On the Bergman property for clones

Christian Pech

Institute of Algebra TU-Dresden Germany

June 7, 2013

(joint work with Maja Pech)

Outline

Cofinality and generating sets of clones Definition

Reduction to semigroups

Cofinality for homogeneous structures

Homogeneous structures Dolinka's cofinality result Cofinality of polymorphism clones of homogeneous structures

The Bergman property for clones

Outline

Cofinality and generating sets of clones Definition

Reduction to semigroups

Cofinality for homogeneous structures

Homogeneous structures Dolinka's cofinality result Cofinality of polymorphism clones of homogeneous structures

The Bergman property for clones

Definition of cofinality for clones

Observation

If a clone $\mathbb F$ is non-finitely generated, then it can be approximated by a chain of proper subclones $\langle \mathbb F^{(1)}\rangle \leq \langle \mathbb F^{(2)}\rangle \leq \cdots$.

Question

In general, what is the minimal possible length of such a chain?

"Answer"

It is some regular cardinal...

Definition (Cofinality of a clone)

Let \mathbb{F} be a non-finitely generated clone.

By cf(\mathbb{F}) we denote the least cardinal λ such that there exists a chain $(\mathbb{F}_i)_{i<\lambda}$ such that

1. $\forall i < \lambda : \mathbb{F}_i < \mathbb{F},$ 2. $\bigcup_{i < \lambda} \mathbb{F}_i = \mathbb{F}.$

Observations

- ► Countable clones are either finitely generated or have cofinality ℵ₀.
- Therefore the concept of cofinality becomes interesting only for clones on infinite sets.
- Examples for very large clones are the polymorphism clones of certain homogeneous structures.

Lemma

If $\mathbb{F} \leq O_A$ has uncountable cofinality, then

$$\exists n \in \mathbb{N}_+ : \mathbb{F} = \langle \mathbb{F}^{(n)} \rangle_{O_A}.$$

Motivating questions

- 1. Does the polymorphism clone of the Rado-graph have uncountable cofinality?
- 2. Does the clone O_A of all functions on an infinite set A have uncountable cofinality?
- 3. What about other homogeneous structures?

Outline

Cofinality and generating sets of clones Definition Reduction to semigroups

Cofinality for homogeneous structures

Homogeneous structures Dolinka's cofinality result Cofinality of polymorphism clones of homogeneous structures

The Bergman property for clones

Relative rank of clones

We adapt Ruškuc' notion of relative rank for semigroups to clones:

```
Let \mathbb{F} be a clone, and let M \subseteq \mathbb{F}.
```

Definition

A subset $N \subseteq \mathbb{F}$ is called **generating set of** \mathbb{F} **modulo** M if

$$\langle M \cup N \rangle_{O_A} = \mathbb{F}.$$

The **relative rank of** \mathbb{F} **modulo M** is the smallest cardinal of a generating set of \mathbb{F} modulo M.

It is denoted by

 $\mathsf{rank}(\mathbb{F}:M)$

Cofinality and relative rank

Proposition

Let $\mathbb{F} \leq O_A$, $\mathbb{S} \subseteq \mathbb{F}^{(1)}$ be a transformation semigroup. If $cf(\mathbb{S}) > \aleph_0$ and if $rank(\mathbb{F} : \mathbb{S})$ is finite, then

 $cf(\mathbb{F}) > \aleph_0, \quad too.$

Some concrete cofinality results

Let R denote the Rado-graph.

Observation from Maja's talk

The relative rank of Pol(R) modulo End(R) is equal to 1.

```
Theorem (Dolinka 2012)
```

 $cf(End R) > \aleph_0.$

Corollary $cf(Pol R) > \aleph_0$.

Theorem (Malcev, Mitchel, Ruškuc 2009) For every infinite set A holds $cf(O_A^{(1)}) > \aleph_0$.

From the proof of Sierpiński's Theorem we have: The relative rank of O_A modulo $O_A^{(1)}$ is equal to 1.

Corollary

For every infinite set A holds $cf(O_A) > \aleph_0$.

Outline

Cofinality and generating sets of clones Definition Reduction to semigroups

Cofinality for homogeneous structures Homogeneous structures

Dolinka's cofinality result Cofinality of polymorphism clones of homogeneous structures

The Bergman property for clones

Ages

Definition

A class of finitely generated countable structures is called an **age** if it is obtainable as the class of all finitely generated structures that embedd into a given fixed countable structure.

Hereditary property (HP) \mathcal{K} has the (HP) if $\forall \mathbf{A} \in \mathcal{K}$ if $\mathbf{B} \hookrightarrow \mathbf{A}$, then also $\mathbf{B} \in \mathcal{K}$.

Joint embedding property (JEP) \mathcal{K} has the (JEP) if

$$\forall \mathbf{A}, \mathbf{B} \in \mathcal{K} \, \exists \mathbf{C} \in \mathcal{K} : \mathbf{A} \hookrightarrow \mathbf{C}, \, \mathbf{B} \hookrightarrow \mathbf{C}.$$

Theorem (Fraïssé)

 \mathcal{K} is an age if and only if it contains up to isomorphism only countably many structures, it has the (HP) and the (JEP).

Fraïssé-classes

Amalgamation property (AP)

 \mathcal{K} has the (AP) if for all $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2 \in \mathcal{K}$ and for all $f_1 : \mathbf{A} \hookrightarrow \mathbf{B}_1$, $f_2 : \mathbf{A} \hookrightarrow \mathbf{B}_2$, there exist $\mathbf{C} \in \mathcal{K}$, $g_1 : \mathbf{B}_1 \hookrightarrow \mathbf{C}$, $g_2 : \mathbf{B}_2 \hookrightarrow \mathbf{C}$, such that the following diagram commutes:

$$\begin{array}{c} \mathbf{A} \xleftarrow{f_1} \mathbf{B}_1 \\ \uparrow \\ f_2 \\ \mathbf{B}_2 \end{array}$$

Definition

An age \mathcal{K} is called **Fraïssé-class** if it has the amalgamation property (AP).

Theorem (Fraïssé 1953)

- 1. \mathcal{K} is a Fraïssé-class $\iff \mathcal{K}$ is the age of a countable homogeneous structure,
- 2. any two countable homogeneous structures of the same age are isomorphic.

Fraïssé-classes

Amalgamation property (AP)

 \mathcal{K} has the (AP) if for all $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2 \in \mathcal{K}$ and for all $f_1 : \mathbf{A} \hookrightarrow \mathbf{B}_1$, $f_2 : \mathbf{A} \hookrightarrow \mathbf{B}_2$, there exist $\mathbf{C} \in \mathcal{K}$, $g_1 : \mathbf{B}_1 \hookrightarrow \mathbf{C}$, $g_2 : \mathbf{B}_2 \hookrightarrow \mathbf{C}$, such that the following diagram commutes:

Definition

An age \mathcal{K} is called **Fraïssé-class** if it has the amalgamation property (AP).

Theorem (Fraïssé 1953)

- 1. \mathcal{K} is a Fraïssé-class $\iff \mathcal{K}$ is the age of a countable homogeneous structure,
- 2. any two countable homogeneous structures of the same age are isomorphic.

Fraïssé-classes

Amalgamation property (AP)

 \mathcal{K} has the (AP) if for all $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2 \in \mathcal{K}$ and for all $f_1 : \mathbf{A} \hookrightarrow \mathbf{B}_1$, $f_2 : \mathbf{A} \hookrightarrow \mathbf{B}_2$, there exist $\mathbf{C} \in \mathcal{K}$, $g_1 : \mathbf{B}_1 \hookrightarrow \mathbf{C}$, $g_2 : \mathbf{B}_2 \hookrightarrow \mathbf{C}$, such that the following diagram commutes:

Definition

An age ${\cal K}$ is called $\mbox{{\bf Fraiss\acute{e}-class}}$ if it has the amalgamation property (AP).

Theorem (Fraïssé 1953)

- 1. \mathcal{K} is a Fraissé-class $\iff \mathcal{K}$ is the age of a countable homogeneous structure,
- 2. any two countable homogeneous structures of the same age are isomorphic.

Outline

Cofinality and generating sets of clones Definition Reduction to semigroups

Cofinality for homogeneous structures Homogeneous structures Dolinka's cofinality result Cofinality of polymorphism clones of homogeneous structures

The Bergman property for clones

Homo amalgamation property (HAP)

 \mathcal{K} has the (HAP) if for all $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2 \in \mathcal{K}$, for all homomorphisms $f_1 : \mathbf{A} \to \mathbf{B}_1, f_2 : \mathbf{A} \hookrightarrow \mathbf{B}_2$ there exist $\mathbf{C} \in \mathcal{K}, g_1 : \mathbf{B}_1 \hookrightarrow \mathbf{C}$, and $g_2 : \mathbf{B}_2 \to \mathbf{C}$, such that the following diagram commutes:

Theorem (Dolinka 2011)

A countable homogeneous structure **A** is homomorphism homogeneous if and only if Age(**A**) has the (HAP).

Homo amalgamation property (HAP)

 \mathcal{K} has the (HAP) if for all $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2 \in \mathcal{K}$, for all homomorphisms $f_1 : \mathbf{A} \to \mathbf{B}_1, f_2 : \mathbf{A} \hookrightarrow \mathbf{B}_2$ there exist $\mathbf{C} \in \mathcal{K}, g_1 : \mathbf{B}_1 \hookrightarrow \mathbf{C}$, and $g_2 : \mathbf{B}_2 \to \mathbf{C}$, such that the following diagram commutes:

Theorem (Dolinka 2011)

A countable homogeneous structure **A** is homomorphism homogeneous if and only if Age(**A**) has the (HAP).

Homo amalgamation property (HAP)

 \mathcal{K} has the (HAP) if for all $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2 \in \mathcal{K}$, for all homomorphisms $f_1 : \mathbf{A} \to \mathbf{B}_1, f_2 : \mathbf{A} \hookrightarrow \mathbf{B}_2$ there exist $\mathbf{C} \in \mathcal{K}, g_1 : \mathbf{B}_1 \hookrightarrow \mathbf{C}$, and $g_2 : \mathbf{B}_2 \to \mathbf{C}$, such that the following diagram commutes:

Theorem (Dolinka 2011)

A countable homogeneous structure A is homomorphism homogeneous if and only if Age(A) has the (HAP).

Strict Fraïssé-classes

If \mathcal{K} is an age, then $\overline{\mathcal{K}} := \{ \mathbf{A} \mid \mathbf{A} \text{ countable, } Age(\mathbf{A}) \subseteq \mathcal{K} \}.$ Definition (Dolinka 2011)

A Fraïssé-class \mathcal{K} of relational structures is called **strict Fraïssé-class** if every pair of morphisms in $(\mathcal{K}, \hookrightarrow)$ with the same domain has a pushout in $(\overline{\mathcal{K}}, \rightarrow)$.

Observation

Note that these pushouts will always be amalgams. Thus the strict amalgamation property postulates canonical amalgams.

Theorem (Dolinka 2011)

Let $\boldsymbol{\mathsf{U}}$ be a countable homogeneous structure of age $\mathcal{K}.$ If

- 1. $\mathcal K$ has the strict amalgamation property,
- 2. \mathcal{K} has the (HAP),
- 3. the coproduct of \aleph_0 copies of **U** exists and if its age is contained in \mathcal{K} ,
- $4. \ |\operatorname{End} \boldsymbol{U}| > \aleph_0.$

Then $cf(End \mathbf{U}) > \aleph_0$.

Remark

Dolinka shows more: that End U has uncountable strong cofinality.

Outline

Cofinality and generating sets of clones Definition Reduction to semigroups

Cofinality for homogeneous structures

Homogeneous structures Dolinka's cofinality result

Cofinality of polymorphism clones of homogeneous structures

The Bergman property for clones

Kubiś's amalgamated extension property

Let ${\cal K}$ be a class of countable, finitely generated structures. We say that ${\cal K}$ has the <code>amalgamated extension property</code> if

Remark

The strict amalgamation property implies the amalgamated extension property.

Kubiś's amalgamated extension property

Let ${\cal K}$ be a class of countable, finitely generated structures. We say that ${\cal K}$ has the amalgamated extension property if

Remark

The strict amalgamation property implies the amalgamated extension property.

Generating polymorphism clones of homogeneous structures

Let us recall a Theorem from Maja's talk:

Theorem

Let $\boldsymbol{\mathsf{U}}$ be a countable homogeneous structure of age $\mathcal K$ such that

- 1. \mathcal{K} is closed with respect to finite products,
- 2. \mathcal{K} has the (HAP),
- 3. $\mathcal K$ has the amalgamated extension property.

Then rank(Pol \mathbf{U} : End \mathbf{U}) = 1

Now we are ready to combine Dolinka's result with the above given Theorem:

Cofinality of polymorphism clones of homogeneous structures

Theorem

Let $\boldsymbol{\mathsf{U}}$ be a countable homogeneous structure of age $\mathcal{K}.$ If

- 1. $\mathcal K$ has the strict amalgamation property,
- 2. \mathcal{K} is closed with respect to finite products,
- 3. \mathcal{K} has the (HAP),
- 4. the coproduct of \aleph_0 copies of **U** exists and its age is contained in \mathcal{K} ,
- 5. $|\operatorname{End} \mathbf{U}| > \aleph_0$.

Then

 $\mathsf{cf}(\mathsf{Pol}\; \boldsymbol{U}) > \aleph_0.$

Examples

The polymorphism clones of the following structures have uncountable cofinality:

- the Rado graph,
- ▶ the countable generic poset $\mathbb{P} = (P, \leq)$,
- the countable atomless Boolean algebra,
- the countable universal homogeneous semilattice,
- the countable universal homogeneous distributive lattice,
- the vector-space \mathbb{F}^{ω} for any countable field \mathbb{F} .

Theorem (Bergman 2006)

Let A be an infinite set. G = Sym(A) be the group of all permutations of A.

Then every connected Cayley graph of G has finite diameter.

Definition

Any group with this property if said to have the **Bergman property**.

Remark

- Bergman showed the Bergman-property of Sym(A) to give an alternative proof for the uncountable cofinality of Sym(A) (original proof by Macpherson and Neumann),
- Droste and Göbel generalized Bergman's ideas to many other groups,
- The Bergman property was defined for semigroups by Maltcev, Mitchel, and Ruškuc.

The Bergman property for semigroups

Definition (Maltcev, Mitchel, Ruškuc 2009) A semigroup S has the **Bergman-property** if for every $U \subseteq S$ holds

$$U^+ = S \Rightarrow \exists n \in \mathbb{N}_+ : \mathbb{S} = \bigcup_{i=1}^n U^i.$$

Remark

Dolinka (2011) showed the Bergman property for the endomorphism monoids of many homogeneous structures (with the HAP).

The Bergman property for clones

Definition

A clone \mathbb{F} is said to have the **Bergman-property** if for every generating set H of \mathbb{F} and every $k \in \mathbb{N} \setminus \{0\}$ there exists some $n \in \mathbb{N}$ such that every *k*-ary function from F can be represented by a term of depth at most n from the functions in H.

The main result

Theorem

Let $\boldsymbol{\mathsf{U}}$ be a countable homogeneous structure of age $\mathcal{K},$ such that

- 1. $\mathcal K$ has the strict amalgamation property,
- 2. \mathcal{K} is closed with respect to finite products,
- 3. \mathcal{K} has the HAP,
- 4. the coproduct of countably many copies of **U** in $(\overline{\mathcal{K}}, \rightarrow)$ exists,
- 5. End **U** is not finitely generated.

Then Pol **U** has the Bergman property.

Strategy of the proof

- We define the notion of strong cofinality for clones,
- we show that a clone has uncountable strong cofinality if and only if it has uncountable cofinality and the Bergman property,
- we show that the clones in question have uncountable strong cofinality.

Definition of strong cofinality for clones

For a set U of functions, by $U^{[k,2]}$ we denote the set of k-ary functions definable from U by terms of depth at most 2.

Definition

For a clone $\mathbb{F} \leq O_A$ and a cardinal λ , a chain $(U_i)_{i < \lambda}$ of proper subsets of \mathbb{F} is called **strong cofinal chain** of length λ for \mathbb{F} if

1.
$$\bigcup_{i<\lambda} U_i = F$$
,

- 2. there exists a $k_0 \in \mathbb{N} \setminus \{0\}$ such that for all $i < \lambda$ and $k \in \mathbb{N} \setminus \{0\}$ with $k \ge k_0$ holds $U_i^{(k)} \subsetneq F^{(k)}$,
- 3. for all $i < \lambda$ there exists some $j < \lambda$ such that for all $k \in \mathbb{N} \setminus \{0\}$ holds $U_i^{[k,2]} \subseteq U_j$.

The **strong cofinality** of \mathbb{F} is the least cardinal λ such that there exists a strong cofinal chain of length λ for \mathbb{F} .

Examples

The polymorphism clones of the following structures have the Bergman property:

- the Rado graph,
- the countable generic poset $\mathbb{P} = (P, \leq)$,
- the countable atomless Boolean algebra \mathbb{B} ,
- the countable universal homogeneous semilattice,
- the countable universal homogeneous distributive lattice,
- the vector-space \mathbb{F}^{ω} for any countable field \mathbb{F} .