On generating sets of polymorphism clones of homogeneous structures

Maja Pech

Institute of Algebra TU Dresden Germany

Department of Mathematics and Informatics University of Novi Sad Serbia

07.06.2013

joint work with Christian Pech

On generating sets of polymorphism clones of homogeneous structures

・ 同 ト ・ ヨ ト ・ ヨ ト

On clones . . .

Given a set A. • $O_A^{(n)} := \{f \mid f : A^n \to A\}, O_A := \bigcup_{n \in \mathbb{N} \setminus \{0\}} O_A^{(n)},$ • $F^{(n)} := F \cap O_A^{(n)}$, for $F \subseteq O_A$, • **Projections**: $J_A := \{e_i^n \mid e_i^n(x_1, \dots, x_n) = x_i, n \in \mathbb{N}\},$ • **Composition**: For $f \in O_A^{(n)}, g_1, \dots, g_n \in O_A^{(m)}$

$$f \circ \langle g_1, \ldots, g_n \rangle (x_1, \ldots, x_m) := f(g_1(x_1, \ldots, x_m), \ldots, g_n(x_1, \ldots, x_m))$$

 $C \subseteq O_A$ is a **clone** on A if

• $J_A \subseteq C$, and

• whenever $f \in C^{(n)}$, $g_1, \ldots g_n \in C^{(m)}$, then $f \circ \langle g_1, \ldots, g_n \rangle \in C^{(m)}$.

... and their generating systems

• If $M \subseteq O_A$, then $\langle M \rangle_{O_A}$ is the smallest clone on A that contains M.

• If $C \leq A$ and $C = \langle M \rangle_{O_A}$, then M is a generating system for C.

Question

If we consider a structure **A** and its polymorphism clone Pol **A**, what can be said about its generating systems? In particular, what happens if **A** is a homogeneous structure?

The evergreen result of Sierpiński

Theorem (Sierpiński (1945))

For an arbitrary set A holds

$$\left\langle O_A^{(2)} \right\rangle_{O_A} = O_A,$$

i.e. the clone of all operations on A is generated by its binary part.

Generating semigroups

- Ruškuc introduced in 1994 the notion of relative ranks.
- Higgins, Howie and Ruškuc showed in 1998 that the semigroup of all transformations on an infinite set A is generated by the set of permutations of A and two additional functions, i.e.

The semigroup of transformations of A has relative rank 2 modulo the full symmetric group on A.

Relative rank for clones

Let F be a clone on a set A and let M ⊆ F be an arbitrary subset of F.
A subset N of F is called generating set of F modulo M if

 $\langle M \cup N \rangle_{O_A} = F.$

• The **relative rank** of *F* modulo *M* is the smallest cardinal of a generating set *N* of *F* modulo *M*, and is denoted by

rank(F: M).

Beyond Sierpiński's theorem

Proposition

Let **A** be a structure such that there exists a retraction $r : \mathbf{A} \rightarrow \mathbf{A}^2$. Then

 $rank(Pol \mathbf{A} : End \mathbf{A}) = 1.$

In particular, Pol A is generated by End A together with a section

 $\epsilon : \mathbf{A}^2 \hookrightarrow \mathbf{A} \text{ with } r \circ \epsilon = 1_{\mathbf{A}^2}.$

Example: Rado graph I

The **Rado-graph** is, up to isomorphism, the unique countably infinite graph R such that for all disjoint finite sets U, V of vertices there exists a vertex c joint to all elements of U and to none in V.

Theorem (Bonato, Delić 2000)

A countable graph G is isomorphic to a retract of the Rado graph if and only if G is algebraically closed.

Remark

A countable graph G is algebraically closed if every finite set $S \subseteq V(G)$ has a common neighbor.

Example: Rado graph II

Observation

The square R^2 of the Rado graph R is algebraically closed.

- Let $A \subseteq V(R^2)$, $A = \{(a_1, b_1), \dots, (a_n, b_n)\}$.
- For U := {a₁,..., a_n, b₁,..., b_n} and V := ∅ exists a c ∈ V(R) connected to all vertices of U.
- Consider $(c, c) \in V(\mathbb{R}^2)$. This is a common neighbor of A.

Homogeneity ...

Given is a structure **A**.

- A local isomorphism of a structure **A** is an isomorphism between finite substructures of **A**.
- A structure **A** is **homogeneous** if every local isomorphism of **A** extends to an automorphism of **A**.

... and AP (Amalgamation property)

Let $\ensuremath{\mathcal{C}}$ be a class of structures. If

 $\bullet~\textbf{A},\textbf{B_1},\textbf{B_2}\in\mathcal{C}\text{, and}$

• $f_1 : \mathbf{A} \hookrightarrow \mathbf{B_1}$ and $f_2 : \mathbf{A} \hookrightarrow \mathbf{B_2}$ are embeddings,

then there are

• $\mathbf{C} \in \mathcal{C}$, and

• embeddings $g_1: \mathbf{B_1} \hookrightarrow \mathbf{C}$ and $g_2: \mathbf{B_2} \hookrightarrow \mathcal{C}$

such that the following diagram commutes:

i.e.

$$g_1\circ f_1=g_2\circ f_2.$$

Age

• The **age** of a structure **A** is the class of all finitely generated structures that embed into **A**.

Let $\ensuremath{\mathcal{C}}$ be a class of finitely generated structures over the same signature.

- Hereditary property (HP)
 - If $\mathbf{A} \in \mathcal{C}$, and $\mathbf{B} \hookrightarrow \mathbf{A}$, then $\mathbf{B} \in \mathcal{C}$.
- Joint embedding property (JEP)
 If A, B ∈ C, then there exists a C ∈ C such that both A and B are embeddable in C.

Theorem (Fraïssé)

 ${\cal C}$ is the age of a countable structure iff it has, up to isomorphism, countably many structures, and it has the HP and the JEP.

Fraïssé-classes and Fraïssé-limit

• An age that has AP is called Fraissé class.

Theorem (Fraïssé)

C is a Fraïssé class iff there is a countable homogeneous structure **U**, such that C is the age of **U**. All countable homogeneous structures of age C are mutually isomorphic.

• **U** is called the **Fraïssé-limit** of the class C.

Homomorphism-homogeneity...

Given is a structure **A**.

- A local homomorphism of a structure **A** is a homomorphism from a finite substructure of **A** to **A**.
- Cameron and Nešetřil (2002):
 A structure A is homomorphism-homogeneous if every local homomorphism of A extends to an endomorphism of A.

... and HAP (Homo-almagamation property)

Let $\ensuremath{\mathcal{C}}$ be a class of structures. If

- $\textbf{A},\textbf{B_1},\textbf{B_2}\in\mathcal{C}$,
- $f_1: \mathbf{A} \to \mathbf{B_1}$ is a homomorphism, and
- $f_2: \mathbf{A} \hookrightarrow \mathbf{B_2}$ is an embedding,

then there are

- $\mathbf{C} \in \mathcal{C}$,
- $\bullet\,$ an embedding $g_1: {\bm B_1} \hookrightarrow {\bm C}$, and
- a homomorphism $g_2: \mathbf{B_2} \to \mathbf{C}$

such that the following diagram commutes:

i.e.

$$g_1\circ f_1=g_2\circ f_2.$$

Amalgamated extension property (Kubiś)

Let $\mathcal C$ be a class of countable, finitely generated structures. If

- $\bullet \ A, B_1, B_2, T \in \mathcal{C},$
- $f_1: A \hookrightarrow B_1$, $f_2: A \hookrightarrow B_2$ are embeddings, and
- $h_1 : \mathbf{B_1} \to \mathbf{T}, \ h_2 : \mathbf{B_2} \to \mathbf{T}$ are homomorphisms, with $h_1 \circ f_1 = h_2 \circ f_2$.

then there are

- $\mathbf{C},\mathbf{T}'\in\mathcal{C}$,
- embeddings $g_1 : \mathbf{B_1} \hookrightarrow \mathbf{C}, g_2 : \mathbf{B_2} \hookrightarrow \mathbf{C}, k : \mathbf{T} \hookrightarrow \mathbf{T}'$ and
- a homomorphism $h: \mathbf{C} \to \mathbf{T}'$

such that the following diagram commutes:

Main result

Let $\mathsf{Emb} \mathbf{A}$ be the submonoid of $\mathsf{End} \mathbf{A}$ that consists of all homomorphic self-embeddings of \mathbf{A} .

Theorem

Let C be a Fraïssé-class with Fraïssé-limit **U**, such that

- (1) C is closed with respect to finite products;
- (2) C has the HAP, and
- (3) C has the amalgamated extension property.

Then

```
rank(Pol \mathbf{A} : Emb \mathbf{A}) \leq 2.
```

In particular, Pol U is generated by Emb U together with an unary and a binary polymorphism.

Further examples

The polymorphism clones of the following structures have relative rank at most 2 modulo the respective self-embedding monoids:

- the Rado graph *R*;
- the countable generic poset $\mathbb{P} = (P, \leq)$;
- the countable atomless Boolean algebra \mathbb{B} ;
- the countable universal homogeneous lattice Ω;
- the countable universal homogeneous distributive lattice D;
- the rational Urysohn space $\mathbb{U}_{\mathbb{Q}}$;
- the rational Urysohn sphere of radius 1.

An open problem

The age of (\mathbb{Q}, \leq) is not closed with respect to finite products.

- (1) Does $\mathsf{Pol}(\mathbb{Q},\leq)$ have a generating set of bounded arity?
- (2) What is its relative rank with respect to

 $\mathsf{End}(\mathbb{Q},\leq)$, $\mathsf{Emb}(\mathbb{Q},\leq)$, or even $\mathsf{Aut}(\mathbb{Q},\leq)$?