Finitely generated varieties which are finitely decidable are residually finite

Ralph McKenzie and Matthew Smedberg

Vanderbilt University
Department of Mathematics

7 June 2013

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian

The Finite Decidability Problem

Let $\mathcal V$ be a variety (usually locally finite) in a finite language. We say $\mathcal V$ is *decidable* if its first-order theory is, and *finitely decidable* if the theory of $\mathcal V_{\text{fin}}$ is decidable.

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian

The Finite Decidability Problem

Let $\mathcal V$ be a variety (usually locally finite) in a finite language. We say $\mathcal V$ is *decidable* if its first-order theory is, and *finitely decidable* if the theory of $\mathcal V_{\rm fin}$ is decidable.

Decidable and finitely decidable varieties are rare and structurally constrained. For example,

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

 $\mathsf{Rad}(\mathsf{S})$ is strongly abelian

V is residually

ahelian

Bounding SIs in V Rad(S) is strongly

V is residually

V is residually finite

Let $\mathcal V$ be a variety (usually locally finite) in a finite language. We say $\mathcal V$ is *decidable* if its first-order theory is, and *finitely decidable* if the theory of $\mathcal V_{\text{fin}}$ is decidable.

Decidable and finitely decidable varieties are rare and structurally constrained. For example,

Fact

If A has any congruence covers of the lattice or semilattice types, or

then every variety containing **A** is finitely undecidable.

abelian

V is residually finite

Let $\mathcal V$ be a variety (usually locally finite) in a finite language. We say $\mathcal V$ is *decidable* if its first-order theory is, and *finitely decidable* if the theory of $\mathcal V_{\text{fin}}$ is decidable.

Decidable and finitely decidable varieties are rare and structurally constrained. For example,

Fact

- ► If A has any congruence covers of the lattice or semilattice types, or
- If any boolean- or affine-type minimal sets in A have nonempty tails, or

then every variety containing **A** is finitely undecidable.

decidable if the theory of \mathcal{V}_{fin} is decidable.

V is residually

abelian

structurally constrained. For example, finite

Fact

▶ If **A** has any congruence covers of the lattice or semilattice types, or

Decidable and finitely decidable varieties are rare and

▶ If any boolean- or affine-type minimal sets in **A** have nonempty tails, or

Let \mathcal{V} be a variety (usually locally finite) in a finite language.

We say V is decidable if its first-order theory is, and finitely

▶ If **A** is a subdirectly irreducible finite algebra with two incomparable nonabelian congruences,

then every variety containing A is finitely undecidable.

イロナ イ御 とくまとくまとりま

If A is a finite algebra

▶ and **A** has a solvable congruence which is nonabelian, or

then every variety containing **A** is finitely undecidable.

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian

If A is a finite algebra

- ▶ and **A** has a solvable congruence which is nonabelian, or
- ▶ A is subdirectly irreducible with boolean monolith and also has a cover of type 1 or 2, or

then every variety containing **A** is finitely undecidable.

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian

If A is a finite algebra

- ▶ and **A** has a solvable congruence which is nonabelian, or
- ▶ **A** is subdirectly irreducible with boolean monolith and also has a cover of type 1 or 2, or
- ▶ A is SI with type 2 monolith and has also a cover of type 1, or vice versa,

then every variety containing **A** is finitely undecidable.

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian

If A is a finite algebra

- ▶ and **A** has a solvable congruence which is nonabelian, or
- ▶ **A** is subdirectly irreducible with boolean monolith and also has a cover of type 1 or 2, or
- ▶ **A** is SI with type 2 monolith and has also a cover of type 1, or vice versa,

then every variety containing **A** is finitely undecidable.

These facts (and many of a similar nature) were established for modular varieties in the 90s (see [Idziak 1997]). The results for nonmodular varieties are in most cases new.

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian

Bounding Subdirect Irreducibles in ${\cal V}$

Residual finiteness of finitely decidable varieties

McKenzie & Smedberg

The Problem

Bounding SIs in V Type 3 and 2 Type 1 Rad(S) is m.i.

Rad(S) is strongly abelian

V is residually finite

Theorem

Let K be a finite set of finite algebras, and suppose $V = \mathrm{HSP}(K)$ is finitely decidable. Then there is a finite bound on the cardinalities of SI algebras in V.

Bounding Subdirect Irreducibles in ${\cal V}$

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V
Type 3 and 2
Type 1
Rad(S) is m.i.

Rad(S) is strongly abelian

V is residually

Theorem

Let K be a finite set of finite algebras, and suppose $V = \mathrm{HSP}(K)$ is finitely decidable. Then there is a finite bound on the cardinalities of SI algebras in V.

Using familiar methods from the congruence-modular case, we show that

• every SI with boolean-type monolith belongs to $HS(\mathcal{K})$;

Bounding Subdirect Irreducibles in $\mathcal V$

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V Rad(S) is m.i.

Rad(S) is strongly ahelian

V is residually

Using familiar methods from the congruence-modular case, we show that

Let K be a finite set of finite algebras, and suppose

bound on the cardinalities of SI algebras in V.

 $\mathcal{V} = \mathrm{HSP}(\mathcal{K})$ is finitely decidable. Then there is a finite

- every SI with boolean-type monolith belongs to $HS(\mathcal{K})$;
- ightharpoonup there is a bound (\sim quadruply exponential) on the affine-type SIs.

Theorem

V is residually

So let $\mathbf{S} \in \mathcal{V}$ have monolith $\perp \stackrel{1}{\prec} u$.

Lemma

 $\operatorname{Rad}_{u}(S)$ is comparable to all congruences of S.

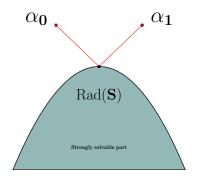
Lemma

 $\operatorname{Rad}_{u}(\mathbf{S})$ is meet-irreducible.

Each of these is proved by contradiction: supposing the respective lemma were false, we construct a (relatively straightforward) interpretation of some finitely undecidable class into HSP(S).

Meet-irreducibility of the solvable radical

Goal: to semantically interprect a structure of the form $\langle I; E_0, E_1 \rangle$ (where the E_j are disjoint equivalence relations) into subpowers of **S**.



Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

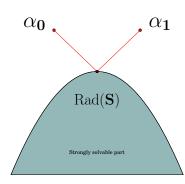
Bounding SIs in V Type 3 and 2 Type 1 Rad(S) is m.i.

Rad(S) is strongly abelian

Meet-irreducibility of the solvable radical

Goal: to semantically interprect a structure of the form $\langle I; E_0, E_1 \rangle$ (where the E_j are disjoint equivalence relations) into subpowers of **S**.

Let $\{0_j, 1_j\}$ be $(\operatorname{Rad}_u(\mathbf{S}), \alpha_j)$ -minimal sets. Let $\mathbf{B} \leq \mathbf{S}^I$ consist of all \mathbf{x} which are α_1 -constant on E_1 -blocks and vice versa.



Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V Type 3 and 2 Type 1 Rad(S) is m.i.

Rad(S) is strongly abelian

V is residually

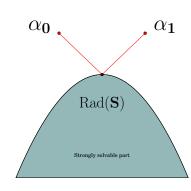
Meet-irreducibility of the solvable radical

Goal: to semantically interprect a structure of the form $\langle I; E_0, E_1 \rangle$ (where the E_j are disjoint equivalence relations) into subpowers of **S**.

Let $\{0_j, 1_j\}$ be $(\operatorname{Rad}_u(\mathbf{S}), \alpha_j)$ -minimal sets. Let $\mathbf{B} \leq \mathbf{S}^I$ consist of all \mathbf{x} which are α_1 -constant on E_1 -blocks and vice versa.

Using a failure of $C(\mu, \{0_j, 1_j\}; \bot_S)$, and some tricks from tame congruence theory,

we reconstruct the original structure $\langle I; E_0, E_1 \rangle$ in a first-order way from **B**.



Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V Type 3 and 2 Type 1 Rad(S) is m.i.

Rad(S) is strongly abelian

Since $\operatorname{Rad}_u(\mathbf{S})$ is meet-irreducible, we know that its index cannot exceed the maximum size of a boolean-type SI in \mathcal{V} .

Theorem

 $\operatorname{Rad}_{u}(S)$ is strongly abelian.

Proof.

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in ${\sf V}$

Rad(S) is strongly abelian

Darsity of 3g and C

Since $\operatorname{Rad}_u(S)$ is meet-irreducible, we know that its index cannot exceed the maximum size of a boolean-type SI in \mathcal{V} .

Theorem

 $\operatorname{Rad}_{u}(\mathbf{S})$ is strongly abelian.

Proof.

Long!

Takeaway idea: Subalgebra generation (and congruence generation) can frequently be proven to be "sparse" in some useful sense, when the generators are chosen so that they are almost constant modulo a strongly abelian congruence (such as the monolith).

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly

abelian Sparsity of Sg and Cg

V is residually

Sparse subalgebra generation: Example I

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly ahelian Sparsity of Sg and Cg

V is residually

finite

Suppose $C(\theta_0, \mu_{|U}; \perp)$ holds in our subdirectly irreducible

algebra, but $C(\theta_1, \mu_{|U}; \bot)$ does not, where $\theta_0 \prec \theta_1$ are strongly solvable.

See Lemma 3.1 in our paper for more about this example.

 $t(a_0, \vec{b}_0) = t(a_0, \vec{b}_1)$

but $t(a_1, \vec{b}_0) \neq t(a_1, \vec{b}_1)$

See Lemma 3.1 in our paper for more about this example.

where t takes values in some \perp , μ -minimal set.

Suppose $C(\theta_0, \mu_{|U}; \bot)$ holds in our subdirectly irreducible algebra, but $C(\theta_1, \mu_{|U}; \perp)$ does not, where $\theta_0 \prec \theta_1$ are

strongly solvable. Choose a witnessing package

Example I, continued

Now suppose $\mathbb{G}=\langle V,E\rangle$ is a graph we want to interpret into $\mathrm{HSP}(\mathbf{S})$. Generate $\mathbf{D}\leq \mathbf{S}^{V\sqcup\{\infty\}}$

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian Sparsity of Sg and Cg

V is residually

finite

Bounding SIs in ${\sf V}$

Rad(S) is strongly abelian

Sparsity of Sg and Cg

V is residually finite

Now suppose $\mathbb{G}=\langle V,E\rangle$ is a graph we want to interpret into $\mathrm{HSP}(\mathbf{S})$. Generate $\mathbf{D}\leq \mathbf{S}^{V\sqcup\{\infty\}}$ using all the diagonal elements, plus all elements of the form

$$a_{1|\{v,\infty\}}\oplus a_{0|\text{else}}\quad (v\in V)$$

$$a_{1|\{v,w,\infty\}} \oplus a_{0|\text{else}} \quad (v \stackrel{E}{--} w)$$

plus one extra element $m_{0|V}\oplus m_{1|\{\infty\}}$ (m_0,m_1) belonging to some (\bot,μ) -trace).

Rad(S) is strongly ahelian Sparsity of Sg and Cg

V is residually

finite

Now suppose $\mathbb{G} = \langle V, E \rangle$ is a graph we want to interpret into HSP(**S**). Generate $\mathbf{D} < \mathbf{S}^{V \cup \{\infty\}}$ using all the diagonal elements, plus all elements of the form

$$a_{1|\{v,\infty\}}\oplus a_{0|\mathsf{else}}\quad (v\in V)$$

$$a_{1|\{v,w,\infty\}} \oplus a_{0|\text{else}} \quad (v \stackrel{E}{--} w)$$

plus one extra element $m_{0|V} \oplus m_{1|\{\infty\}}$ $(m_0, m_1 \text{ belonging to})$ some (\perp, μ) -trace).

Key Claim

Every point in $D \cap U$ attains at most two values (mod θ_0), and does so precisely in the pattern of one of the generators (i.e. one of these values occurs at a vertex and infinity, or at the endpoints of an edge and at infinity).

McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian Sparsity of Sg and Cg

V is residually

v is residually finite

Fix a (\bot, μ) -minimal set U, and say we are working to semantically interpret a graph $\langle V, E \rangle$ into a power of **S**. Let $I = \{v^+, v^- : v \in V\}$. Define a subalgebra

$$\Delta\subseteq \textbf{B}\leq \textbf{S}^{\textit{I}}$$

with generators those $\mathbf{x} \in U^I$ such that for some $v \in V$,

$$\begin{cases} x^{v^+} \equiv_{\mu} x^{v^-} \\ x^{w^+} = x^{w^-} \equiv_{\mu} x^{v^+} & \text{for all other } w \in V \end{cases}$$

Example II continued

Claim

 $B \cap U^I$ consists of just the generators and no more.

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian

' is residually

nite

Claim

 $B \cap U^I$ consists of just the generators and no more.

Proof: write an arbitrary element $\mathbf{y} \in U^I$ as a product $\mathbf{f}(\mathbf{x}_1,\ldots,\mathbf{x}_k)$ of generators, where $\mathbf{f}=f^I$ for some polynomial operation $f:\mathbf{S}\to U$. Let C_j be the μ -class where \mathbf{x}_j lives; then on $C_1\times\cdots\times C_k$, f is essentially unary; say it depends on \mathbf{x}_1 , which has its spike at $v_0\in V$. Then $y^{v_0^+}\equiv_\mu y^{v_0^-}$, and for all $w\neq v_0$,

$$x_1^{w^+} = x_1^{w^-}$$
 and $x_j^{w^+} \equiv_{\mu} x_j^{w^-}$

so that

$$y^{w^+} = f(x_1^{w^+}, \dots, x_k^{w^+}) = f(x_1^{w^-}, \dots, x_k^{w^-}) = y^{w^-}$$

Sparse congruence generation: Example III

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V Rad(S) is strongly

ahelian Sparsity of Sg and Cg

finite

Assume that $\sigma = \operatorname{Rad}_{u}(S)$ is abelian over μ but not over \perp , and let $\mathbb{G} = \langle V, E \rangle$ be a graph. Fix the index set $I = V \times \{+, -\} \sqcup \{\infty\}$, and let $\mathbf{D} \leq \mathbf{S}^I$ be the subalgebra consisting of all σ -constant points.

See Lemma 3.6 in our paper for all the hypotheses of this example, a ?

Sparse congruence generation: Example III

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V Rad(S) is strongly

ahelian Sparsity of Sg and Cg

V is residually

finite

Assume that $\sigma = \operatorname{Rad}_{u}(S)$ is abelian over μ but not over \bot , and let $\mathbb{G} = \langle V, E \rangle$ be a graph. Fix the index set $I = V \times \{+, -\} \sqcup \{\infty\}$, and let $\mathbf{D} < \mathbf{S}^I$ be the subalgebra consisting of all σ -constant points.

Next, choose a (\perp, μ) -subtrace $\{m_0, m_1\}$, and let Θ be the congruence on **D** generated by identifying all pairs

$$m_{1|v^+} \oplus m_{0|\text{else}} \equiv m_{1|v^-} \oplus m_{0|\text{else}}$$
 $(v \in V)$

$$m_{1|v^+,w^+} \oplus m_{0|\text{else}} \equiv m_{1|v^-,w^-} \oplus m_{0|\text{else}} \quad (v \stackrel{E}{-} w)$$

See Lemma 3.6 in our paper for all the hypotheses of this example a compact of the example of the second of the example of the

Bounding SIs in V

Rad(S) is strongly abelian

Sparsity of Sg and Cg

V is residually finite

Key Claim

When restricted to a minimal set. Θ contains blocks of cardinality 1 and 2 only, and if $\mathbf{x} \equiv_{\Theta} \mathbf{y}$ then the set of coordinates where they differ is either empty, or $\{v^+, v^-\}$ for some $v \in V$, or $\{v^+, w^+, v^-, w^-\}$ for some $v \stackrel{E}{-} w$.

abelian

Say $\operatorname{Rad}_u(\mathbf{S})$ has index ℓ and some fixed monolith pair $c \neq d$.

Since $Rad_u(S)$ is strongly abelian,

Lemma

For any polynomial $t(v_0, \vec{v}_1, \dots, \vec{v}_\ell)$, there exist subsets of each variable set \vec{v}_i , of size no more than $\log |\mathbf{F}_{\mathcal{V}}(2+\ell)|$, such that for all $\mathrm{Rad}_u(\mathbf{S})$ -blocks B_1, \dots, B_ℓ , the mapping

$$A \times \vec{B}_1 \times \cdots \times \vec{B}_\ell \to A$$

induced by t depends only on v_0 and the indicated subsets.

Because of the Lemma, terms $f(v_0) = t(v_0, \vec{s})$ of bounded arity suffice to send exactly one of any unequal elements $x_1 \neq x_2$ to c.

Consider a fixed $\operatorname{Rad}_u(\mathbf{S})$ -block B, and to each $b \in B$ associate the set of terms $t(v_0, v_1, \ldots, v_k)$, with k bounded as described in the last slide, such that for some p_1, \ldots, p_k from the appropriate $\operatorname{Rad}_u(\mathbf{S})$ -blocks, $t(b, \vec{p}) = c$.

Claim

This is an injective map from B to subsets of $\mathbf{F}_{\mathcal{V}}(1+k)$

For if not, we get a failure of the strong term condition

$$c = t(b_1, \vec{p}_1) = t(b_2, \vec{p}_2)$$
 but $t(b_2, \vec{p}_1) \neq c$

This contradiction completes the proof.

Open Problems

Problem

Do finitely decidable, locally finite varieties have definable principal congruences? Definable principal subcongruences? Definable principal solvable congruences?

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian

V is residually finite Bounding Rad(S)-blocks

Open Problems

Problem

Do finitely decidable, locally finite varieties have definable principal congruences? Definable principal subcongruences? Definable principal solvable congruences?

Problem

In a finite algebra **A** in a finitely decidable variety, must every congruence permute with $\operatorname{Rad}(\mathbf{A})$? With $\operatorname{Rad}_u(\mathbf{A})$?

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in V

Rad(S) is strongly abelian

V is residually finite Bounding Rad(S)-blocks

Open Problems

Residual finiteness of finitely decidable varieties

McKenzie & Smedberg

The Problem

Bounding SIs in V Rad(S) is strongly

V is residually finite

finite Bounding Rad(S)-blocks

ahelian

Problem

Do finitely decidable, locally finite varieties have definable principal congruences? Definable principal subcongruences? Definable principal solvable congruences?

Problem

In a finite algebra $\bf A$ in a finitely decidable variety, must every congruence permute with ${\rm Rad}(\bf A)$? With ${\rm Rad}_u(\bf A)$?

Problem

In all known cases, the set of finitely refutable sentences of a finitely generated variety is either decidable or Turing-complete. Do there exist varieties where this set has an intermediate complexity class?

Thank you!

Residual finiteness of finitely decidable varieties

> McKenzie & Smedberg

The Problem

Bounding SIs in ${\sf V}$

Rad(S) is strongly abelian

V is residually finite Bounding Rad(S)-blocks