On generalizations of the Cantor and Aleksandrov cube

Miloš Kurilić Aleksandar Pavlović

Department of Mathematics and Informatics, Faculty of Science, Novi Sad, Serbia

NSAC 2013

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

NSAC 2013

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X.

A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

(L1)
$$\forall a \in X \ a \in \lambda(\langle a \rangle).$$

(L2) $\forall x \in X^{\omega} \ \forall y \prec x \ \lambda(x) \subset \lambda(y).$

$$(L3) \ \forall x \in X^{\omega} \ (\forall y \prec x \ \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x).$$

If $|\lambda(x)| \leq 1$, then those are also sufficient conditions. (Kisyński, 1960)

イロト イヨト イヨト イヨ

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X. A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

(L1)
$$\forall a \in X \ a \in \lambda(\langle a \rangle).$$

(L2) $\forall x \in X^{\omega} \ \forall y \prec x \ \lambda(x) \subset \lambda(y).$

(L3)
$$\forall x \in X^{\omega} \ (\forall y \prec x \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x).$$

If $|\lambda(x)| \leq 1$, then those are also sufficient conditions. (Kisyński, 1960)

イロト イヨト イヨト イヨ

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X. A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

(L1)
$$\forall a \in X \ a \in \lambda(\langle a \rangle)$$
.
(L2) $\forall x \in X^{\omega} \ \forall y \prec x \ \lambda(x) \subset \lambda(y)$.
(L3) $\forall x \in X^{\omega} \ (\forall y \prec x \ \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x)$.
If $|\lambda(x)| < 1$, then those are also sufficient conditions. (Kisvński, 1960)

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X. A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

(L1)
$$\forall a \in X \ a \in \lambda(\langle a \rangle).$$

(L2) $\forall x \in X^{\omega} \ \forall y \prec x \ \lambda(x) \subset \lambda(y).$
(L3) $\forall x \in X^{\omega} \ (\forall y \prec x \ \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x).$

f $|\lambda(x)| \leq 1$, then those are also sufficient conditions. (Kisyński, 1960)

イロト イヨト イヨト イヨ

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X. A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

(L1)
$$\forall a \in X \ a \in \lambda(\langle a \rangle).$$

(L2) $\forall x \in X^{\omega} \ \forall y \prec x \ \lambda(x) \subset \lambda(y).$
(L3) $\forall x \in X^{\omega} \ (\forall y \prec x \ \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x).$

If $|\lambda(x)| \leq 1$, then those are also sufficient conditions. (Kisyński, 1960)

・ロト ・同ト ・ヨト ・ヨ

Definition

For $X \neq \emptyset$, a mapping $\lambda : X^{\omega} \to P(X)$ is a **convergence** on X. A convergence λ is called a **topological convergence** iff there exists a topology \mathcal{O} on X such that $\lambda = \lim_{\mathcal{O}} \mathcal{O}$.

Theorem

Each topological convergence λ satisfies conditions:

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

(L1)
$$\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$$

(L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$
(L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-*}}.$$

 $\lambda'^{-*} \neq \lim_{\mathcal{O}_{\lambda}}$

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

(L1) $\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$ (L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$ (L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-*}}.$$

 $\lambda'^{-*} \neq \lim_{\mathcal{O}_{\lambda}}$.

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

(L1)
$$\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$$

(L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$
(L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-*}}.$$

 $\lambda'^{-*} \neq \lim_{\mathcal{O}_{\lambda}}$.

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

(L1)
$$\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$$

(L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$
(L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-*}}.$$

 $\lambda'^{-*} \neq \lim_{\mathcal{O}_{\lambda}}$

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

(L1)
$$\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$$

(L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$
(L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-}}$$

 $\lambda'^{-*} \neq \lim_{\mathcal{O}_{\lambda}}$.

Theorem

For each convergence $\lambda : X^{\omega} \to P(X)$ there exists a maximal topology O_{λ} such that $\forall x \in X^{\omega} \ \lambda(x) \subset \lim_{\mathcal{O}_{\lambda}} x$.

NSAC 2013

3/22

(L1)
$$\lambda'(x) = \begin{cases} \lambda(x) \cup \{a\} & \text{if } x = \langle a \rangle \text{ for some } a \in X \\ \lambda(x) & \text{otherwise.} \end{cases}$$

(L2) $\lambda'^{-}(x) = \bigcup_{x \prec y} \lambda(y)$
(L3) $\lambda'^{-*}(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda(z)$

Theorem

$$\mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'} = \mathcal{O}_{\lambda'^{-}} = \mathcal{O}_{\lambda'^{-*}}$$

 $\lambda'^{-*} \neq \lim_{\mathcal{O}_{\lambda}}$.

Weakly topological convergence

Definition

A convergence λ satisfying (L1) and (L2) such that λ^* is a topological convergence will be called a **weakly topological convergence**.

Theorem

If a convergence λ satisfy (L1) and (L2) and we have $|\lambda(x)| \leq 1$ for each sequence x, then λ is a weakly topological convergence.

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

- 4 周 ト 4 日 ト 4 日

NSAC 2013

Weakly topological convergence

Definition

A convergence λ satisfying (L1) and (L2) such that λ^* is a topological convergence will be called a **weakly topological convergence**.

Theorem

If a convergence λ satisfy (L1) and (L2) and we have $|\lambda(x)| \leq 1$ for each sequence x, then λ is a weakly topological convergence.

Definition

The Cantor cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_C \rangle$ is the Tychonov product of κ -many copies of two point discrete space $2 = \{0, 1\}$

Let $\xi : 2^{\kappa} \to P(\kappa)$ be a bijection defined by $f(x) = x^{-1}[\{1\}].$

 ξ is a homeomorphism between 2^{κ} and $P(\kappa)$ (as Boolean algebra)

イロト イヨト イヨト イヨト

Definition

The Cantor cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_C \rangle$ is the Tychonov product of κ -many copies of two point discrete space $2 = \{0, 1\}$

Let $\xi : 2^{\kappa} \to P(\kappa)$ be a bijection defined by $f(x) = x^{-1}[\{1\}].$

 ξ is a homeomorphism between 2^{κ} and $P(\kappa)$ (as Boolean algebra)

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

イロト イヨト イヨト イヨト

NSAC 2013

Definition

The Cantor cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_C \rangle$ is the Tychonov product of κ -many copies of two point discrete space $2 = \{0, 1\}$

Let $\xi : 2^{\kappa} \to P(\kappa)$ be a bijection defined by $f(x) = x^{-1}[\{1\}].$

 ξ is a homeomorphism between 2^{κ} and $P(\kappa)$ (as Boolean algebra)

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

イロト イヨト イヨト イヨト

NSAC 2013

Definition

The Cantor cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_C \rangle$ is the Tychonov product of κ -many copies of two point discrete space $2 = \{0, 1\}$

Let $\xi : 2^{\kappa} \to P(\kappa)$ be a bijection defined by $f(x) = x^{-1}[\{1\}].$

 ξ is a homeomorphism between 2^{κ} and $P(\kappa)$ (as Boolean algebra)

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

イロン 不同 とくさい 不良 とうせい

NSAC 2013

For the sequence of sets $\langle X_n : n \in \omega \rangle \in (P(\kappa))^{\omega}$ let

 $\liminf_{n \in \omega} X_n = \bigcup_{k \in \omega} \bigcap_{n \ge k} X_n \quad \limsup_{n \in \omega} X_n = \bigcap_{k \in \omega} \bigcup_{n \ge k} X_n$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

 $\liminf_{n \in \omega} X_n = \limsup_{n \in \omega} X_n = X,$

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

 $\langle 2^{\kappa}, \tau_C \rangle$ is sequential iff $\kappa = \omega$.

M. Kurilić, A. Pavlović (Novi Sad)

(日) (四) (三) (三) (三)

NSAC 2013

For the sequence of sets $\langle X_n : n \in \omega \rangle \in (P(\kappa))^{\omega}$ let

 $\liminf_{n\in\omega}X_n=\bigcup_{k\in\omega}\bigcap_{n\geq k}X_n\quad \limsup_{n\in\omega}X_n=\bigcap_{k\in\omega}\bigcup_{n\geq k}X_n$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

$$\liminf_{n \in \omega} X_n = \limsup_{n \in \omega} X_n = X,$$

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

 $\langle 2^{\kappa}, \tau_C \rangle$ is sequential iff $\kappa = \omega$.

M. Kurilić, A. Pavlović (Novi Sad)

NSAC 2013

For the sequence of sets $\langle X_n : n \in \omega \rangle \in (P(\kappa))^{\omega}$ let

 $\liminf_{n \in \omega} X_n = \bigcup_{k \in \omega} \bigcap_{n \ge k} X_n \quad \limsup_{n \in \omega} X_n = \bigcap_{k \in \omega} \bigcup_{n \ge k} X_n$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

$$\liminf_{n \in \omega} X_n = \limsup_{n \in \omega} X_n = X,$$

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

 $\langle 2^{\kappa}, \tau_C \rangle$ is sequential iff $\kappa = \omega$.

M. Kurilić, A. Pavlović (Novi Sad)

・ロト ・同ト ・ヨト ・ヨト - ヨ

NSAC 2013

Let \mathbb{B} be a complete Boolean algebra, and $x = \langle x_n : n \in \omega \rangle$.

Definition

$$\liminf x = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n \quad \limsup x = \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n$$

$$\lambda_s(x) = \begin{cases} \{\limsup x\} & \text{if } \liminf x = \limsup x\\ \emptyset & \text{if } \liminf x < \limsup x \end{cases}$$

Definition

Topology \mathcal{O}_{λ_s} is the well known **sequential topology**, and usually denoted by τ_s .

イロト イヨト イヨト イヨト

Let \mathbb{B} be a complete Boolean algebra, and $x = \langle x_n : n \in \omega \rangle$.

Definition

$$\liminf x = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n \quad \limsup x = \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n$$
$$\lambda_s(x) = \begin{cases} \{\limsup x\} & \text{if } \liminf x = \limsup x\\ \emptyset & \text{if } \liminf x < \limsup x \end{cases}$$

Definition

Topology \mathcal{O}_{λ_s} is the well known **sequential topology**, and usually denoted by τ_s .

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

NSAC 2013 7 / 22

- 32

イロト イヨト イヨト イヨト

Let \mathbb{B} be a complete Boolean algebra, and $x = \langle x_n : n \in \omega \rangle$.

Definition

$$\liminf x = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n \quad \limsup x = \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n$$
$$\lambda_s(x) = \begin{cases} \{\limsup x\} & \text{if } \liminf x = \limsup x\\ \emptyset & \text{if } \liminf x < \limsup x \end{cases}$$

Definition

Topology \mathcal{O}_{λ_s} is the well known **sequential topology**, and usually denoted by τ_s .

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

NSAC 2013 7 / 22

- 32

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Let \mathbb{B} be a complete Boolean algebra, and $x = \langle x_n : n \in \omega \rangle$.

Definition

1

$$\inf \inf x = \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n \quad \limsup x = \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n$$

$$\lambda_s(x) = \begin{cases} \{\limsup x\} & \text{if } \liminf x = \limsup x\\ \emptyset & \text{if } \liminf x < \limsup x \end{cases}$$

Definition

Topology \mathcal{O}_{λ_s} is the well known **sequential topology**, and usually denoted by τ_s .

イロト イヨト イヨト イヨ

Theorem

 λ_s satisfies (L1) i (L2), $|\lambda_s(x)| \leq 1$, so it is weakly topological, and since it must not satisfy (L3), $\lambda_s \neq \lim_{\tau_s}$.

Theorem

 λ_s is a topological convergence iff \mathbb{B} is $(\omega, 2)$ -distributive.

 $a \in \lim_{\tau_s} (x) \Leftrightarrow \forall y \prec x \; \exists z \prec y \; a \in \lambda_s(z).$

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

NSAC 2013 8 / 22

イロト イヨト イヨト イヨ

Theorem

 λ_s satisfies (L1) i (L2), $|\lambda_s(x)| \leq 1$, so it is weakly topological, and since it must not satisfy (L3), $\lambda_s \neq \lim_{\tau_s}$.

Theorem

 λ_s is a topological convergence iff \mathbb{B} is $(\omega, 2)$ -distributive.

 $a \in \lim_{\tau_s}(x) \Leftrightarrow \forall y \prec x \; \exists z \prec y \; a \in \lambda_s(z).$

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

NSAC 2013

Theorem

 λ_s satisfies (L1) i (L2), $|\lambda_s(x)| \leq 1$, so it is weakly topological, and since it must not satisfy (L3), $\lambda_s \neq \lim_{\tau_s}$.

Theorem

 λ_s is a topological convergence iff \mathbb{B} is $(\omega, 2)$ -distributive.

$$a \in \lim_{\tau_s}(x) \Leftrightarrow \forall y \prec x \; \exists z \prec y \; a \in \lambda_s(z).$$

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

NSAC 2013

$\operatorname{Condition}(\hbar)$

Definition

A sequence x is $\limsup \text{stable}$ iff for each $y \prec x \limsup y = \limsup x$.

Definition

Complete Boolean algebra \mathbb{B} satisfies condition (\hbar) iff each sequence has a lim sup-stable subsequence.

Theorem

 \mathfrak{t} -cc \Rightarrow $(\hbar) \Rightarrow \mathfrak{s}$ -cc.

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

イロト イヨト イヨト イヨト

NSAC 2013

Condition(\hbar)

Definition

A sequence x is $\limsup \text{stable}$ iff for each $y \prec x \limsup y = \limsup x$.

Definition

Complete Boolean algebra $\mathbb B$ satisfies condition (\hbar) iff each sequence has a lim sup-stable subsequence.

Theorem

 \mathfrak{t} -cc \Rightarrow $(\hbar) \Rightarrow \mathfrak{s}$ -cc.

M. Kurilić, A. Pavlović (Novi Sad)

A (10) N (10) N (10)

NSAC 2013

$\operatorname{Condition}(\hbar)$

Definition

A sequence x is $\limsup \text{stable}$ iff for each $y \prec x \limsup y = \limsup x$.

Definition

Complete Boolean algebra $\mathbb B$ satisfies condition (\hbar) iff each sequence has a lim sup-stable subsequence.

Theorem

$$\mathfrak{t}\text{-cc} \Rightarrow (\hbar) \Rightarrow \mathfrak{s}\text{-cc}.$$

M. Kurilić, A. Pavlović (Novi Sad)

NSAC 2013

Let x be a sequence in a c.B.a.

$$a_x = \bigwedge_{A \in [\omega]^{\omega}} \bigvee_{B \in [A]^{\omega}} \liminf_{n \in B} x_n.$$
$$b_x = \bigvee_{A \in [\omega]^{\omega}} \bigwedge_{B \in [A]^{\omega}} \limsup_{n \in B} x_n.$$

Theorem

$$a \in \lim_{\tau_s}(x) \Rightarrow a_x = b_x = a.$$

Theorem

If \mathbb{B} which satisfies (\hbar) we have

$$a \in \lim_{\tau_s} (x) \Leftrightarrow a_x = b_x = a.$$

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

NSAC 2013 10 / 22

æ

<ロ> (四) (四) (日) (日) (日)

Let x be a sequence in a c.B.a.

$$a_x = \bigwedge_{A \in [\omega]^{\omega}} \bigvee_{B \in [A]^{\omega}} \liminf_{n \in B} x_n.$$
$$b_x = \bigvee_{A \in [\omega]^{\omega}} \bigwedge_{B \in [A]^{\omega}} \limsup_{n \in B} x_n.$$

Theorem

$$a \in \lim_{\tau_s} (x) \Rightarrow a_x = b_x = a.$$

Theorem

If \mathbb{B} which satisfies (\hbar) we have

$$a \in \lim_{\tau_s} (x) \Leftrightarrow a_x = b_x = a.$$

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

NSAC 2013 10 / 22

æ

<ロ> (四) (四) (日) (日) (日)

Let x be a sequence in a c.B.a.

$$a_x = \bigwedge_{A \in [\omega]^{\omega}} \bigvee_{B \in [A]^{\omega}} \liminf_{n \in B} x_n.$$
$$b_x = \bigvee_{A \in [\omega]^{\omega}} \bigwedge_{B \in [A]^{\omega}} \limsup_{n \in B} x_n.$$

Theorem

$$a \in \lim_{\tau_s} (x) \Rightarrow a_x = b_x = a.$$

Theorem

If \mathbb{B} which satisfies (\hbar) we have

$$a \in \lim_{\tau_s} (x) \Leftrightarrow a_x = b_x = a.$$

M. Kurilić, A. Pavlović (Novi Sad)

NSAC 2013 10 / 22

æ

イロト イヨト イヨト イヨト

The Alexandrov cube

Definition

The Alexandrov cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_A \rangle$ is the Tychonov product of κ many copies of two point space $2 = \{0, 1\}$ with topology $\mathcal{O}_A = \{\emptyset, \{0\}, \{0, 1\}\}.$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

```
\limsup_{n\in\omega} X_n \subset X,
```

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

```
\langle 2^{\kappa}, \tau_A \rangle is sequential iff \kappa = \omega.
```

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

イロト イヨト イヨト イヨト

NSAC 2013

-

The Alexandrov cube

Definition

The Alexandrov cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_A \rangle$ is the Tychonov product of κ many copies of two point space $2 = \{0, 1\}$ with topology $\mathcal{O}_A = \{\emptyset, \{0\}, \{0, 1\}\}.$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

$$\limsup_{n\in\omega} X_n \subset X,$$

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

 $\langle 2^{\kappa}, \tau_A \rangle$ is sequential iff $\kappa = \omega$.

M. Kurilić, A. Pavlović (Novi Sad)

• (1) • (1) • (1)

NSAC 2013

The Alexandrov cube

Definition

The Alexandrov cube of weight κ , denoted by $\langle 2^{\kappa}, \tau_A \rangle$ is the Tychonov product of κ many copies of two point space $2 = \{0, 1\}$ with topology $\mathcal{O}_A = \{\emptyset, \{0\}, \{0, 1\}\}.$

Fact

A sequence $\langle x_n : n \in \omega \rangle$ converges to the point $x \in 2^{\kappa}$ iff

$$\limsup_{n \in \omega} X_n \subset X,$$

where $X_n = \xi(x_n)$, and $X = \xi(x)$.

 $\langle 2^{\kappa}, \tau_A \rangle$ is sequential iff $\kappa = \omega$.

NSAC 2013

3

Definition

Let

 $\lambda_{ls}(x) = (\limsup x) \uparrow, \quad \lambda_{li}(x) = (\liminf x) \downarrow.$

Theorem

Set $F \in \mathcal{F}_{ls}$ iff it is upward closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing $x \in F^{\omega}$. Set $F \in \mathcal{F}_{li}$ iff it is downward closed and $\bigvee_{n \in \omega} x_n \in F$, for each increasing $x \in F^{\omega}$.

Open set in $\mathcal{O}_{\lambda_{ls}}$ is downward closed and contains **0**. Open set in $\mathcal{O}_{\lambda_{li}}$ is upward closed and contains **1**.

∃ <2 <</p>

・ロン ・四と ・日と ・日と

Definition

Let

 $\lambda_{ls}(x) = (\limsup x) \uparrow, \quad \lambda_{li}(x) = (\liminf x) \downarrow.$

Theorem

Set $F \in \mathcal{F}_{ls}$ iff it is upward closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing $x \in F^{\omega}$. Set $F \in \mathcal{F}_{li}$ iff it is downward closed and $\bigvee_{n \in \omega} x_n \in F$, for each increasing $x \in F^{\omega}$.

Open set in $\mathcal{O}_{\lambda_{ls}}$ is downward closed and contains **0**. Open set in $\mathcal{O}_{\lambda_{li}}$ is upward closed and contains **1**.

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

NSAC 2013 12 / 22

∃ <2 <</p>

・ロン ・四と ・日と ・日と

Definition

Let

 $\lambda_{ls}(x) = (\limsup x) \uparrow, \quad \lambda_{li}(x) = (\liminf x) \downarrow.$

Theorem

Set $F \in \mathcal{F}_{ls}$ iff it is upward closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing $x \in F^{\omega}$. Set $F \in \mathcal{F}_{li}$ iff it is downward closed and $\bigvee_{n \in \omega} x_n \in F$, for each increasing $x \in F^{\omega}$.

Open set in $\mathcal{O}_{\lambda_{ls}}$ is downward closed and contains **0**. Open set in $\mathcal{O}_{\lambda_{li}}$ is upward closed and contains **1**.

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

NSAC 2013

Definition

Let

 $\lambda_{ls}(x) = (\limsup x) \uparrow, \quad \lambda_{li}(x) = (\liminf x) \downarrow.$

Theorem

Set $F \in \mathcal{F}_{ls}$ iff it is upward closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing $x \in F^{\omega}$. Set $F \in \mathcal{F}_{li}$ iff it is downward closed and $\bigvee_{n \in \omega} x_n \in F$, for each increasing $x \in F^{\omega}$.

Open set in $\mathcal{O}_{\lambda_{ls}}$ is downward closed and contains **0**. Open set in $\mathcal{O}_{\lambda_{li}}$ is upward closed and contains **1**.

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

NSAC 2013

Definition

Let

 $\lambda_{ls}(x) = (\limsup x) \uparrow, \quad \lambda_{li}(x) = (\liminf x) \downarrow.$

Theorem

Set $F \in \mathcal{F}_{ls}$ iff it is upward closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing $x \in F^{\omega}$. Set $F \in \mathcal{F}_{li}$ iff it is downward closed and $\bigvee_{n \in \omega} x_n \in F$, for each increasing $x \in F^{\omega}$.

Open set in $\mathcal{O}_{\lambda_{ls}}$ is downward closed and contains **0**. Open set in $\mathcal{O}_{\lambda_{li}}$ is upward closed and contains **1**.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

λ_{ls} and λ_{li} satisfy (L1) and (L2).

 λ_{ls} and λ_{li} are topological convergences iff \mathbb{B} is $(\omega, 2)$ -distributive.

(L3)

$$\lambda_{ls}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{ls}(z), \quad \lambda_{li}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{li}(z)$$

Question 1.

Are λ_{ls}^* and λ_{li}^* topological convergences?

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

- 4 回 6 - 4 回 6 - 4 回 6

NSAC 2013

æ

 λ_{ls} and λ_{li} satisfy (L1) and (L2). λ_{ls} and λ_{li} are topological convergences iff \mathbb{B} is $(\omega, 2)$ -distributive.

(L3)

$$\lambda_{ls}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{ls}(z), \quad \lambda_{li}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{li}(z)$$

Question 1. Are λ_i^* and λ_i^* topological converge

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

 λ_{ls} and λ_{li} satisfy (L1) and (L2). λ_{ls} and λ_{li} are topological convergences iff \mathbb{B} is $(\omega, 2)$ -distributive.

(L3)

$$\lambda_{ls}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{ls}(z), \quad \lambda_{li}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{li}(z)$$

Question 1.

Are λ_{ls}^* and λ_{li}^* topological convergences?

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

・ 同 ト ・ ヨ ト ・ ヨ ト

NSAC 2013

æ

 λ_{ls} and λ_{li} satisfy (L1) and (L2). λ_{ls} and λ_{li} are topological convergences iff \mathbb{B} is $(\omega, 2)$ -distributive.

(L3)

$$\lambda_{ls}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{ls}(z), \quad \lambda_{li}^*(x) = \bigcap_{y \prec x} \bigcup_{z \prec y} \lambda_{li}(z)$$

Question 1. Are $\lambda_{l_s}^*$ and $\lambda_{l_i}^*$ topological convergences?

M. Kurilić, A. Pavlović (Novi Sad)

포 🕨 🖉 포

13 / 22

NSAC 2013

.

Definition

Let the family $\mathcal{P}^* = \mathcal{O}_{\lambda_{ls}} \cup \mathcal{O}_{\lambda_{li}}$ be a subbase for a topology \mathcal{O}^* .

Theorem

 $\mathcal{O}^* \subset \tau_s$

 $\operatorname{im}_{\mathcal{O}^*} = \operatorname{lim}_{\lambda_{ls}} \cap \operatorname{lim}_{\lambda_{li}}$

Theorem

If \mathbb{B} satisfies (\hbar) or it is $(\omega, 2)$ -distributive, then $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$

Question 2.

Is it always $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$?

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

NSAC 2013

3

Definition

Let the family $\mathcal{P}^* = \mathcal{O}_{\lambda_{ls}} \cup \mathcal{O}_{\lambda_{li}}$ be a subbase for a topology \mathcal{O}^* .

Theorem

 $\mathcal{O}^* \subset \tau_s$

$$\lim_{\mathcal{O}^*} = \lim_{\lambda_{ls}} \cap \lim_{\lambda_{li}}$$

Theorem

If \mathbb{B} satisfies (\hbar) or it is $(\omega, 2)$ -distributive, then $\lim_{\mathcal{O}^*} = \lim_{\tau_s} \mathcal{O}_s$

Question 2.

Is it always $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$?

M. Kurilić, A. Pavlović (Novi Sad)

Cantor and Aleksandrov cube

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

NSAC 2013

3

Definition

Let the family $\mathcal{P}^* = \mathcal{O}_{\lambda_{ls}} \cup \mathcal{O}_{\lambda_{li}}$ be a subbase for a topology \mathcal{O}^* .

Theorem

$$\mathcal{O}^* \subset \tau_s$$

$$\lim_{\mathcal{O}^*} = \lim_{\lambda_{ls}} \cap \lim_{\lambda_{li}}$$

Theorem

If \mathbb{B} satisfies (\hbar) or it is $(\omega, 2)$ -distributive, then $\lim_{\mathcal{O}^*} = \lim_{\tau_s} .$

Question 2.

Is it always $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$?

M. Kurilić, A. Pavlović (Novi Sad)

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

NSAC 2013

э.

Definition

Let the family $\mathcal{P}^* = \mathcal{O}_{\lambda_{ls}} \cup \mathcal{O}_{\lambda_{li}}$ be a subbase for a topology \mathcal{O}^* .

Theorem

$$\mathcal{O}^* \subset \tau_s$$

$$\lim_{\mathcal{O}^*} = \lim_{\lambda_{ls}} \cap \lim_{\lambda_{li}}$$

Theorem

If \mathbb{B} satisfies (\hbar) or it is $(\omega, 2)$ -distributive, then $\lim_{\mathcal{O}^*} = \lim_{\tau_s} .$

Question 2.

Is it always $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$?

イロト イヨト イヨト イヨト

$\mathcal{O}^* = \tau_s?$

Theorem

In case when $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$ we have that $\mathcal{O}^* = \tau_s$ iff $\langle X, \mathcal{O}^* \rangle$ is a sequential space.

Theorem

For Boolean algebra $P(\omega)$ we have $\mathcal{O}^* = \tau_s$.

Proof: Both spaces, $\langle P(\omega), \tau_s \rangle$ and $\langle P(\omega), \mathcal{O}^* \rangle$ are Hausdorff, $\mathcal{O}^* \subset \tau_s$ and $\langle P(\omega), \tau_s \rangle$ is homeomorphic to the Cantor cube, so it is compact, and as a compact space, its minimality in the class of Hausdorff spaces implies $\mathcal{O}^* = \tau_s$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$\mathcal{O}^* = \tau_s?$

Theorem

In case when $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$ we have that $\mathcal{O}^* = \tau_s$ iff $\langle X, \mathcal{O}^* \rangle$ is a sequential space.

Theorem

For Boolean algebra $P(\omega)$ we have $\mathcal{O}^* = \tau_s$.

Proof: Both spaces, $\langle P(\omega), \tau_s \rangle$ and $\langle P(\omega), \mathcal{O}^* \rangle$ are Hausdorff, $O^* \subset \tau_s$ and $\langle P(\omega), \tau_s \rangle$ is homeomorphic to the Cantor cube, so it is compact, and as a compact space, its minimality in the class of Hausdorff spaces implies $\mathcal{O}^* = \tau_s$.

M. Kurilić, A. Pavlović (Novi Sad)

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

$\mathcal{O}^* = \tau_s?$

Theorem

In case when $\lim_{\mathcal{O}^*} = \lim_{\tau_s}$ we have that $\mathcal{O}^* = \tau_s$ iff $\langle X, \mathcal{O}^* \rangle$ is a sequential space.

Theorem

For Boolean algebra $P(\omega)$ we have $\mathcal{O}^* = \tau_s$.

Proof: Both spaces, $\langle P(\omega), \tau_s \rangle$ and $\langle P(\omega), \mathcal{O}^* \rangle$ are Hausdorff, $O^* \subset \tau_s$ and $\langle P(\omega), \tau_s \rangle$ is homeomorphic to the Cantor cube, so it is compact, and as a compact space, its minimality in the class of Hausdorff spaces implies $\mathcal{O}^* = \tau_s$.

・ロト ・回ト ・ヨト ・ヨト 三日

If a Boolean algebra carries strictly positive Maharam submeasure μ , we have $\mathcal{O}^* = \tau_s$.

Proof: For $O \in \tau_s$ and $a \in O$ let $B(a, r) = \{x \in \mathbb{B} : \mu(x \Delta a) < r\} \subset O$ and

$$O_1 = \{ x \in \mathbb{B} : \mu(x \setminus a) < r/2 \}, \quad O_2 = \{ x \in \mathbb{B} : \mu(a \setminus x) < r/2 \}$$

So, $A \in O_1 \cap O_2 \subset B(a, r) \subset O$. Also we have $O_1 \in \mathcal{O}_{\lambda_{ls}}$ and $O_2 \in \mathcal{O}_{\lambda_{li}}$.

Question 3.

Does there exist a complete Boolean algebra such that $\mathcal{O}^* \neq \tau_s$?

A (1) > A (2) > A

If a Boolean algebra carries strictly positive Maharam submeasure μ , we have $\mathcal{O}^* = \tau_s$.

Proof: For $O \in \tau_s$ and $a \in O$ let $B(a, r) = \{x \in \mathbb{B} : \mu(x \Delta a) < r\} \subset O$ and

$$O_1 = \{ x \in \mathbb{B} : \mu(x \setminus a) < r/2 \}, \quad O_2 = \{ x \in \mathbb{B} : \mu(a \setminus x) < r/2 \}$$

So, $A \in O_1 \cap O_2 \subset B(a, r) \subset O$. Also we have $O_1 \in \mathcal{O}_{\lambda_{ls}}$ and $O_2 \in \mathcal{O}_{\lambda_{li}}$.

Question 3.

Does there exist a complete Boolean algebra such that $\mathcal{O}^* \neq \tau_s$?

(4月) イヨト イヨト

If a Boolean algebra carries strictly positive Maharam submeasure μ , we have $\mathcal{O}^* = \tau_s$.

Proof: For $O \in \tau_s$ and $a \in O$ let $B(a, r) = \{x \in \mathbb{B} : \mu(x \Delta a) < r\} \subset O$ and

$$O_1 = \{ x \in \mathbb{B} : \mu(x \setminus a) < r/2 \}, \quad O_2 = \{ x \in \mathbb{B} : \mu(a \setminus x) < r/2 \}$$

So, $A \in O_1 \cap O_2 \subset B(a, r) \subset O$. Also we have $O_1 \in \mathcal{O}_{\lambda_{ls}}$ and $O_2 \in \mathcal{O}_{\lambda_{li}}$.

Question 3.

Does there exist a complete Boolean algebra such that $\mathcal{O}^* \neq \tau_s$?

Definition

 \mathcal{N}_0 is the family of all neighborhoods of the point **0** in topology τ_s . $\mathcal{N}_0^d = \{ U \in \mathcal{N}_0 : U = U \downarrow \}.$

Theorem (Balcar, Glówczyński, Jech)

If $\langle \mathbb{B}, \tau_s \rangle$ is a Frechét space, then for each $V \in \mathcal{N}_0$ exists $U \in \mathcal{N}_0^d$ such that $U \subset V$. So, then \mathcal{N}_0^d is a neighborhood base at the point **0**.

 $\mathcal{N}_0^d = \mathcal{O}_{\lambda_{ls}}$ is a neighborhood base at the point **0** for the topology \mathcal{O}^* .

If in a topological space $\langle \mathbb{B}, \tau_s \rangle$ the family \mathcal{N}_0^d is not a neighborhood base at **0**, then $\tau_s \neq \mathcal{O}^*$.

Question 4.

Does there exist a c.B.a. such that \mathcal{N}_0^d is not a neighborhood base of **0**?

A base matrix tree is a tree $\langle \mathcal{T}, * \supset \rangle$ of height \mathfrak{h} such that \mathcal{T} is dense in a pre-order $\langle [\omega]^{\omega}, \subset^* \rangle$. Levels are MAD families, and maximal chains are towers.

By Balcar, Pelant and Simon, such tree always exists. Let us denote by $Br(\mathcal{T})$ a set of all maximal branches of \mathcal{T} and let $\kappa = |Br(\mathcal{T})|.$ $2^{\omega_1} \leq \kappa \leq 2^{\mathfrak{c}}.$ $Br(\mathcal{T}) = \{T_\alpha : \alpha < \kappa\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ⊙

A base matrix tree is a tree $\langle \mathcal{T}, * \supset \rangle$ of height \mathfrak{h} such that \mathcal{T} is dense in a pre-order $\langle [\omega]^{\omega}, \subset^* \rangle$. Levels are MAD families, and maximal chains are towers.

By Balcar, Pelant and Simon, such tree always exists.

Let us denote by $Br(\mathcal{T})$ a set of all maximal branches of \mathcal{T} and let $\kappa = |Br(\mathcal{T})|.$ $2^{\omega_1} \leq \kappa \leq 2^{\mathfrak{c}}.$ $Br(\mathcal{T}) = \{T_{\alpha} : \alpha < \kappa\}.$

M. Kurilić, A. Pavlović (Novi Sad)

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

A base matrix tree is a tree $\langle \mathcal{T}, * \supset \rangle$ of height \mathfrak{h} such that \mathcal{T} is dense in a pre-order $\langle [\omega]^{\omega}, \subset^* \rangle$. Levels are MAD families, and maximal chains are towers.

By Balcar, Pelant and Simon, such tree always exists.

Let us denote by $Br(\mathcal{T})$ a set of all maximal branches of \mathcal{T} and let $\kappa = |Br(\mathcal{T})|$. $2^{\omega_1} \leq \kappa \leq 2^{\mathfrak{c}}$. $Br(\mathcal{T}) = \{T_{\alpha} : \alpha < \kappa\}$.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

A base matrix tree is a tree $\langle \mathcal{T}, * \supset \rangle$ of height \mathfrak{h} such that \mathcal{T} is dense in a pre-order $\langle [\omega]^{\omega}, \subset^* \rangle$. Levels are MAD families, and maximal chains are towers.

By Balcar, Pelant and Simon, such tree always exists.

Let us denote by $Br(\mathcal{T})$ a set of all maximal branches of \mathcal{T} and let $\kappa = |Br(\mathcal{T})|.$ $2^{\omega_1} \leq \kappa \leq 2^{\mathfrak{c}}.$ $Br(\mathcal{T}) = \{T_{\alpha} : \alpha < \kappa\}.$

・ロト ・回ト ・ヨト ・ヨト ・ 日・

Let \mathbb{B} is a c.B.a. such that $cc(\mathbb{B}) > 2^{\mathfrak{c}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^V)| = \check{\omega}$.

$$\begin{array}{l} \text{So, } 1 \vDash |I_{\alpha}| = \omega \\ 1 \vDash \exists X \in [\check{\omega}]^{\check{\omega}} \; \forall B \in \check{T}_{\alpha} \; X \subset^* B \end{array}$$

By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ \sigma_{\alpha} \subset^* B$

Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing lemma there exists name τ such that

$$\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$$

 $x_n = \|\check{n} \in \tau\|$ and for $\tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\}$ we have

$$1 \Vdash \tau = \tau_x$$

M. Kurilić, A. Pavlović (Novi Sad)

(D) (A) (A) (A) (A)

Let \mathbb{B} is a c.B.a. such that $\operatorname{cc}(\mathbb{B}) > 2^{\mathfrak{c}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^V)| = \check{\omega}$. So, $1 \Vdash |\check{T}_{\alpha}| = \check{\omega}$ $1 \Vdash \exists X \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} X \subset^* B$ By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \sigma_{\alpha} \subset^* B$ Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing le there exists name τ such that

$$\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$$
$$_{n} = \|\check{n} \in \tau\| \text{ and for } \tau_{x} = \{\langle \check{n}, x_{n} \rangle : n \in \omega\} \text{ we have}$$
$$1 \Vdash \tau = \tau_{x}$$

M. Kurilić, A. Pavlović (Novi Sad)

A (1) > A (1) > A

Let \mathbb{B} is a c.B.a. such that $cc(\mathbb{B}) > 2^{\mathfrak{c}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^V)| = \check{\omega}$. So, $1 \Vdash |\check{T}_{\alpha}| = \check{\omega}$ $1 \Vdash \exists X \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} X \subset^* B$

By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ \sigma_{\alpha} \subset^* B$

Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing lemma there exists name τ such that

$$\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$$

 = $\|$ and for $\tau_x = \{ \langle \check{n}, x_n \rangle : n \in \omega \}$ we h

$$1 \Vdash \tau = \tau_x$$

M. Kurilić, A. Pavlović (Novi Sad)

(D) (A) (A) (A) (A)

Let \mathbb{B} is a c.B.a. such that $\operatorname{cc}(\mathbb{B}) > 2^{\mathfrak{c}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^V)| = \check{\omega}$. So, $1 \Vdash |\check{T}_{\alpha}| = \check{\omega}$ $1 \Vdash \exists X \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ X \subset^* B$ By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ \sigma_{\alpha} \subset^* B$ Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing lemma there exists name τ such that

$$\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$$

 $x_n = \|\check{n} \in \tau\|$ and for $\tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\}$ we have

$$1 \Vdash \tau = \tau_x$$

M. Kurilić, A. Pavlović (Novi Sad)

Let \mathbb{B} is a c.B.a. such that $cc(\mathbb{B}) > 2^{\mathfrak{c}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^V)| = \check{\omega}$. So, $1 \Vdash |\check{T}_{\alpha}| = \check{\omega}$ $1 \Vdash \exists X \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ X \subset^* B$ By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ \sigma_{\alpha} \subset^* B$ Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing lemma there exists name τ such that

 $\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$

 $x_n = \|\check{n} \in \tau\|$ and for $\tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\}$ we have

$$1 \Vdash \tau = \tau_x$$

M. Kurilić, A. Pavlović (Novi Sad)

1 (III) 1 (III) 1 (III)

Let \mathbb{B} is a c.B.a. such that $cc(\mathbb{B}) > 2^{\mathfrak{c}}$ and $1 \Vdash_{\mathbb{B}} |((\mathfrak{h})^V)| = \check{\omega}$. So, $1 \Vdash |\check{T}_{\alpha}| = \check{\omega}$ $1 \Vdash \exists X \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ X \subset^* B$ By the Maximum principle there exists a name σ_{α} such that $1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \forall B \in \check{T}_{\alpha} \ \sigma_{\alpha} \subset^* B$ Let $\langle b_{\alpha} : \alpha < \kappa \rangle$ be a maximal antichain in \mathbb{B} . Then, by Mixing lemma there exists name τ such that

$$\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}$$
$$x_n = \|\check{n} \in \tau\| \text{ and for } \tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\} \text{ we have}$$
$$1 \Vdash \tau = \tau_x$$

Properties of the "mean" sequence

 $0\not\in\lambda_{ls}^*(x)$

 $0 \in \lim_{\mathcal{O}_{\lambda_{ls}}} (x)$

Answer 1.

 λ_{ls}^{*} is not a topological convergence.

$$0 \in \lim_{\mathcal{O}_{\lambda_{l_s}}} (x) \cap \lim_{\mathcal{O}_{\lambda_{l_s}}} (x) = \lim_{\mathcal{O}^*} (x) \text{ and } 0 \notin \lim_{\tau_s} (x)$$

Answer 2. $\lim_{\tau_s} \neq \lim_{\mathcal{O}^*}$

Answer 3.

 $\tau_s \neq \mathcal{O}^*$

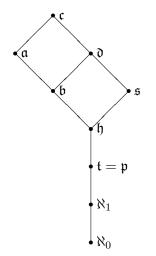
If $X = \{x_n : n \in \omega\}$, then $\mathbb{B} \setminus X \in \tau_s$, but it is not downward closed and each downward closed neighborhood of **0** intersects X.

Answer 4.

There exists a Boolean algebra in which \mathcal{N}_0^d is not a neighborhood base of **0** for topology τ_s .

- 同下 - 三下 - 三下

Small cardinals



5

- Set $S \subset \omega$ splits a set $A \subset \omega$ iff $|A \cap S| = \omega$ and $|A \setminus S| = \omega$.
- $\mathcal{S} \subset [\omega]^{\omega}$ is a splitting family iff each

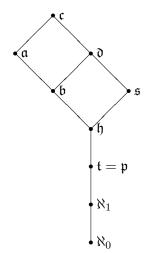
 $A \in [\omega]^{\omega}$ is splitted by some element of \mathcal{S} .

• Splitting number, \mathfrak{s} , is the minimal cardinality of a splitting family.

・ 同 ト ・ ヨ ト ・ ヨ ト

£

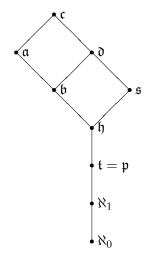
Small cardinals



- *T* ⊂ [ω]^ω is a tower iff ⟨*T*, * *⊇*⟩ well-ordered and the family *T* has no pseudointersection.
- Tower number, t, is the minimal cardinality of a tower.

A (10) A (10) A (10) A

Small cardinals

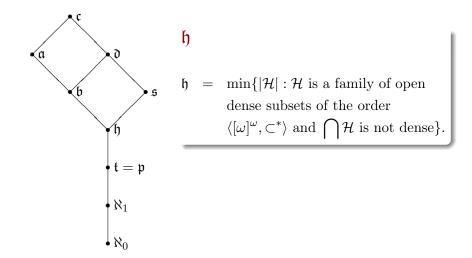


b

- For functions $f, g \in \omega^{\omega}, f \leq^* g$ denotes $\exists n_0 \in \omega \ \forall n \geq n_0$ $f(n) \leq g(n).$
- $\mathcal{B} \subset \omega^{\omega}$ is unbounded family iff there does not exist $g \in \omega^{\omega}$ such that $f \leq^* g$ for each $f \in \mathcal{B}$.
- Bounding number, b, is the minimal cardinality of unbounded family.

A (1) > A (2) > A

Small cardinals



ъ

• (1) • (1) • (1)