NSAC 2013

Structure of weak suborders of a poset

Branimir Šešelja
joint work with
Andreja Tepavčević and Mirna Udovičić
University of Novi Sad, Serbia
University of Tuzla, Bosnia and Herzegovina

Novi Sad, June 6, 2013
B. Šešelja Structure of weak suborders of a poset

Abstract

Abstract

For a given poset (P, ρ), we deal with weakly reflexive, antisymmetric and transitive subrelations of ρ.

Abstract

For a given poset (P, ρ), we deal with weakly reflexive, antisymmetric and transitive subrelations of ρ.
The lattice of all these subrelations is algebraic and we investigate its structure.

Abstract

For a given poset (P, ρ), we deal with weakly reflexive, antisymmetric and transitive subrelations of ρ.
The lattice of all these subrelations is algebraic and we investigate its structure.
We also connect these with more general lattices arising from algebras and posets and we show that they have several common properties.

Abstract

For a given poset (P, ρ), we deal with weakly reflexive, antisymmetric and transitive subrelations of ρ.
The lattice of all these subrelations is algebraic and we investigate its structure.
We also connect these with more general lattices arising from algebras and posets and we show that they have several common properties.
In the second part, we deal with analogue notions and properties in the framework of lattice valued orderings.

Abstract

For a given poset (P, ρ), we deal with weakly reflexive, antisymmetric and transitive subrelations of ρ.
The lattice of all these subrelations is algebraic and we investigate its structure.
We also connect these with more general lattices arising from algebras and posets and we show that they have several common properties.
In the second part, we deal with analogue notions and properties in the framework of lattice valued orderings.

As an application, we present an introduction to lattice valued ordered groupoids and groups.

Let $\rho \subseteq A^{2}$ be a binary relation on a set A.

Let $\rho \subseteq A^{2}$ be a binary relation on a set A.
ρ is weakly reflexive on A if for all $x, y \in A$
$x \rho y$ implies $x \rho x$ and $y \rho y$.

Let $\rho \subseteq A^{2}$ be a binary relation on a set A.
ρ is weakly reflexive on A if for all $x, y \in A$
$x \rho y$ implies $x \rho x$ and $y \rho y$.
A weakly reflexive, antisymmetric and transitive relation on A is a weak order on this set.

Let $\rho \subseteq A^{2}$ be a binary relation on a set A.
ρ is weakly reflexive on A if for all $x, y \in A$
$x \rho y$ implies $x \rho x$ and $y \rho y$.
A weakly reflexive, antisymmetric and transitive relation on A is a weak order on this set.

Let (P, ρ) be a poset ($P \neq \emptyset$ and $\rho \subseteq P^{2}$ is reflexive, antisymmetric and transitive relation on P).

Let $\rho \subseteq A^{2}$ be a binary relation on a set A.
ρ is weakly reflexive on A if for all $x, y \in A$
$x \rho y$ implies $x \rho x$ and $y \rho y$.
A weakly reflexive, antisymmetric and transitive relation on A is a weak order on this set.

Let (P, ρ) be a poset ($P \neq \emptyset$ and $\rho \subseteq P^{2}$ is reflexive, antisymmetric and transitive relation on P).

We consider suborderings of ρ and subposets of (P, ρ).

Let $\rho \subseteq A^{2}$ be a binary relation on a set A.
ρ is weakly reflexive on A if for all $x, y \in A$
$x \rho y$ implies $x \rho x$ and $y \rho y$.
A weakly reflexive, antisymmetric and transitive relation on A is a weak order on this set.

Let (P, ρ) be a poset ($P \neq \emptyset$ and $\rho \subseteq P^{2}$ is reflexive, antisymmetric and transitive relation on P).

We consider suborderings of ρ and subposets of (P, ρ).
Equivalently, for a poset (P, ρ), we deal with all weak suborderings of ρ.

Let (P, ρ) be a poset and $\mathcal{O}_{w}(P, \rho)$ the collection of all weak suborders of ρ :

Let (P, ρ) be a poset and $\mathcal{O}_{w}(P, \rho)$ the collection of all weak suborders of ρ :

$$
\mathcal{O}_{w}(P, \rho):=\{\sigma \subseteq \rho \mid \sigma \text { is a weak order on } P\}
$$

Let (P, ρ) be a poset and $\mathcal{O}_{w}(P, \rho)$ the collection of all weak suborders of ρ :

$$
\mathcal{O}_{w}(P, \rho):=\{\sigma \subseteq \rho \mid \sigma \text { is a weak order on } P\}
$$

Empty relation is a weak suborder of ρ, it is the smallest element of $\mathcal{O}_{w}(P, \rho)$; the greatest is ρ.

Let (P, ρ) be a poset and $\mathcal{O}_{w}(P, \rho)$ the collection of all weak suborders of ρ :

$$
\mathcal{O}_{w}(P, \rho):=\{\sigma \subseteq \rho \mid \sigma \text { is a weak order on } P\}
$$

Empty relation is a weak suborder of ρ, it is the smallest element of $\mathcal{O}_{w}(P, \rho)$; the greatest is ρ.
Set intersection of an arbitrary collection of weak suborders of ρ is a weak suborder of ρ.

Let (P, ρ) be a poset and $\mathcal{O}_{w}(P, \rho)$ the collection of all weak suborders of ρ :

$$
\mathcal{O}_{w}(P, \rho):=\{\sigma \subseteq \rho \mid \sigma \text { is a weak order on } P\}
$$

Empty relation is a weak suborder of ρ, it is the smallest element of $\mathcal{O}_{w}(P, \rho)$; the greatest is ρ.
Set intersection of an arbitrary collection of weak suborders of ρ is a weak suborder of ρ.

Theorem

For a poset $(P, \rho),\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$ is a complete lattice.

Denote by $\mathcal{O}(P, \rho)$ the set of all suborderings of (P, ρ). As it is known, the poset $(\mathcal{O}(P, \rho), \subseteq)$ is an algebraic lattice (Schein 1972; Sivak 1978; Semenova 1999, 2005; Semenova, Wehrung 2004...).

Denote by $\mathcal{O}(P, \rho)$ the set of all suborderings of (P, ρ).
As it is known, the poset $(\mathcal{O}(P, \rho), \subseteq)$ is an algebraic lattice (Schein 1972; Sivak 1978; Semenova 1999, 2005; Semenova, Wehrung 2004...).

Denote by Δ_{P} or Δ the diagonal relation on P, and for $Q \subseteq P$, the corresponding diagonal by Δ_{Q} :

Denote by $\mathcal{O}(P, \rho)$ the set of all suborderings of (P, ρ).
As it is known, the poset $(\mathcal{O}(P, \rho), \subseteq)$ is an algebraic lattice (Schein 1972; Sivak 1978; Semenova 1999, 2005; Semenova, Wehrung 2004...).

Denote by Δ_{P} or Δ the diagonal relation on P, and for $Q \subseteq P$, the corresponding diagonal by Δ_{Q} :

$$
\Delta:=\{(x, x) \mid x \in P\} ; \quad \Delta_{Q}:=\{(x, x) \mid x \in Q\} .
$$

Denote by $\mathcal{O}(P, \rho)$ the set of all suborderings of (P, ρ). As it is known, the poset $(\mathcal{O}(P, \rho), \subseteq)$ is an algebraic lattice (Schein 1972; Sivak 1978; Semenova 1999, 2005; Semenova, Wehrung 2004...).

Denote by Δ_{P} or Δ the diagonal relation on P, and for $Q \subseteq P$, the corresponding diagonal by Δ_{Q} :

$$
\Delta:=\{(x, x) \mid x \in P\} ; \quad \Delta_{Q}:=\{(x, x) \mid x \in Q\} .
$$

Theorem

The following holds in $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$:

Denote by $\mathcal{O}(P, \rho)$ the set of all suborderings of (P, ρ). As it is known, the poset $(\mathcal{O}(P, \rho), \subseteq)$ is an algebraic lattice (Schein 1972; Sivak 1978; Semenova 1999, 2005; Semenova, Wehrung 2004...).

Denote by Δ_{P} or Δ the diagonal relation on P, and for $Q \subseteq P$, the corresponding diagonal by Δ_{Q} :

$$
\Delta:=\{(x, x) \mid x \in P\} ; \quad \Delta_{Q}:=\{(x, x) \mid x \in Q\} .
$$

Theorem

The following holds in $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$:

- $\downarrow \Delta \cong \mathcal{P}(P)$ - the power set of P.

Denote by $\mathcal{O}(P, \rho)$ the set of all suborderings of (P, ρ). As it is known, the poset $(\mathcal{O}(P, \rho), \subseteq)$ is an algebraic lattice (Schein 1972; Sivak 1978; Semenova 1999, 2005; Semenova, Wehrung 2004...).

Denote by Δ_{P} or Δ the diagonal relation on P, and for $Q \subseteq P$, the corresponding diagonal by Δ_{Q} :

$$
\Delta:=\{(x, x) \mid x \in P\} ; \quad \Delta_{Q}:=\{(x, x) \mid x \in Q\} .
$$

Theorem

The following holds in $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$:

- $\downarrow \Delta \cong \mathcal{P}(P)$ - the power set of P.
- $\uparrow \Delta=\mathcal{O}(P, \rho)$.

Denote by $\mathcal{O}(P, \rho)$ the set of all suborderings of (P, ρ). As it is known, the poset $(\mathcal{O}(P, \rho), \subseteq)$ is an algebraic lattice (Schein 1972; Sivak 1978; Semenova 1999, 2005; Semenova, Wehrung 2004...).

Denote by Δ_{P} or Δ the diagonal relation on P, and for $Q \subseteq P$, the corresponding diagonal by Δ_{Q} :

$$
\Delta:=\{(x, x) \mid x \in P\} ; \quad \Delta_{Q}:=\{(x, x) \mid x \in Q\} .
$$

Theorem

The following holds in $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$:

- $\downarrow \Delta \cong \mathcal{P}(P)$ - the power set of P.
- $\uparrow \Delta=\mathcal{O}(P, \rho)$.
- For every $Q \subseteq P$,

$$
\left[\Delta_{Q}, Q^{2} \cap \rho\right]=\mathcal{O}\left(Q, Q^{2} \cap \rho\right)
$$

Lemma

In the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$, for every weak order θ we have $\theta \vee \Delta=\theta \cup \Delta$.

Lemma

In the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$, for every weak order θ we have $\theta \vee \Delta=\theta \cup \Delta$.

Proposition

In the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$, for any weak orders σ, θ

Lemma

In the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$, for every weak order θ we have $\theta \vee \Delta=\theta \cup \Delta$.

Proposition

In the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$, for any weak orders σ, θ

- $\Delta \wedge(\sigma \vee \theta)=(\Delta \wedge \sigma) \vee(\Delta \wedge \theta)$.

Lemma

In the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$, for every weak order θ we have $\theta \vee \Delta=\theta \cup \Delta$.

Proposition

In the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$, for any weak orders σ, θ

- $\Delta \wedge(\sigma \vee \theta)=(\Delta \wedge \sigma) \vee(\Delta \wedge \theta)$.
- $\Delta \vee(\sigma \wedge \theta)=(\Delta \vee \sigma) \wedge(\Delta \vee \theta)$.

Lemma

In the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$, for every weak order θ we have $\theta \vee \Delta=\theta \cup \Delta$.

Proposition

In the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$, for any weak orders σ, θ

- $\Delta \wedge(\sigma \vee \theta)=(\Delta \wedge \sigma) \vee(\Delta \wedge \theta)$.
- $\Delta \vee(\sigma \wedge \theta)=(\Delta \vee \sigma) \wedge(\Delta \vee \theta)$.
- If $\Delta \wedge \theta=\Delta \wedge \sigma$ and $\Delta \vee \theta=\Delta \vee \sigma$, then $\theta=\sigma$.

Corollary

The diagonal relation Δ is a neutral element in the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$.

Corollary

The diagonal relation Δ is a neutral element in the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$.

The lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$ can be embedded into the direct product $\mathcal{P}(P) \times \mathcal{O}(P, \rho)$.

Corollary

The diagonal relation Δ is a neutral element in the lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$.

The lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$ can be embedded into the direct product $\mathcal{P}(P) \times \mathcal{O}(P, \rho)$.

Theorem
The lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$ is algebraic.

For a poset (P, ρ) and $\theta \subseteq \rho$, let

$$
D(\theta):=\left\{\sigma \in \mathcal{O}_{w}(P, \rho) \mid \sigma \vee \Delta=\theta\right\}
$$

For a poset (P, ρ) and $\theta \subseteq \rho$, let

$$
D(\theta):=\left\{\sigma \in \mathcal{O}_{w}(P, \rho) \mid \sigma \vee \Delta=\theta\right\}
$$

Proposition

For a poset (P, ρ) and $\theta \subseteq \rho, D(\theta)$ is a (convex) boolean sublattice of $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$.

For a poset (P, ρ) and $\theta \subseteq \rho$, let

$$
D(\theta):=\left\{\sigma \in \mathcal{O}_{w}(P, \rho) \mid \sigma \vee \Delta=\theta\right\}
$$

Proposition

For a poset (P, ρ) and $\theta \subseteq \rho, D(\theta)$ is a (convex) boolean sublattice of $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$.

The maps $m_{\Delta}: \theta \mapsto \theta \wedge \Delta$ and $n_{\Delta} \theta \mapsto \theta \vee \Delta$ are lattice endomorphisms.

$$
\operatorname{ker} m_{\Delta} \cong \mathcal{P}(P) \text { and } \operatorname{ker}_{\Delta} \cong \mathcal{O}(P, \rho)
$$

Example

Example

The lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$ of a three-element chain.

Example

The lattice $\left(\mathcal{O}_{w}(P, \rho), \subseteq\right)$ of a three-element chain.

Example

$\operatorname{kerm}_{\Delta}, \quad \theta \mapsto \theta \wedge \Delta$

B. Šešelja Structure of weak suborders of a poset

Example

kern $_{\Delta}, \quad \theta \mapsto \theta \vee \Delta$

B. Šešelja Structure of weak suborders of a poset

Lattice valued orderings

B. Šešelja

Structure of weak suborders of a poset

Lattice valued orderings

Lattice-valued (L-valued) sets are mappings from a non-empty set X (domain) into a complete lattice (L, \wedge, \vee, \leq).

Lattice valued orderings

Lattice-valued (L-valued) sets are mappings from a non-empty set X (domain) into a complete lattice (L, \wedge, \vee, \leq).
If $\alpha: X \rightarrow L$ is an L-valued set on X then, for $p \in L$, the set

$$
\alpha_{p}:=\{x \in X \mid \alpha(x) \geq p\}
$$

is the p-cut, a cut set or simply a cut of α.

Lattice valued orderings

Lattice-valued (L-valued) sets are mappings from a non-empty set X (domain) into a complete lattice (L, \wedge, \vee, \leq).
If $\alpha: X \rightarrow L$ is an L-valued set on X then, for $p \in L$, the set

$$
\alpha_{p}:=\{x \in X \mid \alpha(x) \geq p\}
$$

is the p-cut, a cut set or simply a cut of α.

A p-cut of $\alpha: X \rightarrow L$ is the inverse image of the principal filter in
L generated by p :

$$
\alpha_{p}=\alpha^{-1}(\uparrow p) .
$$

Lattice valued orderings

Lattice-valued (L-valued) sets are mappings from a non-empty set X (domain) into a complete lattice (L, \wedge, \vee, \leq).
If $\alpha: X \rightarrow L$ is an L-valued set on X then, for $p \in L$, the set

$$
\alpha_{p}:=\{x \in X \mid \alpha(x) \geq p\}
$$

is the p-cut, a cut set or simply a cut of α.

A p-cut of $\alpha: X \rightarrow L$ is the inverse image of the principal filter in
L generated by p :

$$
\alpha_{p}=\alpha^{-1}(\uparrow p)
$$

The support of α is the set

$$
\operatorname{supp} \alpha:=\{x \in X \mid \alpha(x)>0\}
$$

Lattice valued orderings

Lattice-valued (L-valued) sets are mappings from a non-empty set X (domain) into a complete lattice (L, \wedge, \vee, \leq).
If $\alpha: X \rightarrow L$ is an L-valued set on X then, for $p \in L$, the set

$$
\alpha_{p}:=\{x \in X \mid \alpha(x) \geq p\}
$$

is the p-cut, a cut set or simply a cut of α.

A p-cut of $\alpha: X \rightarrow L$ is the inverse image of the principal filter in
L generated by p :

$$
\alpha_{p}=\alpha^{-1}(\uparrow p) .
$$

The support of α is the set

$$
\operatorname{supp} \alpha:=\{x \in X \mid \alpha(x)>0\}
$$

A mapping $\rho: X^{2} \rightarrow L$ is an L-valued (binary) relation on X,
B. Šešelja Structure of weak suborders of a poset

(P, \leqslant) - a poset and (L, \wedge, \vee, \leq) a complete lattice.

(P, \leqslant) - a poset and (L, \wedge, \vee, \leq) a complete lattice.
$k_{\leqslant}-$the characteristic function of the order in P :
(P, \leqslant) - a poset and (L, \wedge, \vee, \leq) a complete lattice.
$k_{\leqslant}-$the characteristic function of the order in P :
for any $x, y \in P$

$$
k_{\leqslant}(x, y):= \begin{cases}1 & \text { if } x \leqslant y \\ 0 & \text { otherwise }\end{cases}
$$

(P, \leqslant) - a poset and (L, \wedge, \vee, \leq) a complete lattice.
$k_{\leqslant}-$the characteristic function of the order in P :
for any $x, y \in P$

$$
k_{\leqslant}(x, y):= \begin{cases}1 & \text { if } x \leqslant y \\ 0 & \text { otherwise }\end{cases}
$$

A mapping $\alpha: P \rightarrow L$ is an L-valued sub-poset of (P, \leqslant).
(P, \leqslant) - a poset and (L, \wedge, \vee, \leq) a complete lattice.
$k_{\leqslant}-$the characteristic function of the order in P :
for any $x, y \in P$

$$
k_{\leqslant}(x, y):= \begin{cases}1 & \text { if } x \leqslant y \\ 0 & \text { otherwise }\end{cases}
$$

A mapping $\alpha: P \rightarrow L$ is an L-valued sub-poset of (P, \leqslant).

Lemma

Every cut of an L-valued sub-poset α of a poset P is a sub-poset of P.

Some special lattice valued sub-posets

Some special lattice valued sub-posets

An L-valued sub-poset $\Upsilon: P \rightarrow L$ of (P, \leqslant) is an L-valued down-set or an L-valued semi-ideal of P if for all $x, y \in P$

$$
x \leqslant y \text { implies } \Upsilon(y) \leq \Upsilon(x)
$$

Some special lattice valued sub-posets

An L-valued sub-poset $\Upsilon: P \rightarrow L$ of (P, \leqslant) is an L-valued down-set or an L-valued semi-ideal of P if for all $x, y \in P$

$$
x \leqslant y \text { implies } \Upsilon(y) \leq \Upsilon(x)
$$

Dually, $\digamma: P \rightarrow L$ is an L-valued up-set or an L-valued semi-filter of P if for all $x, y \in P$

$$
x \leqslant y \text { implies } \digamma(x) \leq \digamma(y)
$$

Some special lattice valued sub-posets

An L-valued sub-poset $\Upsilon: P \rightarrow L$ of (P, \leqslant) is an L-valued down-set or an L-valued semi-ideal of P if for all $x, y \in P$

$$
x \leqslant y \text { implies } \Upsilon(y) \leq \Upsilon(x)
$$

Dually, $\digamma: P \rightarrow L$ is an L-valued up-set or an L-valued semi-filter of P if for all $x, y \in P$

$$
x \leqslant y \text { implies } \digamma(x) \leq \digamma(y)
$$

Proposition

Let $\alpha: P \rightarrow L$ be an L-valued sub-poset of (P, \leqslant). Then α is an L-valued up(down)-set of P if and only if every cut of α is an up(down)-set in P.

Next we present characterizations of L-valued down-sets and up-sets.

Next we present characterizations of L-valued down-sets and up-sets.

Proposition

An L-valued set $\mu: P \rightarrow L$ is an L-valued down-set in P if and only if for all $x, y \in P$ the following holds:

$$
\mu(x) \wedge k_{\leqslant}(y, x) \leq \mu(y)
$$

Dually, μ is an L-valued up-set on P if and only if for all $x, y \in P$

$$
\mu(x) \wedge k_{\leqslant}(x, y) \leq \mu(y)
$$

For $a \in P$, the mapping $f_{\downarrow a}: P \rightarrow L$ is an L-valued principal ideal generated by a, if it is an L-valued down-set of P satisfying: for every $x \in P$

$$
k_{\leqslant}(x, a) \wedge f_{\downarrow a}(a) \leq f_{\downarrow a}(x) \leq k_{\leqslant}(x, a) .
$$

For $a \in P$, the mapping $f_{\downarrow a}: P \rightarrow L$ is an L-valued principal ideal generated by a, if it is an L-valued down-set of P satisfying: for every $x \in P$

$$
k_{\leqslant}(x, a) \wedge f_{\downarrow a}(a) \leq f_{\downarrow a}(x) \leq k_{\leqslant}(x, a)
$$

Dually, for $a \in P$, the mapping $f_{\uparrow a}: P \rightarrow L$ is an L-valued principal filter generated by a, if it is an L-valued up-set of P satisfying: for every $x \in P$

$$
k_{\leqslant}(a, x) \wedge f_{\uparrow a}(a) \leq f_{\uparrow a}(x) \leq k_{\leqslant}(a, x)
$$

For $a \in P$, the mapping $f_{\downarrow a}: P \rightarrow L$ is an L-valued principal ideal generated by a, if it is an L-valued down-set of P satisfying: for every $x \in P$

$$
k_{\leqslant}(x, a) \wedge f_{\downarrow a}(a) \leq f_{\downarrow a}(x) \leq k_{\leqslant}(x, a) .
$$

Dually, for $a \in P$, the mapping $f_{\uparrow a}: P \rightarrow L$ is an L-valued principal filter generated by a, if it is an L-valued up-set of P satisfying: for every $x \in P$

$$
k_{\leqslant}(a, x) \wedge f_{\uparrow a}(a) \leq f_{\uparrow a}(x) \leq k_{\leqslant}(a, x) .
$$

Consequently, for $a, b \in P$, we define an L-valued interval $f_{[a, b]}$ on P as an L-valued set on P, such that for every $x \in P$

$$
f_{[a, b]}(x):=\left(f_{\uparrow a} \cap f_{\downarrow b}\right)(x),
$$

for some $f_{\uparrow a}$ and $f_{\downarrow b}$ on P.

Example

Example

Let (P, \leqslant) be a poset and (L, \wedge, \vee, \leq) a lattice presented by diagrams in Figure 1.

Example

Let (P, \leqslant) be a poset and (L, \wedge, \vee, \leq) a lattice presented by diagrams in Figure 1.

(L, \wedge, \vee, \leq)

Figure 1

The functions

$$
f_{\downarrow \iota}=\left(\begin{array}{ccccc}
a & b & c & d & \iota \\
t & t & s & r & p
\end{array}\right) \quad \text { and } \quad f_{\uparrow a}=\left(\begin{array}{ccccc}
a & b & c & d & \iota \\
p & 0 & s & r & t
\end{array}\right)
$$

are an L-valued principal ideal and an L-valued principal filter on P, respectively.

The functions

$$
f_{\downarrow \iota}=\left(\begin{array}{ccccc}
a & b & c & d & \iota \\
t & t & s & r & p
\end{array}\right) \quad \text { and } \quad f_{\uparrow a}=\left(\begin{array}{ccccc}
a & b & c & d & \iota \\
p & 0 & s & r & t
\end{array}\right),
$$

are an L-valued principal ideal and an L-valued principal filter on P, respectively.

In addition,

$$
f_{[a, l]}=\left(\begin{array}{lllll}
a & b & c & d & \iota \\
p & 0 & s & r & p
\end{array}\right)
$$

is an L-valued interval on P.

Further, the functions

$$
g_{\downarrow \iota}=\left(\begin{array}{ccccc}
a & b & c & d & \iota \\
t & 1 & q & s & 0
\end{array}\right) \quad \text { and } \quad g_{\uparrow a}=\left(\begin{array}{ccccc}
a & b & c & d & \iota \\
0 & 0 & r & s & 1
\end{array}\right),
$$

are also an L-valued principal ideal and a filter on P, respectively, generated correspondingly by the same elements as the previous ones.

Further, the functions

$$
g_{\downarrow \iota}=\left(\begin{array}{ccccc}
a & b & c & d & \iota \\
t & 1 & q & s & 0
\end{array}\right) \quad \text { and } \quad g_{\uparrow a}=\left(\begin{array}{ccccc}
a & b & c & d & \iota \\
0 & 0 & r & s & 1
\end{array}\right),
$$

are also an L-valued principal ideal and a filter on P, respectively, generated correspondingly by the same elements as the previous ones.

Consequently,

$$
g_{[a, l]}=\left(\begin{array}{lllll}
a & b & c & d & \iota \\
0 & 0 & q & s & 0
\end{array}\right)
$$

is also an L-valued interval on P.

Convexity for lattice valued sub-posets

Convexity for lattice valued sub-posets

An L-valued set $\mu: P \rightarrow L$ is said to be a convex L-valued sub-poset of P if for all $x, y, z \in P$ the following holds:

Convexity for lattice valued sub-posets

An L-valued set $\mu: P \rightarrow L$ is said to be a convex L-valued sub-poset of P if for all $x, y, z \in P$ the following holds:

$$
\mu(x) \wedge \mu(z) \wedge k_{\leqslant}(x, y) \wedge k_{\leqslant}(y, z) \leq \mu(y) .
$$

Convexity for lattice valued sub-posets

An L-valued set $\mu: P \rightarrow L$ is said to be a convex L-valued sub-poset of P if for all $x, y, z \in P$ the following holds:

$$
\mu(x) \wedge \mu(z) \wedge k_{\leqslant}(x, y) \wedge k_{\leqslant}(y, z) \leq \mu(y)
$$

Proposition

An L-valued subset $\zeta: P \rightarrow L$ of P is convex if

$$
\zeta=\digamma \cap \Upsilon
$$

for some L-valued up-set \digamma and L-valued down-set Υ on P.

Convexity for lattice valued sub-posets

An L-valued set $\mu: P \rightarrow L$ is said to be a convex L-valued sub-poset of P if for all $x, y, z \in P$ the following holds:

$$
\mu(x) \wedge \mu(z) \wedge k_{\leqslant}(x, y) \wedge k_{\leqslant}(y, z) \leq \mu(y)
$$

Proposition

An L-valued subset $\zeta: P \rightarrow L$ of P is convex if

$$
\zeta=\digamma \cap \Upsilon
$$

for some L-valued up-set \digamma and L-valued down-set Υ on P.

All the cuts of an L-valued convex sub-poset of P are (ordinary) convex sub-posets of P.

Convexity for lattice valued sub-posets

An L-valued set $\mu: P \rightarrow L$ is said to be a convex L-valued sub-poset of P if for all $x, y, z \in P$ the following holds:

$$
\mu(x) \wedge \mu(z) \wedge k_{\leqslant}(x, y) \wedge k_{\leqslant}(y, z) \leq \mu(y)
$$

Proposition

An L-valued subset $\zeta: P \rightarrow L$ of P is convex if

$$
\zeta=\digamma \cap \Upsilon
$$

for some L-valued up-set \digamma and L-valued down-set Υ on P.

All the cuts of an L-valued convex sub-poset of P are (ordinary) convex sub-posets of P. Any L-valued interval on P is an L-valued convex sub-poset of P.

[^0]
Lattice valued ordering

Lattice valued ordering

A lattice valued relation $\rho: X^{2} \rightarrow L$ on a set X is

Lattice valued ordering

A lattice valued relation $\rho: X^{2} \rightarrow L$ on a set X is

- reflexive if $\rho(x, x)=1$, for every $x \in X$;

Lattice valued ordering

A lattice valued relation $\rho: X^{2} \rightarrow L$ on a set X is

- reflexive if $\rho(x, x)=1$, for every $x \in X$;
- antisymmetric if for all $x, y \in X$,

$$
\begin{equation*}
x \neq y \text { implies } \rho(x, y) \wedge \rho(y, x)=0 \tag{a}
\end{equation*}
$$

Lattice valued ordering

A lattice valued relation $\rho: X^{2} \rightarrow L$ on a set X is

- reflexive if $\rho(x, x)=1$, for every $x \in X$;
- antisymmetric if for all $x, y \in X$,

$$
\begin{equation*}
x \neq y \text { implies } \rho(x, y) \wedge \rho(y, x)=0 \tag{a}
\end{equation*}
$$

- transitive if for all $x, y, z \in X, \rho(x, y) \wedge \rho(y, z) \leq \rho(x, z)$. (t)

Lattice valued ordering

A lattice valued relation $\rho: X^{2} \rightarrow L$ on a set X is

- reflexive if $\rho(x, x)=1$, for every $x \in X$;
- antisymmetric if for all $x, y \in X$,

$$
x \neq y \text { implies } \rho(x, y) \wedge \rho(y, x)=0
$$

- transitive if for all $x, y, z \in X, \rho(x, y) \wedge \rho(y, z) \leq \rho(x, z)$. (t)

A lattice valued relation ρ on X is a lattice valued ordering relation (lattice valued order) on X if it is reflexive, antisymmetric and transitive.

A lattice valued relation $\rho: X^{2} \rightarrow L$ on a set X is weakly reflexive if
$\rho(x, x) \geq \rho(x, y)$ and $\rho(x, x) \geq \rho(y, x)$, for all $x, y \in X$.

A lattice valued relation $\rho: X^{2} \rightarrow L$ on a set X is weakly reflexive if
$\rho(x, x) \geq \rho(x, y)$ and $\rho(x, x) \geq \rho(y, x)$, for all $x, y \in X$.
A lattice valued relation ρ on X is a weak lattice valued ordering relation (weak lattice valued order) on X if it is weakly reflexive, antisymmetric and transitive.

A lattice valued relation $\rho: X^{2} \rightarrow L$ on a set X is weakly reflexive if
$\rho(x, x) \geq \rho(x, y)$ and $\rho(x, x) \geq \rho(y, x)$, for all $x, y \in X$.
A lattice valued relation ρ on X is a weak lattice valued ordering relation (weak lattice valued order) on X if it is weakly reflexive, antisymmetric and transitive.

Proposition

A relation $\rho: X^{2} \rightarrow L$ is an L-valued ordering relation on X if and only if all cuts except 0 -cut are ordering relations on the same set.

A lattice valued relation $\rho: X^{2} \rightarrow L$ on a set X is weakly reflexive if
$\rho(x, x) \geq \rho(x, y)$ and $\rho(x, x) \geq \rho(y, x)$, for all $x, y \in X$.
A lattice valued relation ρ on X is a weak lattice valued ordering relation (weak lattice valued order) on X if it is weakly reflexive, antisymmetric and transitive.

Proposition

A relation $\rho: X^{2} \rightarrow L$ is an L-valued ordering relation on X if and only if all cuts except 0 -cut are ordering relations on the same set.

Proposition

Let $\rho: X^{2} \rightarrow L$ be an L-valued ordering relation, such that L is a complete lattice without zero divisors under \wedge. Then, supp ρ is an ordering relation on X.

Proposition

If $\rho: X^{2} \rightarrow L$ is a weak L-valued ordering relation on X, and $\delta(\rho): X \rightarrow L$, defined by $\delta(\rho)(x):=\rho(x, x)$. Then for each non-zero $p \in L$, the cut-relation ρ_{p} is an order on the cut-subset $\delta(\rho)_{p}$ of X.

Lattice valued poset with lattice valued order

Lattice valued poset with lattice valued order

An L-valued relation $\rho: P \rightarrow L$ on a set P is an L-valued relation on an L-valued subset $\mu: P \rightarrow L$ of P if for all $x, y \in P$

$$
\rho(x, y) \leq \mu(x) \wedge \mu(y) .
$$

Lattice valued poset with lattice valued order

An L-valued relation $\rho: P \rightarrow L$ on a set P is an L-valued relation on an L-valued subset $\mu: P \rightarrow L$ of P if for all $x, y \in P$

$$
\rho(x, y) \leq \mu(x) \wedge \mu(y)
$$

An L-valued relation ρ on an L-valued subset μ of P is reflexive, if for all $x \in P, \quad \rho(x, x)=\mu(x)$.

Lattice valued poset with lattice valued order

An L-valued relation $\rho: P \rightarrow L$ on a set P is an L-valued relation on an L-valued subset $\mu: P \rightarrow L$ of P if for all $x, y \in P$

$$
\rho(x, y) \leq \mu(x) \wedge \mu(y)
$$

An L-valued relation ρ on an L-valued subset μ of P is reflexive, if for all $x \in P, \quad \rho(x, x)=\mu(x)$.

Every L-valued relation $\rho: P \rightarrow L$ which is reflexive on $\mu: P \rightarrow L$ is weakly reflexive on P.

Lattice valued poset with lattice valued order

An L-valued relation $\rho: P \rightarrow L$ on a set P is an L-valued relation on an L-valued subset $\mu: P \rightarrow L$ of P if for all $x, y \in P$

$$
\rho(x, y) \leq \mu(x) \wedge \mu(y)
$$

An L-valued relation ρ on an L-valued subset μ of P is reflexive, if for all $x \in P, \quad \rho(x, x)=\mu(x)$.

Every L-valued relation $\rho: P \rightarrow L$ which is reflexive on $\mu: P \rightarrow L$ is weakly reflexive on P.

We say that an L-valued relation ρ on an L-valued subset μ of P is an L-valued ordering on μ, if it is reflexive (in the above sense), antisymmetric as defined by (a) and transitive in the sense of (t).

Let (P, \leqslant) be a poset and $\mu: P \rightarrow L$ its L-valued sub-poset.

Let (P, \leqslant) be a poset and $\mu: P \rightarrow L$ its L-valued sub-poset.
Further, let $\rho: P \rightarrow L$ be the L-valued relation on P defined as follows:

Let (P, \leqslant) be a poset and $\mu: P \rightarrow L$ its L-valued sub-poset.

Further, let $\rho: P \rightarrow L$ be the L-valued relation on P defined as follows:

$$
\rho(x, y):=\mu(x) \wedge \mu(y) \wedge k_{\leqslant}(x, y)
$$

where k_{\leqslant}is the characteristic function of the order \leqslanton P.

Let (P, \leqslant) be a poset and $\mu: P \rightarrow L$ its L-valued sub-poset.

Further, let $\rho: P \rightarrow L$ be the L-valued relation on P defined as follows:

$$
\rho(x, y):=\mu(x) \wedge \mu(y) \wedge k_{\leqslant}(x, y),
$$

where k_{\leqslant}is the characteristic function of the order \leqslanton P.

Theorem

The function ρ defined above is an L-valued order on L-valued set μ on P.

If (P, \leqslant) is a poset, then a pair (μ, ρ) is an L-valued poset with L-valued ordering if $\mu: P \rightarrow L$ is an L-valued subset of P and $\rho: P^{2} \rightarrow L$ is the L-valued ordering on P defined above:

$$
\rho(x, y)=\mu(x) \wedge \mu(y) \wedge k_{\leqslant}(x, y)
$$

If (P, \leqslant) is a poset, then a pair (μ, ρ) is an L-valued poset with L-valued ordering if $\mu: P \rightarrow L$ is an L-valued subset of P and $\rho: P^{2} \rightarrow L$ is the L-valued ordering on P defined above:

$$
\rho(x, y)=\mu(x) \wedge \mu(y) \wedge k_{\leqslant}(x, y)
$$

Theorem

Let (P, \leqslant) be a poset, $\mu: P \rightarrow L$ an L-valued subset of P, and $\rho: P^{2} \rightarrow L$ an L-valued relation on μ. Then (μ, ρ) is an L-valued poset with L-valued order on (P, \leqslant), if and only if for every $p \in L, p \neq 0$, pair $\left(\mu_{p}, \rho_{p}\right)$ is a sub-poset of (P, \leqslant).

Theorem

Let \mathcal{F} be a collection of sub-posets of a poset (P, \leqslant), closed under set intersections and containing P as a member. Then there is a lattice L and an L-valued sub-poset (M, ρ) of P so that the collection of its cuts coincides with \mathcal{F}. Moreover, the order on each cut is the corresponding cut of ρ.

Structure of all weak L-valued suborders of (P, \leqslant)

Structure of all weak L-valued suborders of (P, \leqslant)
Let (P, \leqslant) be a poset and $\mathcal{F P}$ the collection of all weak L-valued orders on P, contained in \leqslant :

Structure of all weak L-valued suborders of (P, \leqslant)
Let (P, \leqslant) be a poset and $\mathcal{F P}$ the collection of all weak L-valued orders on P, contained in \leqslant :
$\mathcal{F P}:=\left\{\rho: P^{2} \rightarrow L \mid \rho \subseteq k_{\leqslant}\right.$and ρ is a weak L-valued order on $\left.P\right\}$.

Structure of all weak L-valued suborders of (P, \leqslant)
Let (P, \leqslant) be a poset and $\mathcal{F P}$ the collection of all weak L-valued orders on P, contained in \leqslant :
$\mathcal{F P}:=\left\{\rho: P^{2} \rightarrow L \mid \rho \subseteq k_{\leqslant}\right.$and ρ is a weak L-valued order on $\left.P\right\}$.
The above inclusion is componentwise defined, and the whole collection can be ordered by the same relation:

Structure of all weak L-valued suborders of (P, \leqslant)

Let (P, \leqslant) be a poset and $\mathcal{F P}$ the collection of all weak L-valued orders on P, contained in \leqslant :
$\mathcal{F P}:=\left\{\rho: P^{2} \rightarrow L \mid \rho \subseteq k_{\leqslant}\right.$and ρ is a weak L-valued order on $\left.P\right\}$.
The above inclusion is componentwise defined, and the whole collection can be ordered by the same relation: for $\rho, \sigma \in \mathcal{F P}$,

$$
\rho \subseteq \sigma \text { if for all } x, y \in P, \rho(x, y) \leq \sigma(x, y)
$$

Structure of all weak L-valued suborders of (P, \leqslant)

Let (P, \leqslant) be a poset and $\mathcal{F P}$ the collection of all weak L-valued orders on P, contained in \leqslant :
$\mathcal{F P}:=\left\{\rho: P^{2} \rightarrow L \mid \rho \subseteq k_{\leqslant}\right.$and ρ is a weak L-valued order on $\left.P\right\}$.
The above inclusion is componentwise defined, and the whole collection can be ordered by the same relation: for $\rho, \sigma \in \mathcal{F P}$,

$$
\rho \subseteq \sigma \text { if for all } x, y \in P, \rho(x, y) \leq \sigma(x, y)
$$

Let also

Structure of all weak L-valued suborders of (P, \leqslant)

Let (P, \leqslant) be a poset and $\mathcal{F P}$ the collection of all weak L-valued orders on P, contained in \leqslant :
$\mathcal{F P}:=\left\{\rho: P^{2} \rightarrow L \mid \rho \subseteq k_{\leqslant}\right.$and ρ is a weak L-valued order on $\left.P\right\}$.
The above inclusion is componentwise defined, and the whole collection can be ordered by the same relation: for $\rho, \sigma \in \mathcal{F P}$,

$$
\rho \subseteq \sigma \text { if for all } x, y \in P, \rho(x, y) \leq \sigma(x, y)
$$

Let also
$\Delta=\{(x, x) \mid x \in P\}$, and

Structure of all weak L-valued suborders of (P, \leqslant)

Let (P, \leqslant) be a poset and $\mathcal{F P}$ the collection of all weak L-valued orders on P, contained in \leqslant :
$\mathcal{F P}:=\left\{\rho: P^{2} \rightarrow L \mid \rho \subseteq k_{\leqslant}\right.$and ρ is a weak L-valued order on $\left.P\right\}$.
The above inclusion is componentwise defined, and the whole collection can be ordered by the same relation: for $\rho, \sigma \in \mathcal{F P}$,

$$
\rho \subseteq \sigma \text { if for all } x, y \in P, \rho(x, y) \leq \sigma(x, y)
$$

Let also
$\Delta=\{(x, x) \mid x \in P\}$, and
$\uparrow \Delta, \downarrow \Delta$ respectively the filter and the ideal in the poset $(\mathcal{F P}, \subseteq)$, generated by Δ.

Theorem

For a given poset (P, \leqslant), the following holds:

Theorem

For a given poset (P, \leqslant), the following holds:

- The structure $(\mathcal{F P}, \subseteq)$ is a complete lattice;

Theorem

For a given poset (P, \leqslant), the following holds:

- The structure ($\mathcal{F P}, \subseteq$) is a complete lattice;
- $\uparrow \Delta$ consists of all L-valued orders on P;

Theorem

For a given poset (P, \leqslant), the following holds:

- The structure $(\mathcal{F P}, \subseteq)$ is a complete lattice;
- $\uparrow \Delta$ consists of all L-valued orders on P;
- $\downarrow \Delta$ is isomorphic to the lattice of all L-valued subsets of P;

Theorem

For a given poset (P, \leqslant), the following holds:

- The structure $(\mathcal{F P}, \subseteq)$ is a complete lattice;
- $\uparrow \Delta$ consists of all L-valued orders on P;
- $\downarrow \Delta$ is isomorphic to the lattice of all L-valued subsets of P;
- If μ is an L-valued set on P and $\rho(\mu), \overline{\rho(\mu)} \in \mathcal{F P}$ such that

$$
\begin{aligned}
& \underline{\rho(\mu)}(x, y)=\left\{\begin{array}{cl}
\mu(x) & \text { if } x=y, \\
0 & \text { if } x \neq y,
\end{array}\right. \\
& \overline{\rho(\mu)}(x, y)=\mu(x) \wedge \mu(y) \wedge k_{\leqslant}(x, y),
\end{aligned}
$$

$$
\text { then the interval }[\underline{\rho(\mu)}, \overline{\rho(\mu)}] \text { consists of all } \sigma \in \mathcal{F P} \text { with }
$$

$$
\sigma(x, x)=\mu(x)
$$

Theorem

For a given poset (P, \leqslant), the following holds:

- The structure ($\mathcal{F P}, \subseteq$) is a complete lattice;
- $\uparrow \Delta$ consists of all L-valued orders on P;
- $\downarrow \Delta$ is isomorphic to the lattice of all L-valued subsets of P;
- If μ is an L-valued set on P and $\rho(\mu), \overline{\rho(\mu)} \in \mathcal{F P}$ such that

$$
\begin{aligned}
& \underline{\rho(\mu)}(x, y)=\left\{\begin{array}{cl}
\mu(x) & \text { if } x=y, \\
0 & \text { if } x \neq y,
\end{array}\right. \\
& \overline{\rho(\mu)}(x, y)=\mu(x) \wedge \mu(y) \wedge k_{\leqslant}(x, y),
\end{aligned}
$$

$$
\text { then the interval }[\underline{\rho(\mu)}, \overline{\rho(\mu)}] \text { consists of all } \sigma \in \mathcal{F P} \text { with }
$$

$$
\sigma(x, x)=\mu(x)
$$

- $\mathcal{F P}=\bigcup\{[\rho(\mu), \overline{\rho(\mu)}] \mid \mu: P \rightarrow L\}$.

Let L be a complete lattice.

Let L be a complete lattice.
Let (M, \leqslant) be a poset and (μ, ρ) an L-valued sub-poset of M.

Let L be a complete lattice.
Let (M, \leqslant) be a poset and (μ, ρ) an L-valued sub-poset of M. Then (μ, ρ) is an L-valued chain, or L-valued linearly ordered sub-poset of M if for all $x, y \in M$

$$
\rho(x, y) \vee \rho(y, x)=\mu(x) \wedge \mu(y)
$$

Let L be a complete lattice.
Let (M, \leqslant) be a poset and (μ, ρ) an L-valued sub-poset of M. Then (μ, ρ) is an L-valued chain, or L-valued linearly ordered sub-poset of M if for all $x, y \in M$

$$
\rho(x, y) \vee \rho(y, x)=\mu(x) \wedge \mu(y)
$$

Proposition

Every L-valued sub-poset (μ, ρ) of a linearly ordered poset (M, \leqslant) is an L-valued chain.

Let L be a complete lattice.
Let (M, \leqslant) be a poset and (μ, ρ) an L-valued sub-poset of M. Then (μ, ρ) is an L-valued chain, or L-valued linearly ordered sub-poset of M if for all $x, y \in M$

$$
\rho(x, y) \vee \rho(y, x)=\mu(x) \wedge \mu(y)
$$

Proposition

Every L-valued sub-poset (μ, ρ) of a linearly ordered poset (M, \leqslant) is an L-valued chain.

Proposition

Let (μ, ρ) be an L-valued sub-poset of a poset (M, \leqslant). Then (μ, ρ) is a L-valued chain if and only if for all $x, y \in M$ such that x is not comparable with y, we have

$$
\mu(x) \wedge \mu(y)=0
$$

B. Šešelja Structure of weak suborders of a poset

Proposition

Let (μ, ρ) be a L-valued sub-poset of a poset (M, \leqslant). Then (μ, ρ) is an L-valued chain if and only if every its non-zero cut μ_{p} is a chain in (M, \leqslant), with respect to ρ_{p}.

Proposition

Let (μ, ρ) be a L-valued sub-poset of a poset (M, \leqslant). Then (μ, ρ) is an L-valued chain if and only if every its non-zero cut μ_{p} is a chain in (M, \leqslant), with respect to ρ_{p}.

Let (M, \leqslant) be a poset which is a lattice, and (μ, ρ) an L-valued sub-poset of M.

Proposition

Let (μ, ρ) be a L-valued sub-poset of a poset (M, \leqslant). Then (μ, ρ) is an L-valued chain if and only if every its non-zero cut μ_{p} is a chain in (M, \leqslant), with respect to ρ_{p}.

Let (M, \leqslant) be a poset which is a lattice, and (μ, ρ) an L-valued sub-poset of M.
Then, (μ, ρ) is an L-valued sublattice of M, if μ is an L-valued sublattice as an L-valued algebra, i.e., if for all $x, y \in M$,

$$
\mu\left(x \wedge_{M} y\right) \geq \mu(x) \wedge_{L} \mu(y) \text { and } \mu\left(x \vee_{M} y\right) \geq \mu(x) \wedge_{L} \mu(y)
$$

Proposition

Let (μ, ρ) be a L-valued sub-poset of a poset (M, \leqslant). Then (μ, ρ) is an L-valued chain if and only if every its non-zero cut μ_{p} is a chain in (M, \leqslant), with respect to ρ_{p}.

Let (M, \leqslant) be a poset which is a lattice, and (μ, ρ) an L-valued sub-poset of M.
Then, (μ, ρ) is an L-valued sublattice of M, if μ is an L-valued sublattice as an L-valued algebra, i.e., if for all $x, y \in M$,

$$
\mu\left(x \wedge_{M} y\right) \geq \mu(x) \wedge_{L} \mu(y) \text { and } \mu\left(x \vee_{M} y\right) \geq \mu(x) \wedge_{L} \mu(y)
$$

Proposition

(μ, ρ) is an L-valued sublattice of a lattice M, if and only if for every $p \in L$, the cut μ_{p} is a sublattice of M.

[^1]
L-valued subgroup

L-valued subgroup

If $\left(G, \cdot,^{-1}, e\right)$ is a group and (L, \wedge, \vee, \leq) a complete lattice, then the mapping $\mu: G \rightarrow L$ is an L-valued subgroup of G if the following holds: for all $x, y \in G$

L-valued subgroup

If $\left(G, \cdot,^{-1}, e\right)$ is a group and (L, \wedge, \vee, \leq) a complete lattice, then the mapping $\mu: G \rightarrow L$ is an L-valued subgroup of G if the following holds: for all $x, y \in G$

- $\mu(x) \wedge \mu(y) \leq \mu(x \cdot y)$

L-valued subgroup

If $\left(G, \cdot,^{-1}, e\right)$ is a group and (L, \wedge, \vee, \leq) a complete lattice, then the mapping $\mu: G \rightarrow L$ is an L-valued subgroup of G if the following holds: for all $x, y \in G$

- $\mu(x) \wedge \mu(y) \leq \mu(x \cdot y)$
- $\mu(x) \leq \mu\left(x^{-1}\right)$

L-valued subgroup

If $\left(G, \cdot,^{-1}, e\right)$ is a group and (L, \wedge, \vee, \leq) a complete lattice, then the mapping $\mu: G \rightarrow L$ is an L-valued subgroup of G if the following holds: for all $x, y \in G$

- $\mu(x) \wedge \mu(y) \leq \mu(x \cdot y)$
- $\mu(x) \leq \mu\left(x^{-1}\right)$
- $\mu(e)=1$.

Compatibility

Compatibility

Let (G, \cdot) be a groupoid and $\rho: G^{2} \rightarrow L$ an L-valued relation on G. We say that ρ is compatible with operation "." on G, if for all $x, y, z \in G$ the following holds:

$$
\rho(x, y) \leq \rho(x \cdot z, y \cdot z) \wedge \rho(z \cdot x, z \cdot y)
$$

Compatibility

Let (G, \cdot) be a groupoid and $\rho: G^{2} \rightarrow L$ an L-valued relation on G. We say that ρ is compatible with operation "." on G, if for all $x, y, z \in G$ the following holds:

$$
\rho(x, y) \leq \rho(x \cdot z, y \cdot z) \wedge \rho(z \cdot x, z \cdot y)
$$

Let (G, \cdot) be a groupoid and $\mu: G \rightarrow L$ its L-valued subgrupoid. We say that an L-valued relation $\rho: G^{2} \rightarrow L$ on μ is compatible with operation "." on μ, if for all $x, y, z \in G$ the following holds:

$$
\mu(z) \wedge \rho(x, y) \leq \rho(x \cdot z, y \cdot z) \wedge \rho(z \cdot x, z \cdot y)
$$

L-valued ordered subgroup

L-valued ordered subgroup

(L, \wedge, \vee, \leq) - a complete lattice.

L-valued ordered subgroup

(L, \wedge, \vee, \leq) - a complete lattice.

Proposition

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be an ordered group and $\mu: G \rightarrow L$ an L-subgroup of G. The L-valued relation $\rho: G^{2} \rightarrow L$ on μ defined by

$$
\rho(x, y)=\mu(x) \wedge \mu(y) \wedge k_{\leqslant}(x, y),
$$

is an L-valued order on μ which is compatible with the group operation.

L-valued ordered subgroup

(L, \wedge, \vee, \leq) - a complete lattice.

Proposition

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be an ordered group and $\mu: G \rightarrow L$ an L-subgroup of G. The L-valued relation $\rho: G^{2} \rightarrow L$ on μ defined by

$$
\rho(x, y)=\mu(x) \wedge \mu(y) \wedge k_{\leqslant}(x, y)
$$

is an L-valued order on μ which is compatible with the group operation.

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be an ordered group. Let also $\mu: G \rightarrow L$ and $\rho: G^{2} \rightarrow L$ be an L-valued set on G and an L-valued relation on μ, respectively. The pair (μ, ρ) is an L-valued ordered subgroup of G if the following hold:

1. μ is an L-valued subgroup of G;
2. ρ is the L-valued relation on μ defined by

$$
\rho(x, y)=\mu(x) \wedge \mu(y) \wedge k_{\leqslant}(x, y)
$$

B. Šešelja Structure of weak suborders of a poset

Theorem

Let G be an ordered group, $\mu: G \rightarrow L$ an L-valued subset of G and $\rho: G^{2} \rightarrow L$ an L-valued relation on μ. Then (μ, ρ) is an L-valued ordered subgroup of G if and only if for every $p \in L$, the cut μ_{p} is an ordered subgroup of G.

Theorem

Let G be an ordered group, $\mu: G \rightarrow L$ an L-valued subset of G and $\rho: G^{2} \rightarrow L$ an L-valued relation on μ. Then (μ, ρ) is an L-valued ordered subgroup of G if and only if for every $p \in L$, the cut μ_{p} is an ordered subgroup of G.

Theorem

Let \mathcal{F} be a collection of subgroups of an ordered group ($G, \cdot,^{-1}, e, \leqslant$) which is closed under set intersections and contains G. Then there is a complete lattice L and an ordered L-valued subgroup (μ, ρ) of G, such that for every subgroup $H \in \mathcal{F}$, the cut μ_{H} coincides with H and it is ordered by ρ_{H}.

L-valued cones

B. Šešelja

L-valued cones

If (μ, ρ) is an L-valued-ordered subgroup of G, then the L-valued positive cone on μ, is an L-valued set $\pi_{\mu}: G \rightarrow L$, such that:

L-valued cones

If (μ, ρ) is an L-valued-ordered subgroup of G, then the L-valued positive cone on μ, is an L-valued set $\pi_{\mu}: G \rightarrow L$, such that:

$$
\pi_{\mu}(x):=\rho(e, x),
$$

where e is the neutral element of G.

L-valued cones

If (μ, ρ) is an L-valued-ordered subgroup of G, then the L-valued positive cone on μ, is an L-valued set $\pi_{\mu}: G \rightarrow L$, such that:

$$
\pi_{\mu}(x):=\rho(e, x)
$$

where e is the neutral element of G.
Obviously,

$$
\pi_{\mu}(x)=\left\{\begin{array}{cl}
\mu(x) & \text { if } x \geqslant e \\
0 & \text { otherwise }
\end{array}\right.
$$

L-valued cones

If (μ, ρ) is an L-valued-ordered subgroup of G, then the L-valued positive cone on μ, is an L-valued set $\pi_{\mu}: G \rightarrow L$, such that:

$$
\pi_{\mu}(x):=\rho(e, x)
$$

where e is the neutral element of G.
Obviously,

$$
\pi_{\mu}(x)=\left\{\begin{array}{cl}
\mu(x) & \text { if } x \geqslant e \\
0 & \text { otherwise }
\end{array}\right.
$$

Analogously, the L-valued negative cone is a function $\nu_{\mu}: G \rightarrow L$, such that

L-valued cones

If (μ, ρ) is an L-valued-ordered subgroup of G, then the L-valued positive cone on μ, is an L-valued set $\pi_{\mu}: G \rightarrow L$, such that:

$$
\pi_{\mu}(x):=\rho(e, x)
$$

where e is the neutral element of G.
Obviously,

$$
\pi_{\mu}(x)=\left\{\begin{array}{cl}
\mu(x) & \text { if } x \geqslant e \\
0 & \text { otherwise }
\end{array}\right.
$$

Analogously, the L-valued negative cone is a function $\nu_{\mu}: G \rightarrow L$, such that

$$
\nu_{\mu}(x):=\rho(x, e)
$$

L-valued cones

If (μ, ρ) is an L-valued-ordered subgroup of G, then the L-valued positive cone on μ, is an L-valued set $\pi_{\mu}: G \rightarrow L$, such that:

$$
\pi_{\mu}(x):=\rho(e, x)
$$

where e is the neutral element of G.
Obviously,

$$
\pi_{\mu}(x)=\left\{\begin{array}{cl}
\mu(x) & \text { if } x \geqslant e \\
0 & \text { otherwise }
\end{array}\right.
$$

Analogously, the L-valued negative cone is a function $\nu_{\mu}: G \rightarrow L$, such that

$$
\nu_{\mu}(x):=\rho(x, e)
$$

It follows that

$$
\nu_{\mu}(x)=\left\{\begin{array}{cl}
\mu(x) & \text { if } x \leqslant e \\
0 & \text { otherwise }
\end{array}\right.
$$

A connection between the two cones is straightforward:

A connection between the two cones is straightforward:
$\pi_{\mu}(x) \wedge \nu_{\mu}(x)= \begin{cases}1, & \text { for } x=e \\ 0, & \text { otherwise } .\end{cases}$

A connection between the two cones is straightforward:
$\pi_{\mu}(x) \wedge \nu_{\mu}(x)= \begin{cases}1, & \text { for } x=e \\ 0, & \text { otherwise } .\end{cases}$
There is a connection between an L-valued cone and the corresponding L-valued order, as follows.

A connection between the two cones is straightforward:
$\pi_{\mu}(x) \wedge \nu_{\mu}(x)= \begin{cases}1, & \text { for } x=e \\ 0, & \text { otherwise } .\end{cases}$
There is a connection between an L-valued cone and the corresponding L-valued order, as follows.

Proposition

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be an ordered group and (μ, ρ) its L-valued ordered subgroup. Then for all $x, y \in G$

$$
\pi_{\mu}\left(x^{-1} \cdot y\right) \geq \rho(x, y)
$$

Denote by P_{G} and N_{G} the positive and the negative cone of G, as well as their characteristic functions, respectively.

Denote by P_{G} and N_{G} the positive and the negative cone of G, as well as their characteristic functions, respectively.

Proposition

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be an ordered group and (μ, ρ) an L-valued-ordered subgroup of G. The following holds:

$$
\pi_{\mu}=\mu \cap P_{G}
$$

Denote by P_{G} and N_{G} the positive and the negative cone of G, as well as their characteristic functions, respectively.

Proposition

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be an ordered group and (μ, ρ) an L-valued-ordered subgroup of G. The following holds:

$$
\pi_{\mu}=\mu \cap P_{G}
$$

An L-valued-ordered subgroup (μ, ρ) of an ordered group ($G, \cdot,^{-1}, e, \leqslant$) is an L-valued-convex subgroup of G if μ is an L-valued-convex subset on the poset (G, \leqslant).

Denote by P_{G} and N_{G} the positive and the negative cone of G, as well as their characteristic functions, respectively.

Proposition

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be an ordered group and (μ, ρ) an L-valued-ordered subgroup of G. The following holds:

$$
\pi_{\mu}=\mu \cap P_{G}
$$

An L-valued-ordered subgroup (μ, ρ) of an ordered group ($G, \cdot,^{-1}, e, \leqslant$) is an L-valued-convex subgroup of G if μ is an L-valued-convex subset on the poset (G, \leqslant).

Theorem

Let (μ, ρ) be an L-valued ordered subgroup of $\left(G, \cdot,^{-1}, e, \leqslant\right)$.
Then, the following are equivalent:
(i) (μ, ρ) is an L-valued convex subgroup of G.
(ii) The restriction of π_{μ} to P_{G} is an L-valued down-set in P_{G}.
(iii) The restriction of ν_{μ} to N_{G} is an L-valued up-set in N_{G}.

L-valued lattice ordered group

L-valued lattice ordered group

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be a lattice ordered group, L a complete lattice and (μ, ρ) an L-valued ordered subgroup of G. We say that (μ, ρ) is an L-valued lattice ordered subgroup of G, or an L-valued ℓ-subgroup of G if for every $x \in G$

$$
\mu(x) \leq \mu(x \vee e)
$$

L-valued lattice ordered group

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be a lattice ordered group, L a complete lattice and (μ, ρ) an L-valued ordered subgroup of G. We say that (μ, ρ) is an L-valued lattice ordered subgroup of G, or an L-valued ℓ-subgroup of G if for every $x \in G$

$$
\mu(x) \leq \mu(x \vee e)
$$

Theorem

Let μ be an L-valued subgroup of a lattice ordered group G. Then, (μ, ρ) is an L-valued ℓ-subgroup of G if and only if, for every $p \in L$, the cut μ_{p} is an ℓ-subgroup of G.

Theorem

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be a lattice ordered group, and $L=S u b G$, i.e., L is the lattice of all subgroups of G, ordered dually to the set inclusion. Further, let $H \subseteq L$ consist of all convex ℓ-subgroups of G. Then, the mapping $\mu: G \rightarrow L$, such that for every $x \in G$, $\mu(x):=\langle x\rangle_{H}$, is an L-valued ℓ-subgroup of G.

Theorem

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be a lattice ordered group, and $L=$ SubG, i.e., L is the lattice of all subgroups of G, ordered dually to the set inclusion. Further, let $H \subseteq L$ consist of all convex ℓ-subgroups of G. Then, the mapping $\mu: G \rightarrow L$, such that for every $x \in G$, $\mu(x):=\langle x\rangle_{H}$, is an L-valued ℓ-subgroup of G.

Theorem

Let G be an ordered group and L a complete lattice. Then G is totaly ordered if and only if every L-valued subgroup μ of G is an L-valued ℓ-subgroup of G under the order $\rho: G \rightarrow L$, $\rho(x, y)=\mu(x) \wedge \mu(y) \wedge k_{\leqslant}(x, y)$.

Theorem

Let $\left(G, \cdot,^{-1}, e, \leqslant\right)$ be a lattice ordered group, and $L=$ SubG, i.e., L is the lattice of all subgroups of G, ordered dually to the set inclusion. Further, let $H \subseteq L$ consist of all convex ℓ-subgroups of G. Then, the mapping $\mu: G \rightarrow L$, such that for every $x \in G$, $\mu(x):=\langle x\rangle_{H}$, is an L-valued ℓ-subgroup of G.

Theorem

Let G be an ordered group and L a complete lattice. Then G is totaly ordered if and only if every L-valued subgroup μ of G is an L-valued ℓ-subgroup of G under the order $\rho: G \rightarrow L$, $\rho(x, y)=\mu(x) \wedge \mu(y) \wedge k_{\leqslant}(x, y)$.

Proposition

An L-valued subgroup (μ, ρ) of a lattice ordered group G is is an L-chain under ρ if for every pair of non-comparable elements $x, y \in G, \mu(x) \wedge \mu(y)=0$.
B. Šešelja Structure of weak suborders of a poset

The end

Thank you!

[^0]: B. Šešelja Structure of weak suborders of a poset

[^1]: B. Šešelja

 Structure of weak suborders of a poset

