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Graphs associated with rings

In order to get a better understanding of a given algebraic structure A, one can
associate to it a graph G and study an interplay of algebraic properties of A and
combinatorial properties of G. In this talk we try to establish some connections
between commutative ring theory and graph theory.
Some of the graphs associated with a ring are:

Zero-divisor graph – vertices are proper zero divisor; x and y are adjacent iff
xy = 0 (Anderson, Livingston).
Total graph – vertices are elements of the ring; x and y are adjacent iff x+y is a
zero divisor (Anderson, Badawi).
Irreducible graph divisor (for domains) – vertices are irreducible divisor of an
element z; x and y are adjacent iff xy is also a divisor of z (Coykendall, Maney).
Comaximal graph – vertices are elements of the ring; x and y are adjacent iff
Rx+Ry = R (Sharma, Bhatwadekar).

Definition (Chakrabarty, Ghosh, Mukherjee, Sen)

Let R be a commutative ring and I∗(R) the set of its nontrivial ideals. The
intersection graph of ideals G(R) is defined as follows:

V(G(R)) := I∗(R), E(G(R)) := {{I1, I2} : I1∩ I2 6= 0},

where V(G(R)) (resp. E(G(R))) denotes the set of vertices (resp. edges) of the
graph G(R).
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Genus of a graph

Genus of a graph G is minimum n such that G can be embedded in Sn (Sn is the
surface obtained from the sphere S0 by adding n handles). It is denoted by γ(G).
Genus of a graph has the following properties:

(Euler’s formula) If n, m, and f , are the number of vertices, edges, and faces in
a cellular embedding of G in Sg, then

n− e+ f = 2−2g.

(Ringel)

γ(Kn,m) =

⌈
(m−2)(n−2)

4

⌉
, m,n > 2.

(Ringel, Youngs)

γ(Kn) =

⌈
(n−3)(n−4)

12

⌉
, n > 3.

(Thomassen) Determining the genus of a graph is NP-complete problem.



Genus of a graph

Genus of a graph G is minimum n such that G can be embedded in Sn (Sn is the
surface obtained from the sphere S0 by adding n handles). It is denoted by γ(G).

Genus of a graph has the following properties:

(Euler’s formula) If n, m, and f , are the number of vertices, edges, and faces in
a cellular embedding of G in Sg, then

n− e+ f = 2−2g.

(Ringel)

γ(Kn,m) =

⌈
(m−2)(n−2)

4

⌉
, m,n > 2.

(Ringel, Youngs)

γ(Kn) =

⌈
(n−3)(n−4)

12

⌉
, n > 3.

(Thomassen) Determining the genus of a graph is NP-complete problem.



Genus of a graph

Genus of a graph G is minimum n such that G can be embedded in Sn (Sn is the
surface obtained from the sphere S0 by adding n handles). It is denoted by γ(G).
Genus of a graph has the following properties:

(Euler’s formula) If n, m, and f , are the number of vertices, edges, and faces in
a cellular embedding of G in Sg, then

n− e+ f = 2−2g.

(Ringel)

γ(Kn,m) =

⌈
(m−2)(n−2)

4

⌉
, m,n > 2.

(Ringel, Youngs)

γ(Kn) =

⌈
(n−3)(n−4)

12

⌉
, n > 3.

(Thomassen) Determining the genus of a graph is NP-complete problem.



Genus of a graph

Genus of a graph G is minimum n such that G can be embedded in Sn (Sn is the
surface obtained from the sphere S0 by adding n handles). It is denoted by γ(G).
Genus of a graph has the following properties:

(Euler’s formula) If n, m, and f , are the number of vertices, edges, and faces in
a cellular embedding of G in Sg, then

n− e+ f = 2−2g.

(Ringel)

γ(Kn,m) =

⌈
(m−2)(n−2)

4

⌉
, m,n > 2.

(Ringel, Youngs)

γ(Kn) =

⌈
(n−3)(n−4)

12

⌉
, n > 3.

(Thomassen) Determining the genus of a graph is NP-complete problem.



Genus of a graph

Genus of a graph G is minimum n such that G can be embedded in Sn (Sn is the
surface obtained from the sphere S0 by adding n handles). It is denoted by γ(G).
Genus of a graph has the following properties:

(Euler’s formula) If n, m, and f , are the number of vertices, edges, and faces in
a cellular embedding of G in Sg, then

n− e+ f = 2−2g.

(Ringel)

γ(Kn,m) =

⌈
(m−2)(n−2)

4

⌉
, m,n > 2.

(Ringel, Youngs)

γ(Kn) =

⌈
(n−3)(n−4)

12

⌉
, n > 3.

(Thomassen) Determining the genus of a graph is NP-complete problem.



Genus of a graph

Genus of a graph G is minimum n such that G can be embedded in Sn (Sn is the
surface obtained from the sphere S0 by adding n handles). It is denoted by γ(G).
Genus of a graph has the following properties:

(Euler’s formula) If n, m, and f , are the number of vertices, edges, and faces in
a cellular embedding of G in Sg, then

n− e+ f = 2−2g.

(Ringel)

γ(Kn,m) =

⌈
(m−2)(n−2)

4

⌉
, m,n > 2.

(Ringel, Youngs)

γ(Kn) =

⌈
(n−3)(n−4)

12

⌉
, n > 3.

(Thomassen) Determining the genus of a graph is NP-complete problem.



Genus of a graph

Genus of a graph G is minimum n such that G can be embedded in Sn (Sn is the
surface obtained from the sphere S0 by adding n handles). It is denoted by γ(G).
Genus of a graph has the following properties:

(Euler’s formula) If n, m, and f , are the number of vertices, edges, and faces in
a cellular embedding of G in Sg, then

n− e+ f = 2−2g.

(Ringel)

γ(Kn,m) =

⌈
(m−2)(n−2)

4

⌉
, m,n > 2.

(Ringel, Youngs)

γ(Kn) =

⌈
(n−3)(n−4)

12

⌉
, n > 3.

(Thomassen) Determining the genus of a graph is NP-complete problem.



Planarity and toroidality of intersection graphs

Jafari and Rad – gave (incomplete) characterization of planar graphs that are
intersection graphs of some rings (Petrović and Pucanović completed their
characterization). To obtain their result they used the fact that K5 is a
forbidden subgraph for S0.

Petrović and Pucanović – classified all toroidal graphs that are intersection
graphs of some rings (there are 9 of them). To obtain their result they used the
fact that K8 is a forbidden subgraph for S1 and Euler’s formula.
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characterization). To obtain their result they used the fact that K5 is a
forbidden subgraph for S0.
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Genus two intersection graphs

γ(G(R)) = 2 =⇒ G(R) does not contain a K9.

Genus of G(R) is finite =⇒ R is Artinian ring.

R∼= R1×R2× . . .×Rn, where Ri are local Artinian rings, for 1 6 i 6 n.

γ(G(R)) finite and R local with maximal ideal M =⇒ R/M is finite.

R is local with maximal ideal M, and M is minimally generated with k
elements =⇒ dim(M/M2) over R/M is k.

Theorem (Erić, Pucanović, Radovanović)

Let R be a commutative ring with identity. Graphs G(R) with γ(G(R)) = 2 are Γ′

and some subgraph of Γ′′.
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Let R be a commutative ring with identity. Graphs G(R) with γ(G(R)) = 2 are Γ′

and some subgraph of Γ′′.



Genus two intersection graphs

γ(G(R)) = 2 =⇒ G(R) does not contain a K9.

Genus of G(R) is finite =⇒ R is Artinian ring.

R∼= R1×R2× . . .×Rn, where Ri are local Artinian rings, for 1 6 i 6 n.

γ(G(R)) finite and R local with maximal ideal M =⇒ R/M is finite.

R is local with maximal ideal M, and M is minimally generated with k
elements =⇒ dim(M/M2) over R/M is k.
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Sketch of the proof (part 1)

n > 4⇒ γ(G(R))> 3 (contains K9 or is non-consistent with Euler’s formula).
n = 3⇒ R2 and R3 are fields, M2

1 = 0, and M1 is principal (since G(R) does
not contain a K9).
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Sketch of the proof (part 2)

n = 2⇒ w.l.o.g. R1 is not a field, and M1 is minimal generated with k 6 2
generators (otherwise graph is planar or contains K9).
n = 2, k = 1⇒ G(R) is toroidal, contains K9, or is non-consistent with Euler’s
formula.
n = 2, k = 2⇒ R2 is a field, and M2

1 = 0.
|R1/M1|> 3⇒ G(R) is non-consistent with Euler’s formula.
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Sketch of the proof (part 3)

R is local ring with maximal ideal M, which is minimally generated with k elements.

k > 3

⇒ G(R) is non-consistent with Euler’s formula.

k = 2⇒ M2 6= 0 (otherwise G(R) is planar). Also,

M2 is principal. This is obtained by study with respect with |R/M|: if M2 is not
principal, then G(R) is non-consistent with Euler’s formula, or does not satisfies
the following proposition.

Every triangulation of S2 contains at least 24 triangles.

M3 = 0, and M2 = 〈uv〉 where u2 = v2 = 0, or M2 = 〈u2〉 where uv = 0. This is
obtained from the following proposition.

There is no embedding of K8 in S2 which has a pentagonal face, or two
quadrilateral faces that share an edge.

M2 = 〈uv〉 where u2 = v2 = 0, then G(R) is isomorphic to K8.
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Sketch of the proof (part 4)

Finally, let R be a local ring with maximal ideal M which is minimally generated
with two element. If M2 = 〈u2〉, uv = 0, u2 = 0, then:

|R/M|6 4⇒ G(R) is toroidal.
|R/M|> 6⇒ G(R) contains K9.
|R/M|= 5⇒ G(R) is isomorphic to the graph in the picture.
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Genus of the intersection graph of nonlocal rings

Let R∼= R1×R2× . . .×Rn, where n > 2, and Ri are local Artinian rings, for i = 1,n.

If Ri is not a field, for 1 6 i 6 n, then G(R) contains a large complete bipartite
graph.

Let αi = ω(G(Ri))/|V(G(Ri))| if Ri is not a field, and αi = 3/2 otherwise.
Then,

ω(G(R))> max{αi |1 6 i 6 n} · N
3
,

where N = |V(G(R))|.

Theorem (Erić, Pucanović, Radovanović)

Genus of the intersection graph of a nonlocal ring R is at least

min
{

α

8
·N

2k−2
k · (N1/k−α)− N

2
+1,β ·N2− N

2
+1,

(N−6)(N−8)
48

}
,

where N = |V(G(R))|, α = 2k
(

1
3

) k−1
k and β = 3k−2k−1

4·(2·3k−2k+1−1)2 .
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Number of genus g intersection graphs

Theorem (Erić, Pucanović, Radovanović)

For every g > 0, there are only finitely many nonisomorphic graphs of genus g that
are intersection graphs of some rings.
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The end.
Thank you for your attention.


