'cev term d and let $o \in A$. Then, for all $a_{1}, a_{2}, b_{1}, b_{2} \in A$ there exist $x, y \in A$ such that $d\left(x, o, a_{1}\right)=b_{1}$ and $d\left(a_{2}, o, y\right)=b_{2}$.

Theorem (M. Suzuki)

Every semigroup $(G,+)$ such that the equations $a_{1}+x=b_{1}$ and $y+a_{2}=b_{2}$ are solvable, for all $a_{1}, a_{2}, b_{1}, b_{2} \in A$, is a group.

The Group Operation

Let us suppose that \mathbf{A} is 2 -supernilpotent. We show briefly that A has a polynomial group operation.

The Group Operation

Let us suppose that \mathbf{A} is 2 -supernilpotent. We show briefly that A has a polynomial group operation.

Let $o \in A$ and let d be a Mal'cev term of a Mal'cev algebra \mathbf{A}. We define $+: A^{2} \rightarrow A$ by

$$
x+y:=d(x, o, y)
$$

for all $x, y \in A$.

The idea
To prove that + is a group operation we have to show that + is associative.

The Group Operation

Let us suppose that \mathbf{A} is 2 -supernilpotent. We show briefly that A has a polynomial group operation.

Let $o \in A$ and let d be a Mal'cev term of a Mal'cev algebra \mathbf{A}. We define $+: A^{2} \rightarrow A$ by

$$
x+y:=d(x, o, y)
$$

for all $x, y \in A$.

The idea
To prove that + is a group operation we have to show that + is associative.

A Special Absorbing Polynomial

We define a ternary polynomial p of \mathbf{A} such that

$$
p(x, y, z):=d(d(d(x, o, y), o, z), d(x, o, d(y, o, z)), o),
$$

for all $x, y, z \in A$.

Proposition

p is an absorbing polynomial at $(0, O, O)$ with value O.

Corollary
$(p(a, b, c), o)=(p(a, b, c), p(o, o, o)) \in[1,1,1]=0$ for all
$a, b, c \in A$.

A Special Absorbing Polynomial

We define a ternary polynomial p of \mathbf{A} such that

$$
p(x, y, z):=d(d(d(x, o, y), o, z), d(x, o, d(y, o, z)), o)
$$

for all $x, y, z \in A$.

Proposition

p is an absorbing polynomial at (o, o, o) with value o.

Corollary
$(p(a, b, c), o)=(p(a, b, c), p(o, o, o)) \in[1,1,1]=0$ for all
$a, b, c \in A$.

A Special Absorbing Polynomial

We define a ternary polynomial p of \mathbf{A} such that

$$
p(x, y, z):=d(d(d(x, o, y), o, z), d(x, o, d(y, o, z)), o)
$$

for all $x, y, z \in A$.

Proposition

p is an absorbing polynomial at $(0, o, o)$ with value 0 .
Corollary

$$
\begin{aligned}
& (p(a, b, c), o)=(p(a, b, c), p(o, o, o)) \in[1,1,1]=0 \text { for all } \\
& a, b, c \in A .
\end{aligned}
$$

Associativity

We take $a, b, c \in A$.

Associativity

We take $a, b, c \in A$.
$p(a, b, c)=o$ or equivalently

$$
d(d(d(a, o, b), o, c), d(a, o, d(b, o, c)), o)=o
$$

$d(d(a, o, b), o, c)=d(a, o, d(b, o, c))$, because

$$
x \mapsto d^{\prime}\left(x, d^{\prime}\left(a, o, d^{\prime}(b, o, c)\right), o\right)
$$

is bijective. (\mathbf{A} is 2-nilpotent by (HC8))

Associativity

We take $a, b, c \in A$.
$p(a, b, c)=o$ or equivalently

$$
d(d(d(a, o, b), o, c), d(a, o, d(b, o, c)), o)=o
$$

$d(d(a, o, b), o, c)=d(a, o, d(b, o, c))$, because

$$
x \mapsto d(x, d(a, o, d(b, o, c)), o)
$$

is bijective. (\mathbf{A} is 2-nilpotent by (HC8))

Associativity

We take $a, b, c \in A$.
$p(a, b, c)=o$ or equivalently

$$
d(d(d(a, o, b), o, c), d(a, o, d(b, o, c)), o)=o
$$

$d(d(a, o, b), o, c)=d(a, o, d(b, o, c))$, because

$$
x \mapsto d(x, d(a, o, d(b, o, c)), o)
$$

is bijective. (\mathbf{A} is 2-nilpotent by (HC8))

$$
(a+b)+c=a+(b+c)
$$

Thank You for the Attention!

