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Definition (Chakrabarty, Ghosh, Mukherjee, Sen)

Let R be a commutative ring and /*(R) the set of its nontrivial ideals. The
intersection graph of ideals G(R) is defined as follows:

V(G(R)):=I"(R), E(G(R)):={{l,L}:1Nl#0},

where V(G(R)) (resp. E(G(R))) denotes the set of vertices (resp. edges) of the
graph G(R).
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Genus of a graph G is minimum #n such that G can be embedded in S, (S, is the
surface obtained from the sphere Sy by adding » handles). It is denoted by ¥(G).
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Genus of a graph

Genus of a graph G is minimum #n such that G can be embedded in S, (S, is the
surface obtained from the sphere S by adding » handles). It is denoted by ¥(G).
Genus of a graph has the following properties:

m (Euler’s formula) If n, m, and f, are the number of vertices, edges, and faces in
a cellular embedding of G in S, then

n—e+f=2-2g.

m (Ringel) )
Y(Knm) = {(m_ziﬂ mn > 2.
m (Ringel, Youngs)
ny_ [(n=3)(n=4)]

m (Thomassen) Determining the genus of a graph is NP-complete problem.
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m Jafari and Rad — gave (incomplete) characterization of planar graphs that are
intersection graphs of some rings (Petrovi¢ and Pucanovi¢ completed their
characterization).
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Planarity and toroidality of intersection graphs

m Jafari and Rad — gave (incomplete) characterization of planar graphs that are
intersection graphs of some rings (Petrovi¢ and Pucanovi¢ completed their
characterization). To obtain their result they used the fact that K is a
forbidden subgraph for Sy.

m Petrovi¢ and Pucanovic¢ — classified all toroidal graphs that are intersection
graphs of some rings (there are 9 of them). To obtain their result they used the
fact that K3 is a forbidden subgraph for S; and Euler’s formula.
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m 7(G(R)) =2 = G(R) does not contain a K°.
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Genus two intersection graphs

7(G(R)) = 2 = G(R) does not contain a K°.
Genus of G(R) is finite = R is Artinian ring.

R=R; X Ry X ...XR,, where R; are local Artinian rings, for 1 <i < n.
Y(G(R)) finite and R local with maximal ideal M = R/M is finite.

m R is local with maximal ideal M, and M is minimally generated with k
elements = dim(M/M?) over R/M is k.

Theorem (Eri¢, Pucanovi¢, Radovanovic)

Let R be a commutative ring with identity. Graphs G(R) with y(G(R)) =2 are I’
and some subgraph of I
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m n>4= y(G(R)) >3 (contains K° or is non-consistent with Euler’s formula).
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m n=23 = R, and Rj3 are fields, M% =0, and M| is principal (since G(R) does
not contain a K%).

m n>4= y(G(R)) >3 (contains K° or is non-consistent with Euler’s formula).
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Sketch of the proof (part 1)

m n>4= y(G(R)) >3 (contains K° or is non-consistent with Euler’s formula).
m n=3= R, and R; are fields, M? = 0, and M is principal (since G(R) does
not contain a K%).

10 4 1 e 10
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m n=2= w.lo.g. Ry is not a field, and M, is minimal generated with k < 2
generators (otherwise graph is planar or contains K°).
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m n=2= w.lo.g. Ry is not a field, and M, is minimal generated with k < 2
generators (otherwise graph is planar or contains K°).

m n=2,k=1= G(R) is toroidal, contains K9, or is non-consistent with Euler’s
formula.
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m n=2= w.lo.g. Ry is not a field, and M, is minimal generated with k < 2

generators (otherwise graph is planar or contains K°).

-n=lk=1:G@ﬁﬂmﬁMmmMmK%mmnmwmmwmmmﬁmm
formula.

mn=2,k=2
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Sketch of the proof (part 2)

m n=2= wlo.g. R; is not a field, and M is minimal generated with k <2
generators (otherwise graph is planar or contains K?).

m n=2,k=1= G(R) is toroidal, contains K, or is non-consistent with Euler’s
formula.

mn=2,k=2= R;isafield, and M} = 0.
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Sketch of the proof (part 2)

m n=2= wlo.g. R; is not a field, and M is minimal generated with k <2
generators (otherwise graph is planar or contains K?).
m n=2,k=1= G(R) is toroidal, contains K, or is non-consistent with Euler’s
formula.
mn=2,k=2= R;isafield, and M7 = 0.
m |R; /M| >3 = G(R) is non-consistent with Euler’s formula.
m |[R; /M| =3 = G(R) is consistent with Euler’s formula, does not contain K°, but

is not embeddable in S,.
m |R;/M;| =2 = G(R) is isomorphic to the graph in the picture.
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R is local ring with maximal ideal M, which is minimally generated with k elements.
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R is local ring with maximal ideal M, which is minimally generated with k elements.
m k>3 = G(R) is non-consistent with Euler’s formula.

m k=2 = M? #0 (otherwise G(R) is planar). Also,
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Sketch of the proof (part 3)

R is local ring with maximal ideal M, which is minimally generated with k elements.

m k>3 = G(R) is non-consistent with Euler’s formula.
B k=2 = M?#0 (otherwise G(R) is planar). Also,

m M? is principal. This is obtained by study with respect with [R/M|: if M? is not
principal, then G(R) is non-consistent with Euler’s formula, or does not satisfies
the following proposition.
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Finally, let R be a local ring with maximal ideal M which is minimally generated
with two element. If M2 = (uz), wv =0, u? = 0, then:
m |R/M| <4
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m |R/M| <4 = G(R) is toroidal.
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m |R/M| <4 = G(R) is toroidal.

Finally, let R be a local ring with maximal ideal M which is minimally generated
with two element. If M2 = (uz), wv =0, u? = 0, then:
m |R/M| > 6 = G(R) contains K°.
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with two element. If M2 = (uz), wv =0, u? = 0, then:

m |R/M| <4 = G(R) is toroidal.

Finally, let R be a local ring with maximal ideal M which is minimally generated
m |R/M| > 6 = G(R) contains K°.
m |R/M|=5

«Or «F»r <

DA



Sketch of the proof (part 4)

Finally, let R be a local ring with maximal ideal M which is minimally generated
with two element. If M? = (u?), uv = 0, u> = 0, then:

m |R/M| <4 = G(R) is toroidal.

m |[R/M| > 6 = G(R) contains K°.

m |R/M| =35 = G(R) is isomorphic to the graph in the picture.
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Let R= Ry X Ry X ... X Ry, where n > 2, and R; are local Artinian rings, for i = 1, n.
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Let R= Ry X Ry X ... X Ry, where n > 2, and R; are local Artinian rings, for i = I,_n
m If R; is not a field, for 1 < i < n, then G(R) contains a large complete bipartite
graph.
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Genus of the intersection graph of nonlocal rings

Let R= Ry X Ry X ... X R,, where n > 2, and R; are local Artinian rings, for i = 1, 7.
m If R; is not a field, for 1 < i < n, then G(R) contains a large complete bipartite
graph.
m Let o; = o(G(R;))/|V(G(R;))| if R; is not a field, and o; = 3/2 otherwise.
Then,

N
o(G(R)) 2 max{oy|1 <i<n}- 3

where N = |[V(G(R))|.



Genus of the intersection graph of nonlocal rings

Let R= Ry X Ry X ... X R,, where n > 2, and R; are local Artinian rings, for i = 1, 7.
m If R; is not a field, for 1 < i < n, then G(R) contains a large complete bipartite
graph.
m Let o; = o(G(R;))/|V(G(R;))| if R; is not a field, and o; = 3/2 otherwise.
Then,

o(G(R)) > max{os|1 <i<n}- %
where N = |[V(G(R))|.

Theorem (Eri¢, Pucanovi¢, Radovanovic)

Genus of the intersection graph of a nonlocal ring R is at least

fo e N N (N-6(N-8)
mm{gNA (N o) 2+1,ﬁN 2+1, 13 ,

k=1
k

c k
where N =|V(G(R))|, & =2k () © and p = g3ty
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For every g > 0, there are only finitely many nonisomorphic graphs of genus g that
are intersection graphs of some rings.
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The end.
Thank you for your attention.
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